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Abstract

An n-vertex graph is equitably k-colorable if there is a proper coloring
of its vertices such that each color is used either bn/kc or dn/ke times.
While classic Vertex Coloring is fixed parameter tractable under well
established parameters such as pathwidth and feedback vertex set, equi-
table coloring is W[1]-hard. We present an extensive study of structural
parameterizations of Equitable Coloring, tackling both tractability
and kernelization questions. We begin by showing that the problem is
fixed parameter tractable when parameterized by distance to cluster or
by distance to co-cluster — improving on the FPT algorithm of Fiala et
al. [Theoretical Computer Science, 2011] parameterized by vertex cover
— and also when parameterized by distance to disjoint paths of bounded
length. To justify the latter result, we adapt a proof of Fellows et al. [In-
formation and Computation, 2011] to show that Equitable Coloring
is W[1]-hard when simultaneously parameterized by distance to disjoint
paths and number of colors. In terms of kernelization, on the positive side
we present a linear kernel for the distance to clique parameter and a cubic
kernel when parameterized by the maximum leaf number; on the other
hand, we show that, unlike Vertex Coloring, Equitable Coloring
does not admit a polynomial kernel when jointly parameterized by vertex
cover and number of colors, unless NP ⊆ coNP/poly. We also revisit the
literature and derive other results on the parameterized complexity of the
problem through minor reductions or other observations.

1 Introduction
Equitable Coloring is a variant of the classical Vertex Coloring problem:
we want to partition an n vertex graph into k independent sets such that each
of these sets has either bn/kc or dn/ke vertices. The smallest integer k for which
G admits an equitable k-coloring is called the equitable chromatic number of G.
Equitable Coloring was first discussed in [27], with an intended application
for municipal garbage collection, and later in processor task scheduling [1], com-
munication control [21], and server load balancing [29]. Lih [26] presented an

∗A previous version of this work was was published in the proceedings of LATIN2020 [18].
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extensive survey covering many of the results developed in the last 50 years. Its
focus, however, is not algorithmic, and most of the presented results are bounds
on the equitable chromatic number for various graph classes.

Many complexity results for Equitable Coloring arise from a related
problem, known as Bounded Coloring, as observed by Bodlaender and Fomin [2].
On Bounded Coloring, we ask that the size of the independent sets be
bounded by an integer `. Among the positive results for Bounded Coloring,
the problem is known to be solvable in polynomial time for: split graphs [9],
complements of interval graphs [4], complements of bipartite graphs [4], and
forests [1]. Baker and Coffman [1] present the first algorithm for Bounded
Coloring on trees, while Jarvis and Zhou [23] show how to compute an opti-
mal `-bounded coloring of a tree through a novel characterization. For cographs,
bipartite and interval graphs, there are polynomial-time algorithms when the
number of colors k is fixed. In terms of parameterized complexity, in [2] an XP
algorithm is given for Equitable Coloring parameterized by treewidth, while
Fiala et al. [16] show that the problem is FPT parameterized by vertex cover
and Enciso et al. [13] show that it is FPT parameterized by the maximum leaf
number. Recently, Gomes et al. [19] proved that, when parameterized by the
treewidth of the complement graph, Equitable Coloring is FPT. Reddy [28]
proved that the problem is tractable when the parameter is the distance to con-
nected threshold graphs, even though the connected qualifier is omitted in the
claim; Another claim of [28] is that Equitable Coloring admits a polynomial
kernel when parameterized by distance to threshold and number of colors; the
proof, however, only works for distance to connected threshold graphs. Our
result in Section 9 shows that the original claim is false, i.e. there can be no
polynomial kernel when the parameter is the distance to threshold graphs unless
NP ⊆ coNP/poly.

The main contributions of this work are complexity results on Equitable
Coloring for parameterizations that are weaker than vertex cover, in the sense
that the parameters are upper bounded by the vertex cover number, and a cubic
kernel for the maximum leaf number parameterization. In particular, we show
that Equitable Coloring is fixed parameter tractable when parameterized
by distance to cluster, distance to co-cluster, or by distance to disjoint paths
of bounded length. Not only are the parameters weaker, but also in the first
case, the algorithm is slightly faster than the one previously known for vertex
cover, as it does not rely on Integer Linear Programming; the running
time, however, is still of the order of 2O(k log k). On the negative side, we show
that the combined parameterization distance to disjoint paths and number of
colors is insufficient to guarantee tractability. Along with some of the works
discussed here and in Section 2, our results cover many branches of the known
graph parameter hierarchy [30].
Our results. In this work, we conduct a systematic study on the complexity of
structural parameterizations for Equitable Coloring. We begin by revisiting
the literature in Section 2 and showing how previous work can be adapted in
order to results on the parameterized complexity of Equitable Coloring.
Afterwards, our first technical contributions prove that the problem is fixed-
parameter tractable when parameterized by distance to cluster and co-cluster;
these algorithms are faster than the previously known FPT algorithm of Fiala
et al. [16]. Still in terms of tractability, we improve on the reduction of Fellows
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et al. [15] and show that, when parameterized by the distance to disjoint paths
and number of colors, Equitable Coloring remains W[1]-hard. We then
turn our attention to kernelization, by first showing that the problem admits
a linear kernel when parameterized by distance to clique; we point out that
the best known kernel for Vertex Coloring under this parameterization is
quadratic. Afterwards, we present a cubic kernel when the max leaf number
is the parameter. Finally, we adapt the reduction of Section 5 to show that,
unless NP ⊆ coNP/poly, Equitable Coloring does not admit a polynomial
kernel when jointly parameterized by vertex cover and number of colors; it is
also worthy to note that Vertex Coloring admits a polynomial kernel under
vertex cover [22]. Our contributions cover a large part of the graph parameter
hierarchy [30]. We list the question of whether or not the problem is tractable
under feedback edge set as our main open problem.
Notation and Terminology. We use standard graph theory notation and
nomenclature for our parameters, following classical textbooks in the areas [5,
11]. Define [k] = {1, . . . , k} and 2S the powerset of S. A k-coloring ϕ of a
graph G is a function ϕ : V (G) 7→ [k]. Alternatively, a k-coloring is a k-
partition V (G) ∼ {ϕ1, . . . , ϕk} such that ϕi = {u ∈ V (G) | ϕ(u) = i}. A
k-coloring is said to be equitable if, for every i ∈ [k], bn/kc ≤ |ϕi| ≤ dn/ke; it is
proper if every ϕi is an independent set. Unless stated, all colorings are proper.
The Equitable Coloring problem asks whether or not G can be equitably
k-colored. A graph G is a subdivision of a graph H if a graph isomorphic to G
can be obtained by replacing some edges of H with paths of arbitrary length.
A graph is a cluster graph if each of its connected components is a clique; a
co-cluster graph is the complement of a cluster graph. The distance to cluster
(co-cluster) of a graph G, denoted by dc(G) (dc(G)), is the size of the smallest
set U ⊆ V (G) such that G − U is a cluster (co-cluster) graph. Using the
terminology of [7], a set U ⊆ V (G) is an F-modulator of G if the graph G− U
belongs to the graph class F . When the context is clear, we omit the qualifier
F . In particular, we say that U is a P`-modulator if each connected component
of G \U has at most ` vertices and is a path. For cluster and co-cluster graphs,
one can decide if G admits a modulator of size k in time FPT on k [6]. The
maximum leaf number, often called the max leaf number and denoted by ml(G),
is the maximum number of leaves on some spanning forest of G with as many
connected components as G [14].

2 Literature corollaries and minor observations
The original NP-complete results of Bodlaender and Jansen [4], despite being
initially regarded as polynomial reductions for Bounded Coloring, are a nice
source of parameterized hardness. To adapt their proofs to show that Eq-
uitable Coloring parameterized by the number of colors is W[1]-hard on
cographs and paraNP-hard on bipartite graphs, it suffices to consider the ver-
sion of Bin-Packing where each bin must be completely filled for the first
case, while the latter follows immediately since they prove that Bounded 3-
Coloring is NP-hard on bipartite graphs; these imply that adding the distance
to theses classes in the parameterization yields no additional power whatso-
ever. Fellows et al. [15] show that Equitable Coloring parameterized by
treewidth and number of colors is W[1]-hard, while an XP algorithm parame-
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terized by treewidth is given for both Equitable Coloring and Bounded
Coloring by Bodlaender and Fomin [2]. In fact, the reduction shown in [15]
prove that, even when simultaneously parameterized by feedback vertex set,
treedepth, and number of colors, Equitable Coloring remains W[1]-hard.
Gomes et al. [19] show that the problem parameterized by number of colors,
maximum degree and treewidth is W[1]-hard on interval graphs. However, their
intractability statement can be strengthened to number of colors and bandwidth,
with no changes to the reduction. In [7], Cai proves that Vertex Coloring
is W[1]-hard parameterized by distance to split.

We also reviewed results on parameters weaker than distance to clique, since
both distance to cluster and co-cluster fall under this category. For minimum
clique cover, we resort to the classic result of Garey and Johnson [17] that
Partition into Triangles is NP-hard. By definition, a graph G can be
partitioned into vertex-disjoint triangles if and only if its complement graph
can be equitably (n/3)-colored. The reduction given in [17] is from Exact
Cover by 3-Sets, and their gadget (which we reproduce in Figure 1) has the
nice property that the complement graph G has a trivial clique cover of size
nine: it suffices to pick one gadget i and one clique for each aji . Thus, we
have that Equitable Coloring is paraNP-hard parameterized by minimum
clique cover. To see that when also parameterizing by the number of colors
there is an FPT algorithm, we first look at the parameterization maximum
independent set α and number of colors k, both of which we assume to be given
on the input. First, if kα < n, the instance is trivially negative, so we may
assume kα ≥ n; but, in this case, we can spend exponential time on the number
of vertices and still run in FPT time. Finally, we reduce from Equitable
Coloring parameterized by the number of colors k to Equitable Coloring
parameterized by k and minimum dominating set. If we take the source graph
G and add n

k vertices D = vi, . . . , vn
k
with N(vi) = V (G) for all vi ∈ D, the set

{v1, u}, with u ∈ V (G), is a dominating set of the resulting graph G′; moreover,
G has an equitable k-coloring if and only if G′ is equitably (k + 1)-colorable,
thus proving that Equitable Coloring parameterized by k and minimum
dominating set is paraNP-hard. A summary of the results discussed in this work
is displayed in Figure 2.

xi yi zi

a1
i a2

i a4
i a5

i a7
i a8

i

a3
i

a6
i

a9
i

Figure 1: Exact Cover by 3-Sets to Partition into Triangles gadget of
[17] representing the set Ci = {xi, yi, zi}.
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Figure 2: Hasse diagram of the parameterizations of Equitable Coloring
and their complexities. A single shaded box indicates that the problem is FPT,
while a shaded rhombus highlights a case that admits a polynomial kernel; two
solid boxes represent W[1]-hard even if also parameterized by the number of
colors; if the inner box is dashed, the problem is paraNP-hard; if the outer box
is solid and shaded, additionally using the number of colors results in an FPT
algorithm; if it is not shaded, it remains W[1]-hard. Entries with a * are our
main contributions. Ellipses mark open cases.

3 Equitable coloring parameterized by distance
to cluster

The goal of this section is to prove that Equitable Coloring can be solved
in FPT time when parameterized by the distance to cluster of the input graph.
As a corollary of this result, we show that unipolar graphs – the class of graphs
that have a clique as a modulator – can be equitably k-colored in polynomial
time. Throughout this section, we denote the modulator by U , the connected
components of G− U by C = {C1, . . . , Cr}, and define ` =

⌊
n
k

⌋
.

The central idea of our algorithm is to guess one of the possible |U ||U | color-
ings of the modulator and extend this guess to the clique vertices using max-flow.
First, given U , C, and a coloring ϕ′ of U , we build an auxiliary graph H as fol-
lows: V (H) = {s, t}∪A∪W ∪V (G) \U , where A = {a1, . . . , ak} represents the
colors we may assign to vertices, W = {wij | i ∈ [k], j ∈ [r]} whose role is to
maintain the property of the coloring, s is the source of the flow, t is the sink of
the flow, and V (G) = {v1, . . . , vn} are the vertices of G. For the arcs, we have
E(H) = S∪F0∪F1∪R∪T , where S = {(s, ai) | i ∈ [k]}, F0 = {(ai, t) | i ∈ [k]},
F1 = {(ai, wij) | i ∈ [k], j ∈ [r]}, R = {(wij , vp) | vp ∈ Cj , N(vp) ∩ ϕ′i = ∅},
and T = {(vi, t) | vi ∈ V (G) \ U}. As to the capacity of the arcs, we define
c : E(H)→ N, with c(e ∈ S) = `, c((ai, t)) = |ϕ′i∩U | and c(e ∈ F1∪R∪T ) = 1.
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Semantically, the vertices of A correspond to the k colors, while each wij ensures
that cluster Cj has at most one vertex of color i. Regarding the arcs, F0 corre-
sponds to the initial assignment of colors to the vertices of the modulator, and
R encodes the adjacency between vertices of the clusters and colored vertices of
the modulator. Note that the arcs in F0 and R are the only ones affected by the
pre-coloring ϕ′. An example of the constructed graph can be found in Figure 3.

v1 v2

v3 v4

v5 v6

s

a1

a2

t

w11 v3

w12 v4

w21 v5

w22 v6

Figure 3: (left) The input graph with U = {v1, v2}; (right) Auxiliary graph
constructed from the precoloring of U . Solid arcs have unit capacity.

Now, let f : E(H) → N be the function corresponding to the max-flow
from s to t obtained using any of the algorithms available in the literature [10].
Our first observation, as given by the following lemma, is that, if no (s, t)-flow
saturates the outbound arcs of s, then we cannot extend ϕ′ to equitably k-color
G.

Lemma 1. If there is some e ∈ S with f(e) < `, then G does not admit an
equitable k-coloring that extends ϕ′.

Proof. By contraposition, suppose that G admits an equitable k-coloring ϕ ex-
tending ϕ′. As such, there exists some coloring ψ satisfying ϕ′ ⊂ ψ ⊂ ϕ such
that for all i ∈ [k] we have |ψi| = `. To construct function f , begin by setting
f(e) = `, for each e ∈ S. If e = (ai, t), i.e., e ∈ F0, f(e) = |ψi ∩ U |. For
each e ∈ T such that e = (v, t) and v is colored by ψ, set f(e) = 1. For each
i ∈ [k], j ∈ [r], if ψi ∩ Cj 6= ∅ then we set f((ai, wij)) = 1 and f((wij , v)) = 1,
where v is the only element of ψi ∩ Cj . Note that the arc (wij , v) exists since
v ∈ V (G) \ U belongs to clique Cj , has no neighbor with color i in U , and ψ is
a coloring of G. All other arcs have f(e) = 0. To see that f corresponds to a
feasible flow of H under c, first note that f(e) ≤ c(e) for every e ∈ E(H) fol-
lows from the construction of f . To conclude the proof, it suffices to check that∑
j∈[r] f((ai, wij)) = `− |ψ ∩ U |, which must be the case, since f((ai, wij)) = 1

if and only if there is some v ∈ Cj ∩ ψi.

We may now assume that f(e) = c(e) for every e ∈ S. Let c′(e /∈ S) = c(e),
c′(e ∈ S) = c(e)+1. We resume the search for augmenting paths on the network,
replacing c(·) with c′(·), until it stops and returns the maximum (s, t)-flow g.

Lemma 2. For every e ∈ S, g(e) ≥ f(e).

Proof. Suppose that g(e) < f(e) for some e ∈ S, than at some step the max-flow
algorithm must have picked an augmenting path with an arc e = (ai, s), but
this leads to a contradiction as the augmented path would not be simple.
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Lemma 3. The maximum (s, t)-flow F given by g is equal to the number of
vertices of G if and only if there is an equitable k-coloring of G that extends ϕ′.

Proof. Suppose that the maximum (s, t)-flow is |V (G)|. Reading the flow func-
tion to retrieve the coloring ϕ is straightforward: for each (wij , vp) ∈ R with
f((wij , vp)) = 1, color vp with i. Since there is only one arc (v, t) with unit
capacity, there is an unique i such that v ∈ ϕi. By Lemma 2, ` ≤ |ϕi| and,
since the capacity of each outbound arc of s is ` + 1, |ϕi| ≤ ` + 1. That ϕi is
a proper coloring follows from the hypothesis that ϕ′ was a proper coloring of
G[U ], the arcs in R encode the constraints that a vertex v ∈ Cj cannot be col-
ored with any of the colors {i | N(v)∩ϕ′i 6= ∅}, and that only one vertex v ∈ Cj
satisfies f((wij , v)) = 1 since c′((ai, wij)) = 1. Finally, ϕ extends ϕ′ since no
vertex of U was recolored. For the converse, take an equitable k-coloring ϕ that
extends ϕ′ and define the flow function as in the proof of Lemma 1, but with
g((s, ai)) = |ϕi|. The same arguments hold, concluding the proof.

At this point we are essentially done. Lemmas 1 and 3 guarantee that, if
the max-flow algorithm fails to yield a large enough flow, a fixed pre-coloring of
U cannot be extended; moreover, the latter also implies that, if an extension is
possible, max-flow correctly finds it.

Theorem 4. Equitable Coloring parameterized by distance to cluster can
be solved in FPT time.

Proof. Suppose we are given U . Now, for each of the O
(
B|U |

)
possible colorings

of U — where Bn is the n-th Bell number — construct H and execute the
algorithm described in this section. Since max-flow can be solved in polynomial
time [10] and we have an FPT number of colorings of U , we have an FPT
algorithm for Equitable Coloring.

It is worthy to note here that there is nothing special about the capacities
of the arcs in S; they act only as upper bounds to the number of vertices a
color may be assigned to. Thus, not surprisingly, the same algorithm applies
to problems where the size of each color class is only upper bounded. This will
be particularly useful in the next session. Looking at the proof of Theorem 4,
the only non-polynomial step is guessing the coloring of the modulator. A
straightforward corollary is that if there is a polynomial number of distinct
colorings of U and this family can be computed in polynomial time, we can apply
the same ideas and check if an equitable k-coloring of the input graph exists
in polynomial time. In particular, unipolar graphs satisfy the above condition.
If we parameterize by distance to unipolar the problem remains W[1]-hard due
to the hardness for split graphs. On the other hand, if we parameterize by
distance to unipolar d and the number of colors k we have an FPT algorithm:
the central clique of G−U has at most k vertices, so we can treat G as a graph
with distance to cluster at most k + d and apply Theorem 4.

Corollary 5. Equitable Coloring on unipolar graphs is in P. When pa-
rameterized by distance to unipolar, the problem remains W[1]-hard; if also pa-
rameterized by the number of colors, it is solvable in FPT time.

We note that this corollary does not contradict theW[1]-hard proof of Gomes
et al. [19] for Equitable Coloring on disjoint union of split graphs when
parameterized by number of colors, since the class of split graphs is not closed
under disjoint union.
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4 Distance to co-cluster
Before proceeding to our hardness results, we discuss an FPT algorithm when
parameterized by distance to co-cluster. Interestingly, the key ingredient to our
approach is the algorithm presented in Section 3, which we use to compute the
transitions between states of our dynamic programming table. Much like in
the previous section, we denote by U the set of vertices such that G − U is a
co-cluster graph, and by I = {I1, . . . , Ir} the independent sets of G − U . The
following observation follows immediately from the fact that G−U is a complete
r-partite graph; it allows us to color the sets of I independently.

Observation 6. In any k-coloring ϕ of G, for every color i, there is at most
one j ∈ [r] such that ϕi ∩ Ij 6= ∅.

Suppose we are already given U , a coloring ψ of U , and the additional
restriction that colors P ⊆ ψ(U) must be used on `+ 1 vertices. We index our
dynamic programming table by (S, p, q, j), where S ⊆ ψ(U) stores which colors
of the modulator still need to be extended, p is the number of colors not in ψ(U)
that must still be used `+1 times, q the number of colors not in ψ(U) that must
still be used on ` vertices, and j ∈ [r] indicates which of the independent sets
we are trying to color. Our goal is to show that fψ,P (S, p, q, j) = 1 if and only
if there is a coloring of Gj = G[U

⋃r
i=j Ii] respecting the constraints given by

(S, p, q, j). Intuitively, guessing P allows us to index the table by the number
of colors not in ψ(U) according only to the capacity of each color, otherwise
it would be significantly harder to know, at any time in the algorithm, how
many colors should be used on ` + 1 vertices. To compute fψ,P (S, p, q, j), we
essentially test every possibility of extension of the colors in S that respects the
constraint imposed by P and allows the completion of the coloring of the j-th
independent set of G − U . Because of Observation 6, the colors not in ψ(U)
are confined to a single independent set and, thus, it suffices to consider only
how many colors of size ` + 1 we are going to use in Ij . We implement this
transitioning according to Equation 1:

fψ,P (S, p, q, j) = max
(R,x,y) ∈ ext(S,p,q,j)

fψ,P\R(S \R, p− x, q − y, j + 1) (1)

where ext(S, p, q, j) is the set of all triples (R, x, y), with R ⊆ S, such that each
color i ∈ R can be extended to Ij , while x and y satisfy the system:

x(`+ 1) + y` = |Ij | − αj
0 ≤ x ≤ p
0 ≤ y ≤ q

where αj is the number of vertices of Ij used to extend the colors of R to Ij .
Note that |ext(S, p, q, j)| ≤ 2|S|n, so it holds that, for each fixed ψ and P , our
dynamic programming table can be computed in O∗

(
3|U |

)
time if and only if

we can compute ext(S, p, q, j) in O∗(|ext(S, p, q, j)|) time.

Lemma 7. ext(S, p, q, j) can be computed in O∗(|ext(S, p, q, j)|) time.

Proof. Given a triple (R, x, y), with R ⊆ S, satisfying the above conditions, it
suffices to show that membership in ext(S, p, q, j) can be decided in polynomial
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time. Actually, the challenge is to determine whether or not the colors in R can
be extended to include Ij . In order to do so, let U ′ = {v ∈ U | ψ(v) ∈ R}, and
G′ be the subgraph of G induced by the vertices Ij ∪ U ′. Observe that U ′ is
actually a vertex cover for G′; in particular, it is a modulator to cluster graph
of size bounded by dc(G). As such, we can interpret the task as follows: is there
an induced subgraph of G′ that be colored with |R| colors, that extends ψ, the
colors in P ∩R are used exactly `+ 1 times and the others P \R ` times? This
can be answered with a slight modification of the algorithm given in Section 3:
after the initial max-flow is executed, i.e. if the converse of Lemma 1 holds,
instead of updating the capacity of every arc leaving the source to ` + 1 we
only update those corresponding to the colors in P , the same argumentation
holds.

Lemma 8. fψ,P (S, p, q, j) = 1 if and only if ψ can be extended to a coloring ϕ
of Gj using the colors of S, with each color in P used in `+ 1 vertices, p extra
color classes of size `+ 1, and q color classes of size `.

Proof. For the forward direction, we proceed by induction. The base case, where
j = r+ 1 is equal to the modulator, we can define fψ,P (S, p, q, r+ 1) = 1 if and
only if P = S = ∅, and p = q = 0. Now, take an arbitrary entry of the table
with i < r + 1; by Equation 1, fψ,P (S, p, q, j) = 1 if and only if there is some
triple (R, x, y) of ext(S, p, q, j) with fψ,P\R(S \R, p− x, q − y, j + 1) = 1. That
is, there is a coloring of Gj+1 under the constraints imposed by P \R and tuple
(S \ R, p − x, q − y, j + 1). Moreover, since V (Gj) \ V (Gj+1) = Ij , no color of
R is used in any vertex of V (Gj+1) \ U , and by the definition of ext(S, p, q, j),
it is possible to extend the coloring of Gj+1 to include the vertices of Ij while
keeping it proper and respecting the constraints imposed by P .

Conversely, take a coloring ϕ of Gj satisfying the hypothesis, define R =
ϕ(U) ∩ ϕ(Ij), and let ϕ′ be the restriction of ϕ to Gj+1. By Observation 6,
every color in R ⊆ S is used only on vertices of U ∪ Ij , say αj vertices of Ij , and
there must be integers 0 ≤ x ≤ p, 0 ≤ y ≤ q satisfying (`+ 1)x+ `y + αj = |Ij |
- that is, there are x colors of size ` + 1 and y colors of size ` used exclusively
on the remaining vertices of Ij . By definition, the triple (R, x, y) belongs to
ext(S, p, q, j) and if fψ,P\R(S\R, p−x, q−y, j+1) = 1 we are done. By induction
on the number of available colors, this assertion holds since |R| + x + y ≥ 1,
otherwise Ij = ∅.

Finally, all that is left is to show that the number of colorings of U and the
constraint set P can both be computed in FPT time.

Theorem 9. Equitable Coloring can be solved in FPT time when parame-
terized by distance to co-cluster.

Proof. We can guess all possible colorings ψ of |U | in time O∗
(
B|U |

)
and for

each color of ψ we need to choose between adding it to P or not. So we have
O∗
(
B|U |2

|U |) cases. By Lemmas 7 and 8 each case can be solved in FPT time
parameterized by dc, so our algorithm is FPT parameterized by dc.

It is important to note that the above algorithm does not contradict the
NP-hardness of Equitable Coloring on bipartite graphs, since solving the
problem on complete bipartite graphs is in P. Moreover, if U = ∅, all steps of
the algorithm are performed in polynomial time, yielding the following corollary.
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Corollary 10. Equitable Coloring of complete multipartite graphs is in P.

5 Distance to Disjoint Paths
We now investigate Equitable Coloring parameterized by the distance to
disjoint paths, which is upper bounded by vertex cover and lower bounded by
feedback vertex set. Contrary to our expectations, we show that the problem
is W[1]-hard even if we also parameterize by the number of colors. To accom-
plish this, we make use of two intermediate problems, namely Number List
Coloring and Equitable List Coloring parameterized by the number of
colors. The latter is very similar to Equitable Coloring but to each vertex
v is assigned a list L(v) ⊆ [k] of admissible colors. Number List Coloring
generalizes it in the sense that now we are given a function h : [k] 7→ N and
color i must be used exactly h(i) times. As a first step, we show that Number
List Coloring parameterized by the number of colors is W[1]-hard on paths.
By roughly doubling the number of colors and vertices used in the construction
of [15], we are able to use, essentially, the same arguments. The source problem
is Multicolored Clique parameterized by the solution size k: given a graph
H such that V (H) is partitioned in k color classes V = {V1, . . . , Vk}, we want
to determine if there is a k-colored clique in H. We denote the edges between
Vi and Vj by E(Vi, Vj), |V (H)| by n, and |E(H)| by m. We may assume that
|Vi| = N and |E(Vi, Vj)| = M for every i, j; to see why this is possible, we may
take k! disjoint copies of H, each corresponding to a permutation of the color
classes and, for each edge uv ∈ E(H), we connect each copy of u to each copy
of v. In our reduction, we interpret a clique as a set of oriented edges between
color classes, i.e. an edge e ∈ E(Vi, Vj) is selected twice: once from Vi to Vj ,
and once from Vj to Vi. As such, we have two gadgets for each edge of H.

Construction. Due to the list nature of the problem, we assign semantic values
to each set of colors. In our case, we separate them in four types:

Selection: The colors S = {σ(i, j) | (i, j) ∈ [k]2, i 6= j} and S ′ = {σ′(i, j) | (i, j) ∈
[k]2, i 6= j} are used to select which edges must belong to the clique.

Helper: Y and X satisfy |Y| = |X | = |S|. These two sets of colors force the choice
made at the root of the edge gadgets to be consistent across the gadget.

Symmetry: The colors E = {ε(i, j) | (i, j) ∈ [k]2, i < j} and E ′ = {ε′(i, j) | (i, j) ∈
[k]2, i < j} guarantee that, if edge e ∈ E(Vi, Vj) is picked from Vi to Vj ,
it must also be picked from Vj to Vi.

Consistency: Colors T = {τi(r, s) | i ∈ [k], r, s ∈ [k] \ {i}, r < s} and T ′ = {τ ′i(r, s) |
i ∈ [k], r, s ∈ [k]\{i}, r < s} ensure that if the edge uv is chosen between
Vi and Vj , the edge between Vi and Vr must also be incident to u.

Before detailing the gadgets themselves, we define what is, in our perception,
one of the most important pieces of the proof. For each vertex v ∈ V (H), choose
an arbitrary but unique integer in the range [n2 +1, n2 +n] and, for each edge e,
a unique integer in the range [2n2 + 1, 2n2 +m]. These are the up-identification
numbers of vertex v and edge e, denoted by v↑ and e↑, respectively. Now, choose
a suitably huge integer Z, say n3, and define the down-identification number for
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v as v↓ = Z − v↑. These quantities play a key role on the numerical targets for
the symmetry and consistency colors; since they are unique, these identification
numbers tie together the choices between edge gadgets.

For each pair i, j ∈ [k], with i < j, the input graph G of Number List
Coloring has the groups of gadgets G(i, j) and G(j, i), each containing M
edge gadgets corresponding to the edges of E(Vi, Vj). We say that G(i, j) is the
forward group and that G(j, i) is the backward group. For the description of the
gadgets, we always assume i < j, e ∈ E(Vi, Vj) with u ∈ Vi and v ∈ Vj .
Forward Edge Gadget. The gadget G(i, j, e) has a root vertex r(i, j, e),
with list {σ(i, j), σ′(i, j)}, and two neighbors, both with the list {σ(i, j), y(i, j)},
which for convenience we call a(i, j, e) and b(i, j, e). We equate membership of
edge e in the solution to Multicolored Clique to the coloring of r(i, j, e) with
σ(i, j). When discussing the vertices of the remaining vertices of the gadget,
we say that a vertex is even if its distance to r(i, j, e) is even, otherwise it
is odd. To a(i, j, e), we append a path with 2e↓ + 2(k − 1)u↓ vertices. First,
we choose e↓ even vertices to assign the list {y(i, j), ε′(i, j)}. Next, for each
r in j < r ≤ k, choose u↓ even vertices to assign the list {y(i, j), τ ′i(j, r)}.
Similarly, for each s 6= i satisfying s < j, choose u↓ even vertices and assign
the list {y(i, j), τi(s, j)}. All the odd vertices - except a(i, j, e) and b(i, j, e) -
are assigned the list {y(i, j), x(i, j)}. The path appended to b(i, j, e) is similarly
defined, except for two points: (i) the length and number of chosen vertices are
proportional to e↑ and u↑; and (ii) when color ε(i, j) (resp. τi(s, r)) should be
in the list, we add ε′(i, j) (resp. τ ′i(s, r)), and vice-versa. For an example of the
edge gadget, please refer to Figure 4.

{σ(1, 3), σ′(1, 3)}

{σ(1, 3), y(1, 3)}

{y(1, 3), ε(1, 3)}

{y(1, 3), τ1(3, 4)}

{y(1, 3), τ1(3, 4)}

{y(1, 3), τ ′1(2, 3)}

{y(1, 3), τ ′1(2, 3)}

{y(1, 3), ε′(1, 3)}

{y(1, 3), ε′(1, 3)}

{y(1, 3), τ ′1(3, 4)}

{y(1, 3), τ1(2, 3)}

Figure 4: Example of a forward edge gadget G(1, 3, e) of group G(1, 3), with
k = 4, Z = 3, e↓ = 2, and u↓ = 1. Vertices with no explicit list have list equal
to {y(1, 3), x(1, 3)}.

Backward Edge Gadget. Gadget G(j, i, e) has vertices r(j, i, e), a(j, i, e), and
b(j, i, e) defined similarly as to the forward gadget, with the root vertex having
the list {σ(j, i), σ′(j, i)}, while the other two have the list {σ(j, i), y(j, i)}. To
a(j, i, e), we append a path with 2e↓+ 2(k− 1)v↓ vertices. First, choose e↓ even
vertices to assign the list {y(j, i), ε(i, j)}. Now, for each r in j < r ≤ k, choose v↓
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even vertices to assign the list {y(j, i), τ ′j(i, r)}. Then, for each s 6= i satisfying
s < j, choose v↓ even vertices and assign the list {y(j, i), τj(s, i)}. All the odd
vertices are assigned the list {y(j, i), x(j, i)}. The path appended to b(j, i, e) is
similarly defined, except that: (i) the length and number of chosen vertices are
proportional to e↑ and v↑; and (ii) when the color ε(i, j) (resp. τj(s, r)) is in
the list, we replace it with ε′(i, j) (resp. τ ′j(s, r)), and vice-versa. Note that, for
every edge gadget, either forward or backward, the number of vertices is equal
to 3 + 2(e↑+ e↓) + 2(k− 1)(u↑+u↓) = 3 + 2kZ. We say that G(i, j, e) is selected
if r(i, j, e) is colored with σ(i, j), otherwise it is passed.

Numerical Targets. Before defining the numerical targets, given by h(·), recall
that |E(Vi, Vj)| = M for every pair i, j and that, for every vertex u and edge e,
the identification numbers satisfy the identity v↑+ v↓ = Z and e↑+ e↓ = Z. We
present the numerical targets of our instance - and some intuition - below.

Selection: h(σ(i, j)) = 1 + 2(M − 1) and h(σ′(i, j)) = M − 1. Since only one edge
may be chosen from Vi to Vj , the non-selection color σ′(i, j) must be used
in M − 1 edges of G(i, j). Thus, exactly one G(i, j, e) is selected and, to
achieve the target of 1 + 2(M − 1), for every f ∈ E(Vi, Vj) \ {e}, both
a(i, j, f) and b(i, j, f) must also be colored with σ(i, j).

Helper: h(y(i, j)) = 2 + kMZ and h(x(i, j)) = kMZ − kZ. The goal here is that,
if G(i, j, e) is selected, all the odd positions must be colored with y(i, j),
otherwise every even position must be colored with it. In the latter case,
the odd positions of all but one gadget of G(i, j) must be colored with
x(i, j).

Symmetry: h(ε(i, j)) = h(ε′(i, j)) = Z. If the previous condition holds and r(i, j, e) is
colored with σ(i, j), then ε(i, j) appears in e↑ vertices of the gadget rooted
at r(i, j, e). To meet the target Z, e↓ vertices of another gadget must also
be colored with it, as we show, the only way is if r(j, i, e) is colored with
σ(j, i).

Consistency: h(τi(s, r)) = h(τ ′i(s, r)) = Z. Similar to symmetry colors.

Lemma 11. If H has a k-multicolored clique, then G admits a list coloring
meeting the numerical targets.

Proof. Let Q be a clique of H of size k. Now, for each i, j ∈ [k], with i 6= j, and
e ∈ E(Vi, Vj), we color G as follows: if e ∈ Q, color r(i, j, e) with σ(i, j), color
every odd vertex with y(i, j) and every even vertex with the unique available
color to it; otherwise, color r(i, j, e) with σ′(i, j), color every even vertex with
y(i, j) and all odd vertices with the unique available color. This concludes the
construction of the coloring ϕ of G.

As to the numerical targets, note that the colors of S and S ′ are used the
appropriate number of times since only one edge of E(Vi, Vj) belongs to Q. For
each color y(i, j) ∈ Y and edge e = uv with u ∈ Vi, gadget G(i, j, e) has, at
least, e↑ + e↓ + (k − 1)(u↑ + u↓) = kZ vertices colored with y(i, j), since either
all odd vertices or even vertices are colored with it. For the remaining two
uses of y(i, j), note that the selected gadget G(i, j, e) has a(i, j, e) and b(i, j, e)
also colored with y(i, j). As to the other helper color, x(i, j), we use it only in
passed gadgets and, in this case, in every odd vertex (except the a’s and b’s);
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this sums up to
∑
e∈E(Vi,Vj)\Q e↑ + e↓ + (k − 1)(u↑ + u↓) = kMZ − kZ. In

terms of symmetry colors, ϕ only uses ε(i, j) on the selected gadgets G(i, j, e)
and G(j, i, e) (i < j), in particular, ε(i, j) is used e↓ times in G(j, i, e) and e↑
times on G(i, j, e), so it holds that |ϕε(i,j)| = e↑ + e↓ = Z. Note that the same
argument applies for color ε′(i, j). Finally, for consistency colors, note that
τi(r, s) is used only in the selected gadgets G(i, r, e) and G(i, s, f), specifically,
if i < r < s, τi(r, s) is used u↑ times in G(i, r, e) and u↓ times in G(i, s, f), since
edges e, f must be incident to the same vertex of Q ∩ Vi. Consequently τi(r, s)
is used in u↑ + u↓ = Z vertices. The reasoning for τ ′i(r, s) is similar.

We now proceed to the proof of the converse. Lemma 12 guarantees that
the decision made at the root of a gadget propagates throughout the entire
structure; Lemma 13 ensures that the edge selected from Vj to Vi is the same
as the edge selected from Vi to Vj ; finally, Lemma 14 equates the vertex of
Vi incident to the edge between Vi and Vj to the vertex incident to the edge
between Vi and Vs.

Lemma 12. In every list coloring of G satisfying h, exactly one gadget of each
G(i, j) is selected, each passed G(i, j, e) has all of its kZ even vertices colored
with y(i, j), and the selected G(i, j, f) has all of its 2 + kZ odd vertices colored
with y(i, j).

Proof. For the first statement, if no gadget was selected, σ′(i, j) would be used
M > M−1 times; if more than one is selected, σ′(i, j) does not meet the target.
If G(i, j, f) is selected then a(i, j, f) and b(i, j, f) are colored with y(i, j). After
removing these vertices, we are left with two even paths of which at most half
of its vertices are colored with the same color. As such there are at most
2 + f↓ + (k − 1)u↓ + f↑ + (k − 1)u↑ = 2 + kZ vertices colored with y(i, j) in
this gadget; moreover this bound is achieved if and only if the odd vertices are
colored with y(i, j). For each passed G(i, j, e), a(i, j, e) and b(i, j, e) are colored
with σ(i, j), otherwise the numerical target of σ(i, j) cannot be met. After the
removal of a, b, r(i, j, e) we are again left with two even paths. Thus, at most
e↓ + (k − 1)u↓ + e↑ + (k − 1)u↑ = kZ vertices have color y(i, j) in this gadget.
To see that y(i, j) must be used only for even vertices of G(i, j, e) to meet this
bound, note that, if this is not done, then x(i, j) will never meet its bound, since
exactly kMZ − kZ vertices remain (after the coloring of G(i, j, f)) that can be
colored with x(i, j), which is precisely its target.

Lemma 13. In every list coloring ϕ of G, if G(i, j, e) is selected, so is G(j, i, e).

Proof. Suppose i < j. By Lemma 12 we know that for a selected gadget every
odd vertex is colored with y(i, j), so each even vertex is colored with a non-helper
color. Note that color ε′(i, j) is used e↓ times in gadget G(i, j, e). Now, we need
to select one backward gadget of G(j, i); suppose we select gadget G(j, i, f),
f 6= e. Again by Lemma 12, the number of occurrences of ε′(i, j) is f↑ times in
G(j, i, f), but we have that e↓ + f↑ 6= Z, a contradiction that ϕ satisfies h.

Lemma 14. In every list coloring ϕ of G, if G(i, j, e) is selected and e = uv,
then, for every s 6= i, the edge f of H corresponding to the selected gadget
G(i, s, f) must be incident to u.
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Proof. We divide our proof in two cases. First, suppose i < j and s < j. By
Lemma 12 τi(s, j) is used in u↑ vertices of G(i, j, e). Now, note that the only
possible gadgets G(i, s, f) that can be chosen such that the endpoint w of f in
Vi satisfies u↑ + w↓ = Z must have w = u, since τi(s, j) is used w↓ times in
gadget G(i, s, f). The case j < s is similar, but we replace τi with τ ′i .

Theorem 15. Number List Coloring on paths parameterized by the number
of colors that appear on the lists is W[1]-hard.

Corollary 16. Equitable List Coloring on paths parameterized by the
number of colors that appear on the lists is W[1]-hard.

Corollary 17. Equitable Coloring parameterized by the number of colors
and distance to disjoint paths is W[1]-hard.

Theorem 15 and its corollaries follow from the previous lemmas. For the first
corollary, we add isolated vertices with lists of size one to the input of Number
List Coloring so as to make all colors have the same numerical target. For
the second, we add a clique of size r, the number of colors of the instance of
Equitable List Coloring, and label them using the integers [r]; afterwards,
for each vertex u of the input graph that does not have color i in its list, we add
an edge between the i-th vertex of the clique and u.

6 Distance to disjoint paths of bounded size
The reduction in Section 5 heavily relies on the length of the disjoint paths to
show that Equitable Coloring is W[1]-hard parameterized by distance to
disjoint paths and number of colors. In this section, we show that, by replacing
the number of colors with the length of the longest path in the parameterization,
the problem becomes FPT. We divide our analysis in two cases: when the
number k of colors is at most |U |+ 2 and when it is bigger.

6.1 Bounded number of colors
We first study the case where the number of colors is bounded by |U | + 2.
To this end, we show how to translate an instance (G,L, h) of Number List
Coloring where the input graph is a collection of disjoint paths into an instance
of Integer Linear Programming, which is fixed-parameter tractable when
parameterized by the number of variables [25]. If A = 〈a1, . . . , a`〉 is one of the
disjoint paths of G, we say that the pattern of A, denoted by pat(A), is the
sequence 〈L(a1), . . . , L(a`)〉. A set of disjoint paths A is compatible if, for every
two A,B ∈ A, pat(A) = pat(B), and there is no other path of G with the same
pattern. In an abuse of notation, we say that pat(A) = pat(A). We denote the
partition of G into compatible sets by P(G) and say that a pattern p is in P(G)
if there is some A ∈ P(G) with pat(A) = p.

Lemma 18. If (G,L, h) is an instance of Number List Coloring such
that each connected component of G is a path of length at most ` and k =
|
⋃
v∈V (G) L(v)|, then there is an algorithm that runs in f(|P(G)|, k, `)nO(1) time

and correctly solves (G,L, h).
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Proof. Our goal is to construct an integer linear program that correctly com-
putes a coloring of G subject to the coloring constraints imposed by L that meets
the numerical targets given by h. For each Ap ∈ P(G), we write pat(Ap) =
{Lp,1, . . . , Lp,qp}, where qp = |pat(Ap)|, and construct a flow network Hp as
follows: V (Hp) = {sp, tp}

⋃
j∈[qp],i∈Lp,j

{up,j,i, vp,j,i}. The source sp has an out-
bound arc to each up,1,i, every up,j,i is an in-neighbor of vp,j,i, every vp,j,i has
an outbound arc to each up,j+1,a that satisfies i 6= a, and each vp,qp,i is an
in-neighbor of the sink tp; all arcs have capacity equal to |Ap|. An example of
Hp is shown in Figure 5.

s

u1,1 v1,1

u1,2 v1,2

u2,1 v2,1

u2,3 v2,3

u3,2 v3,2

u3,3 v3,3

t

Figure 5: Flow network Hp where pat(Ap) = {{1, 2}, {1, 3}, {2, 3}} and all arcs
have capacity equal to |Ap|. We omit p from the subscript.

Now, let Π(Hp,Ap, η) be the following set of linear constraints, where x(e)
is the variable storing how much flow is passing through arc e ∈ E(Hp), Ep,i =⋃
j∈[qp]{(up,j,i, vp,j,i)}, E−(v) is the set of inbound arcs of v, E+(v) the set of

outbound arcs, and η(p, i) is (for now) an integer limiting how many vertices of
Ap must be colored with color i:

∑
e∈E−(v)

x(e)−
∑

e∈E+(v)

x(e) = 0 ∀v ∈ V (H) \ {sp, tp} (2)

∑
e∈E+(s)

x(e) =
∑

e∈E−(t)

x(e) = |Ap| (3)

∑
e∈Ep,i

x(e) = η(p, i) ∀i ∈
⋃
j∈[qp]

Lp,j (4)

0 ≤ x(e) ≤ |Ap| ∀e ∈ E(Hp) (5)

Before proving the next claim, we note that Equations 2, 3, and 5 are stan-
dard flow conservation constraints, while Equation 4 imposes the constraints on
how many times the flow must pass through arcs of Ep,i. Intuitively, each flow
unit corresponds to one path A ∈ Ap and the (s, t)-path taken by the unit in
Hp corresponds to a coloring of A in G.

Claim 19. Ap has a coloring respecting the lists given by L and the numerical
targets given by η(p, i) if and only if Π(Hp,Ap, η) is feasible.

Proof of the claim. For the forward direction, let ϕ be a coloring of Hp that
respects L and meets η(p, i). For each Ar ∈ Ap, we push one unit of flow from
sp along the path of Hp described by the coloring of Ar = {v1, . . . , vqp}, so that
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(up,j,i, vp,j,i) is in the path if vj ∈ ϕi, and all other arcs are chosen appropriately;
this procedure does not violate Equations 2 through 5 since this is an (s, t)-flow,
each arc is picked at most once per path of Ap and the number of flow units
coursing through the arcs of each Ep,i is equal to η(p, i) since |ϕi| = η(p, i).

For the converse, suppose that x is an assignment of the variables satisfying
Π(Hp,Ap, η). Our proof is by induction on |Ap|. For the base case, where A =〈
a1, . . . , aqp

〉
is the unique element of Ap, we color aj with i if x((up,j,i, vp,j,i));

since (vp,j,i, up,j+1,i) /∈ E(Hq), no two adjacent vertices of A have the same color
and, since Equation 4 is satisfied and x(e) ≤ 1 for very edge of E(Hp), |ϕi| =
η(p, i) for every color i. For the general case, let W =

〈
s, u1, v1, . . . , uqp , vqp , t

〉
be a path of Hp so that every arc e with both endpoints in W has x(e) 6= 0 and
the set of all saturated arcs of Hp (possibly empty) is contained in W ; there
exists such a path since Hp is acyclic and

∑
i∈[k] x((up,j,i, vp,j,i)) = |Ap|. Now,

let x(W ) be the vector where the positions corresponding to each arc in W are
equal to one, η′ = {η(p, i) − |E(W )Ep,i|∩ | i ∈ [qp]} be a new set of numerical
targets, and A′p be a subset of size |Ap| − 1 of Ap. Note that x′ = x − x(W )
is a solution to Π(Hp,A′p, η′) since maxe x(e) ≤ |Ap| − 1. By the inductive
hypothesis, we can convert x − x(W ) into a coloring of |Ap| − 1 paths with
pattern pat(Ap). For the |Ap|-th path, we color it according to W as done in
the base case; such a coloring does not violate the capacity of the arcs since
x′(e) ≤ |Ap − 1 for each arc e of W .

Armed with the claim, we may now formulate and prove correctness of the
complete linear program Λ(G, k, L, h). Note that, unlike in program Π, the
η(p, i)’s are variables of program Λ.

Π(Hp,Ap, η) ∀p ∈ P(G) (6)∑
i∈[k]

η(p, i) = |Ap|qp ∀p ∈ P(G) (7)

∑
p∈P(G)

η(p, i) = h(i) ∀i ∈ [k] (8)

0 ≤ η(p, i) ≤ h(i) ∀p ∈ P(G), i ∈ [k] (9)

To see that Λ(G, k, L, h) is feasible if and only if (G,L, h) is a positive in-
stance of Number List Coloring, note that Equations 7 and 8 are satisfied
if and only if we allow the algorithm to use one color for each vertex in Ap and
each color precisely the number of times demanded by h, respectively. Moreover,
by our previous Claim, if every Π(Hp,Ap, η) is feasible, then there is a coloring
of
⋃
p∈P(G)G[Ap] = G satisfying the desired numerical targets. As to the run-

ning time of the algorithm, Λ(G, k, L, h) has O(k`|P(G)|) variables; since each
connected component of G has at most ` vertices and to each vertex of G one of
2k possible lists was assigned, we have that G has at most 2k` compatible sets,
i.e |P(G)| ≤ 2k`. As shown in [25], Linear Integer Programming can be
solved in FPT time on the number of variables, so it follows that our algorithm
runs in f(|P(G)|, k, `)nO(1) time.

To solve Equitable Coloring itself, note that, for each of the |U ||U | possi-
ble colorings of the P`-modulator U ⊆ V (G), we have that each vertex in G \U
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has a list of available colors of size at most |U |+2. Fixed this precoloring ϕ of U
and which of the k colors will be used

⌈
n
k

⌉
times, by Lemma 18, we can decide

in f(|Pϕ(G \ U)|, |U |+ 2, `)nO(1) time whether G \ U can be colored respecting
the lists and meeting the targets imposed by the precoloring ϕ

6.2 Unbounded number of colors
The second case of our analysis has some similar ideas to the previous one.
This time, however, we are going to extend the precoloring of U so that every
color that appears in ϕ is taken care of using an integer linear program, while
the remaining k − |U | ≥ 3 colors will be assigned using the Hajnal-Szemerédi
theorem [20], which states that every graph can be equitably k-colored if k is
at least the maximum degree plus one.

Lemma 20. Let (G, k) be an instance of Equitable Coloring, U ⊂ V (G)
be a P`-modulator of G, ϕ a precoloring of U , and γ : ϕ(U) 7→ {

⌊
n
k

⌋
,
⌈
n
k

⌉
} be a

function dictating how many times each color in ϕ(U) must be used in the entire
graph. There exists an algorithm that runs in f(|U |, `)nO(1) time and decides if
ϕ can be extended to an equitable k-coloring G that respects γ.

Proof. Throughout this proof, we use |ϕ(U)| = ρ. Let (G \ U,L, h) be the
instance of Number List Coloring that, for each v ∈ V (G) \ U , has L(v) =
[ρ + 2] \ ϕ(NG(v) ∩ U), and h be the function h : [ρ + 2] 7→ [n] where h(i) =

γ(i) − |ϕi(U)| for every i ∈ ϕ(U), h(ρ + 1) =
⌊
n−

∑
i∈ϕ(U) γ(i)

2

⌋
, and h(ρ + 2) =⌈

n−
∑

i∈ϕ(U) γ(i)

2

⌉
.

We claim that (G\U,L, h) is a positive instance if and only if we can extend
ϕ to an equitable k-coloring of G that respects γ. Let ϕ′ be the desired extension
and X the set of vertices not colored with a color of ϕ(U). We know that G[X]
is a family of disjoint paths. We prove that we can greedily recolor X with two
colors ρ + 1 and ρ + 2 in order to meet the targets given by h. Since we are
going to color paths with only two colors, vertices on even positions are colored
with one color, and in odd positions with the other. As such, paths of even
length do not increase the difference between the number of vertices colored
with ρ+ 1 and ρ+ 2, while paths of odd length increase it by one unit. As such,
we begin by recoloring all even length paths properly but arbitrarily. Before
proceeding, note that h(ρ+ 1) = h(ρ+ 2) if and only if we have an even number
of odd length paths. If {B1, . . . , Br} are all such paths, we color the odd-indexed
paths starting with ρ + 2 and the even-indexed paths starting with ρ + 1; this
guarantees that each of the was used at least

∑
i∈[r]

⌊
|Bi|

2

⌋
=
⌊
n−

∑
i∈ϕ(U) hi

2

⌋
times, with ρ + 2 having an additional usage if and only if G[X] has an odd
number of odd length paths. Since ρ + 1 and ρ + 2 are not used in any other
vertex, we have obtained a proper coloring of G\U that respects L and satisfies
the numerical targets.

For the converse, let x be an assignment satisfying the integer linear program
Λ(G \U, ρ+ 2, L, h). By Lemma 18, x has an associated coloring of the vertices
of G \ U meeting the targets given by h. It follows immediately that all colors
i ∈ ϕ(U) were used h(i) + |ϕi(U)| = γ(i) times. Now, let X ⊆ V (G)\) be
the set of vertices colored with ρ + 1 or ρ + 2, k1 (resp. k2) be the number
of colors of an equitable k-coloring of G that must have size

⌈
n
k

⌉
(resp.

⌊
n
k

⌋
),
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ρ1 = |{i | γ(i) =
⌈
n
k

⌉
}|, and ρ2 = ρ − ρ1. We note that |X| = n − ρ1

⌈
n
k

⌉
−

ρ2

⌊
n
k

⌋
= (k1−ρ1)

⌈
n
k

⌉
+(k2−ρ2)

⌊
n
k

⌋
, i.e if we want to equitably (k−ρ)-color X,

each color must use
⌈
n
k

⌉
or
⌊
n
k

⌋
colors. Since G[X] has maximum degree two and

k − ρ ≥ 3, the Hajnal-Szemerédi theorem guarantees that there is an equitable
(k− ρ)-coloring of G[X], which can be computed in polynomial time [24]; since
G[X] uses no color in ϕ(V (G) \ X), we have found an equitable k-coloring of
G. The overall running time is the same as in Lemma 18, since the additional
step of transforming the coloring on ρ+ 2 colors of G \ U can be performed in
polynomial time.

The next theorem follows directly from the previous two lemmas. The only
additional steps necessary are guessing a coloring of the P`-modulator and which
of these colors of the modulator will be used in

⌈
n
k

⌉
vertices. Moreover, we do

not need to assume that the modulator has been given to us beforehand: we
may adapt the well known vertex cover branching algorithm [11] to find a P`-
modulator of size t in `O(t)n2 time.

Theorem 21. Equitable Coloring can be solved in FPT time when param-
eterized by distance to paths of length at most ` and `.

7 A linear kernel for distance to clique
Let (G, k) be the input to Equitable Coloring, U ⊆ V (G) be such that G\U
is a complete graph, and define n = |V (G)|. Our kernel is a direct consequence
of the following lemma.

Lemma 22. If k > |U |, then (G, k) can be solved in polynomial time.

Proof. Let d = |U | and Q = V (G) \ U . Since G[Q] is a clique, we know
that k − d > 0 colors must necessarily be used only on Q and only once, so
no color may be used more than twice to obtain an equitable k-coloring of
G. As such, let M = {u1v1, . . . , umvm} be a maximum matching of G, i.e.
a family of pairs of vertices of maximum size where uivi /∈ E(G) for every
i ∈ [m], which can be found in polynomial time [12]. Note that {ui, vi} * Q,
since G[Q] is an independent set. Moreover, since M is of maximum size, m is
the largest number of colors that may be simultaneously used in two vertices,
i.e. if n − 2m > k − m, we answer NO — G has no equitable k-coloring —
because the previous condition implies that at least one more color must be
used in two vertices. For the final case, where n ≤ k + m, let k′ be such that
n = k′

⌈
n
k

⌉
+ (k − k′)

⌊
n
k

⌋
and note that k′ ≤ m, otherwise G would not be

equitably k-colorable. As such, for each i ∈ [k′], pick the non-edge uivi ∈ M
and color both ui and vi with i, and color the remaining n−2k′ = k−k′ vertices
with an arbitrary but unique color of the set [k] \ [k′]; since uivi /∈ E(G), this
coloring is proper.

Theorem 23. When parameterized by the distance to clique d, Equitable
Coloring admits a kernel with 4d vertices.

Proof. Suppose we are not given U in advance. Note that there is a naive
polynomial time algorithm that yields a clique modulator U of size at most 2d:
for each non-edge uv of G, remove both u and v from G. As such, we obtain
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a modulator U where |U | ≤ 2d and G \ U is isomorphic to a complete graph.
If k > |U |, we use Lemma 22 and provide the answer for (G, k) in polynomial
time. Otherwise, k ≤ |U | ≤ 2d, and |V (G)\U | must be at most k, otherwise it is
clearly impossible to even k-color G\U . Consequently, V (G) ≤ k+|U | ≤ 4d.

8 A cubic kernel for max leaf number
We now show a polynomial kernel for Equitable Coloring when parameter-
ized by the max leaf number `. As before, we always assume that (G, k) is our
input instance. Our result heavily relies on a previous proof of Estivill-Castro
et al. [14] that G has max leaf number ` if and only if it is a subdivision of a
graph H on 4` vertices, and a recent paper of Cappelle et al. [8] that gives an
upper bound of 5` +

⌊
`
2

⌋
on the number of subdivided edges of H; graph H

is also called the host graph of G. We may assume that k ≥ 3, otherwise the
problem would be solvable in polynomial time by finding a maximum matching
in the complement graph. Throughout this section, let H be the graph that G
is a subdivision of, let P (u, v) be the path that replaced uv ∈ E(H) in order
to obtain G — note that u, v /∈ P (u, v) — and let P2(G) be the connected
components of G−H.

Given a (partial) k-coloring ϕ = {ϕ1, . . . , ϕk} of V (G), we assume that
|ϕi| ≤ |ϕj | for every i ≤ j; we say that ϕ is α-balanced if |ϕk| − |ϕ1| = α. Our
first goal is to show how we can extend a partial coloring ϕ′ of G \ P , for some
P ∈ P2(G), in such a way that the resulting coloring ϕ is similarly balanced.

Lemma 24. Let Q be an induced subgraph of G that does not contain any vertex
of some path P ∈ P2(G) and ϕ be an α-balanced coloring of Q. If |P | ≥ k + 2,
then it is possible to extend ϕ into an α∗-balanced coloring of Q ∪ P , so that
α∗ ≤ α+ 1 and α∗ = α+ 1 only if α = 0.

Proof. The proof is by induction on p = |P |; also, let s be the largest integer so
that |ϕ1| = |ϕs| and P = 〈w1, . . . , wp〉. We may assume that, since each vertex
of P has two neighbors in G, the neighbors of the endpoints of P are in Q; so
let u be the neighbor of w1 and wp be the neighbor of v so that u ∈ ϕi, v ∈ ϕj ,
and i ≤ j. For the base case of p = k + 2, we branch our analysis on s:

• If s = 1, we assign color 1 to w1 and color k to w2 if ϕ(u) 6= 1, otherwise
we swap the colors of w1 and w2; we repeat this process with wp and
wp−1, depending ϕ(v). Now, we have k − 2 colors to be freely used on
k + 2 − 4 = k − 2 vertices. Since colors 1 and k were used twice in P ,
the relative difference of their sizes remains the same. Since each color
i different from 1 and k was used only once in P , the relative difference
between |ϕi| and the size of ϕk increased by at most one; but, since s = 1,
we had |ϕk| − |ϕ2| ≤ α− 1, which ensures that the balance α∗ of the new
coloring is at most α.

• If 1 < s < k, for each color i ∈ [s], pick one vertex of {w1, . . . , ws} and
color it with i; since s > 1, we can do so and have ϕ(w1) 6= ϕ(u). Do
the same for each color j ∈ [k] \ [s] and {ws+1, . . . , wk}. Finally, color
{wk+1, wk+2} with colors 1, 2 so ϕ(wk+2) 6= ϕ(v). Since s 6= k and each
color in [k]\ [2] was used once in P , the new coloring has the same balance
as ϕ unless k = 3, in which case, α∗ = α− 1.
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• If s = k, color P so each color is used at least once, ϕ(u) 6= ϕ(w1) and
ϕ(wk+2) = ϕ(v), which can be done since k ≥ 3. This implies that the
new coloring is (α+1)-balanced, since (k+2) mod k 6≡ 0 whenever k > 2,
but, since |ϕ1| = |ϕk|, α = 0.

Before proceeding, we first deal with a corner case when p = k + 3, s = 1,
and u, v ∈ ϕ1: color w1 with k, w2 with 1, w3 with 2, and {w4, . . . , wk+3} so
color i is assigned to wi+3; since s = 1 this maintains the balance of the coloring
intact. For the general case of p > k + 2, we again branch on s.

• If s = 1 and u /∈ ϕ1, color w1 with 1 and apply the inductive hypothesis
to Q′ = Q ∪ {w1}, P ′ = P \ {w1}, and the coloring ϕ′ of Q′, which is
α′-balanced. Note that α′ = α− 1, so after extending ϕ′ to a coloring ϕ∗
of Q∪P , we have that the balance of the latter is at most α∗ ≤ α′+1 ≤ α.
If s = 1 and u ∈ ϕ1, but v /∈ ϕ1, we proceed in a similar manner, but
color wp with 1.

• If s = 1 and u, v ∈ ϕ1, we either have p = k + 3, in which case we have
fallen into our corner case, or p ≥ k+ 4, in which case we color w1 with k
and w2 with 1, and apply the inductive hypothesis on Q′ = Q∪ {w1, w2},
P ′ = P \{w1, w2}, and on the coloring ϕ′ of Q′, which is α-balanced; note,
however, that α 6= 0, so by extending ϕ′ to a coloring ϕ∗ of Q ∪ P , we
have that ϕ∗ is α∗-balanced with α∗ ≤ α.

• If 1 < s < k, there is at least one color i ∈ [s] \ {ϕ(u)}, so color w1 with i
and apply the inductive hypothesis to Q′ = Q∪{w1}, P ′ = P \ {w1}, and
the coloring ϕ′ of Q′, which is still α-balanced since s > 1. Once again,
the extension ϕ∗ of ϕ′ to Q ∪ P is α∗-balanced and, since α 6= 0, α∗ ≤ α.

• If s = k, color w1 with any color different from ϕ(u) and again apply the
inductive hypothesis to Q′ = Q ∪ {w1}, P ′ = P \ {w1}, and the coloring
ϕ′ of Q′. This time, we have that ϕ′ is 1-balanced since s = k, so the
extension ϕ∗ of ϕ to Q ∪ P is either 0 or 1-balanced.

We now show how to safely bring an α-balanced coloring closer to an equi-
table coloring, which is either 0 or 1-balanced. It is worthy to note that, in the
next lemma, c is unbounded, i.e it could be the case that c ≥ k+ 1. This is not
a problem, however, since we only want to show that, if we have x segments of
length k + 1, we can bring the difference |ϕk| − |ϕ1| down by x units or make
the coloring equitable.

Lemma 25. Let Q be an induced subgraph of G that does not contain any
vertex of some path P ∈ P2(G) and ϕ be an α-balanced coloring of Q. If
|P | = k + 2 + x(k + 1) + c, where c ≥ 0 and x ≥ 1, then it is possible to extend
ϕ into an α∗-balanced coloring of Q ∪ P , so that α∗ ≤ max{α− x, 1}.

Proof. We proceed by induction on x, and again define s to be the largest integer
that has |ϕ1| = |ϕs|, P = {w1, . . . , wp}, NQ(w1) = {u}, and NQ(wp) = {v}. To
prove the base case when x = 1, we divide our analysis based on the value of s.
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• If s = 1, color w1 with any color i different from 1 and ϕ(u), assign color
1 to w2, distribute colors [k] \ {1, i} to {w3, . . . , wk} arbitrarily and color
wk+1 with color 1; this way we have that this intermediate coloring ϕ′
is (α − 1)-balanced. Now, we apply Lemma 24 to Q ∪ {w1, . . . , wk+1},
P \ {w1, . . . , wk+1}, and ϕ′ to obtain a coloring ϕ∗ of Q ∪ P that is α-
balanced if α > 1, or either 0 or 1-balanced if α = 1.

• If s > 1, assign colors in [s] arbitrarily to {w1, . . . , ws} while guaranteeing
ϕ(u) 6= ϕ(w1), which is possible since s ≥ 2, and apply Lemma 24 to
Q ∪ {w1, . . . , ws}, P \ {w1, . . . , ws}, and ϕ′ to obtain a coloring ϕ∗ of
Q ∪ P that is α-balanced if α > 1, or either 0 or 1-balanced if α ≤ 1.

When x ≥ 2, we repeat the coloring procedures we delineated in the base case
to color the vertices of the first section of size k + 1 of P , obtaining the partial
coloring ϕ′, which is 0-balanced if α = 0 (implying s = k) or (α − 1)-balanced
otherwise. Now, we apply the inductive hypothesis on the remainder of the path
to obtain an α∗-balanced coloring ϕ∗ that extends ϕ′ and has α∗ ≤ max{(α −
1)− (x− 1), 1} = max{α− x, 1}.

Now, let R(G) = {P (u1, v1), . . . , P (ur, vr)} be the set of paths that replaced
edges of H and have at least 2k+ 3 vertices; in particular, |P (ui, vi)| = k+ 2 +
ci +xi(k+ 1), where xi ≥ 1 and 0 ≤ ci ≤ k, i.e xi is maximum. Set X (G) is the
collection of all xi’s of paths of R(G). Also, let Q be the induced subgraph of
G obtained by removing the vertices of the paths in R(G), and q = |V (Q)|.

Lemma 26. If
∑
x∈X (G) x ≥ q, then G can be equitably k-colored if and only if

Q can be k-colored.

Proof. IfG is equitably k-colorable, thenG is k-colorable and so is every induced
subgraph of G, including Q. For the converse, let ϕ be an α-balanced k-coloring
of Q. By Lemma 25, with each path P (ui, vi) ∈ R(G), we can extend ϕ while
either reducing the gap between |ϕk| and all colors used |ϕ1| times by xi, or we
can obtain a k-coloring of Q ∪ P (ui, vi) that is either 0 or 1-balanced, which is
an equitable coloring. Since

∑
x∈X (G) x ≥ q ≥ α, we can extend ϕ to G and

obtain an equitable k-coloring of G.

Corollary 27. If
∑
x∈X (G) x ≥ q, then G can be equitably k-colored if and only

if the graph obtained by adding q(k − 1) isolated vertices to Q can be equitably
k-colored.

Proof. For the forward direction, note that any k-coloring of an n-vertex graph
can be made equitable by adding n(k−1) isolated vertices to it. For the converse,
if Q ∪ I admits an equitable k-coloring ϕ′, its restriction ϕ to Q is α-balanced
for some α ≤ q; reasoning as in Lemma 26, we can

Lemma 28. Q has at most 4`+ (k + 1)(11`− 2) vertices.

Proof. |Q| is maximized when only one of the 5` + `
2 − 1 paths that replaced

edges of H is in R(G), while all others have at most 2k + 2 vertices, so q ≤
4`+ (5`+ `

2 − 1)(2k + 2) = 11k`+ 15`− 2k − 2 = 4`+ (k + 1)(11`− 2).

Theorem 29. When parameterized by the max leaf number ` and number of
colors k, Equitable Coloring admits a kernel with (4`+(k+1)(11`−2))(k+
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2) + 11`(k + 1) vertices. If H is given in the input, then the algorithm runs in
polynomial time.

Proof. If |V (G)| ≤ q(k + 2) + 8`(k + 1), we are done. On the other hand, if
|V (G)| > q(k+ 2) + 8`(k+ 1), we claim that

∑
x∈X (G) x ≥ q. To see that this is

the case, recall that G\Q = R(G) is a set of r ≤ 5`+ `
2 disjoint paths, each with

at least 2k + 3 vertices, and contains more than 8`(k + 1) + q(k + 1) vertices;
consequently we have:

11`(k + 1) + q(k + 1) ≤
∑

Pi∈R(G)

|Pi|

11`(k + 1) + q(k + 1) ≤ r(k + 2) +
∑
i∈[r]

(ci + (k + 1)xi)

11`(k + 1) + q(k + 1) ≤ r(k + 2) + rk + (k + 1)
∑
i∈[r]

xi

q ≤
∑
i∈[r]

xi

Now, by applying Corollary 27, we have that Q ∪ I, where I is an independent
set with q(k−1) vertices, can be equitably k-colored if and only if G is equitably
k-colorable.

As to the running time, the first step is listing R(G), which, since we have
H in hand, can be done in time linear on |E(H)| + |V (G)|: for each edge uv
of H, list the path P (u, v) in G and check if it has at least 2k + 3 vertices. If
|V (G)| ≤ q(k + 2) + 11`(k + 1) we are done; otherwise we remove the paths of
R(G) and add I. Since the latter steps can be done in time linear on |V (G)|,
the kernelization algorithm runs in O(|E(H)|+ |V (G)|) time.

Corollary 30. When parameterized by the max leaf number `, Equitable
Coloring admits a kernel with 4`(44`2−18`−1) vertices. If H is given in the
input, then the algorithm runs in polynomial time.

Proof. Since G is a subdivision of a graph on 4` vertices, the maximum degree
∆ of G is at most 4` − 1; by the Hajnal-Szemerédi theorem [20], if k ≥ ∆ + 1,
then G is equitably k-colorable. The result follows immediately by substituting
k with 4`− 1 in the bound of Theorem 29.

9 A lower bound for vertex cover + number of
colors

Our final result is a proof that Equitable Coloring parameterized by ver-
tex cover and number of colors does not admit a polynomial kernel unless
NP ⊆ coNP/poly. Our proof makes heavy use of the reduction of Section 5.
We are going to show: (i) an OR-cross-composition [3] from Multicolored
Clique to Number List Coloring parameterized by ν+ q, (ii) a PPT reduc-
tion from Number List Coloring parameterized by ν+q to Equitable List
Coloring under the same parameterization, and (iii) a PPT reduction from
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Equitable List Coloring parameterized by vertex cover and number of col-
ors to Equitable Coloring parameterized by ν + q. For step (i), we employ
edge gadgets and list assignments based on previous work [18], although the
assignments and the numerical targets suffer adjustments in order to translate
the construction from a parameterized reduction to an OR-cross-composition.

Throughout this section, let H = {(H0,V1), . . . , (Ht,Vt)} be a set of in-
stances of Multicolored Clique so that: V (Hp) = [n] and |Vp| = k, for every
p ∈ [t]. Moreover, we may assume that for each V pi , V

p
j ∈ Vp, |E(V pi , V

p
j )| = M

and |Vi| = |Vj | = N , for every p ∈ [t], where E(V pi , V
p
j ) denotes the set of edges

between V pi and V pj . We also may safely assume that |H| is a power of two: if
it is not, we may add at most t copies of any instance to H without changing
the outcome of the composition. We shall denote by (G,L, h) the instance of
Number List Coloring where G is the input graph, L is a q-list-assignment,
h : [q] 7→ N is a function describing the numerical targets of each color, and
the goal is to find an L-list-coloring of G so that |ϕi| = h(i) for every color
i ∈

⋃
v∈V (G) L(v). For the remainder of this section, q is the number of col-

ors. Intuitively, we are going to interpret each edge uv ∈ E(Hp) as the pair of
oriented edges (u, v) and (v, u) and a multicolored clique of size k as a set of
2
(
k
2

)
edges. Each gadget of G will correspond to one such oriented edge and the

coloring of the gadget corresponding to (u, v) will tell us if: (i) the edge belongs
to the instance (Hp,Vp) that contains the solution, and (ii) if (u, v) is part of
the solution to (Hp,Vp).

Construction. We begin the construction of (G,L, h) by labeling the colors of
the set [q] according to role they are going to play in the composition. As we
can see, the number of colors q is a quadratic function of k.

Selection: The colors S = {σ(i, j) | (i, j) ∈ [k]2, i 6= j} and S ′ = {σ′(i, j) | (i, j) ∈
[k]2, i 6= j} are used to select which edges must belong to the clique.

Helper: Y and X satisfy |Y| = |X | = |S|. These two sets of colors force the choice
made at the root of the edge gadgets to be consistent across the gadget.

Symmetry: The colors E = {ε(i, j) | (i, j) ∈ [k]2, i < j} and E ′ = {ε′(i, j) | (i, j) ∈
[k]2, i < j} guarantee that, if edge e ∈ E(Vi, Vj) is picked from Vi to Vj ,
it must also be picked from Vj to Vi.

Consistency: Colors T = {τi(r, s) | i ∈ [k], r, s ∈ [k] \ {i}, r < s} and T ′ = {τ ′i(r, s) |
i ∈ [k], r, s ∈ [k]\{i}, r < s} ensure that if the edge uv is chosen between
Vi and Vj , the edge between Vi and Vr must also be incident to u.

Suppression: We have four colors U = {α, γ, ρ, λ} whose purpose is to color gadgets
that correspond to edges not present in the graph Hp that contains the
solution.

Shading: For each Selection, Helper, Symmetry, Consistency, and Suppression color
c, we have an additional color c̄, which is used in the instance selector
gadget to remove the influence of some vertices in the coloring of the edge
gadgets.

Propagation: A single color β is used to enforce that choices in a part of the instance
selector gadget are propagated to the whole gadget.

23



As in [18, 15], let Z be a huge integer, say Z = n3. The up-identification
number for vertex v ∈ [n], denoted by v↑, is a unique number in the interval
[n2 + 1, n2 + n], while the down-identification number v↓ for vertex v is given
by v↓ = Z − v↑. The up-identification number e↑ for edge e is defined similarly,
but taken from the interval

[
2n2 + 1, 2n2 + |

⋃
p∈[t]E(Hp)|

]
, while the down-

identification number is defined by e↓ = Z − e↑.
Moving on to the gadgets themselves, we say that a tuple (i, j, u, v) belongs

to (Hp,Vp) if i, j ∈ [k], uv ∈ E(V pi , V
p
j ), and u ∈ V pi ; note that there are at

most (kn)2 possible tuples, regardless of how many instances we have in H.

Forward Edge Gadget. For each p ∈ [t] ∪ {0} and each tuple (i, j, u, v) ∈
(Hp, Vp) where i < j, we add to G a forward edge gadget, which we denote by
−→
G(i, j, u, v). This gadget has a root vertex r(i, j, u, v), with list {σ(i, j), σ′(i, j), α},
and two neighbors, both with the list {σ(i, j), y(i, j), ρ}, which for convenience
we label as a(i, j, u, v) and b(i, j, u, v). We equate membership of edge e in the
solution to one of the instances of Multicolored Clique to the coloring of
r(i, j, u, v) with σ(i, j). When discussing the remaining vertices of the gadget,
we say that a vertex is even if its distance to r(i, j, u, v) is even, otherwise it
is odd. To a(i, j, u, v), we append a path with 2e↓ + 2(k − 1)u↓ vertices. First,
we choose e↓ even vertices to assign the list {y(i, j), ε′(i, j), λ}. Next, for each
r in j < r ≤ k, choose u↓ even vertices to assign the list {y(i, j), τ ′i(j, r), λ}.
Similarly, for each s 6= i satisfying s < j, choose u↓ even vertices and assign the
list {y(i, j), τi(s, j), λ}. All the odd vertices - except a(i, j, u, v) and b(i, j, u, v)
- are assigned the list {y(i, j), x(i, j), γ}. The path appended to b(i, j, u, v) is
similarly defined, except for two points: (i) the length and number of chosen
vertices are proportional to e↑ and u↑; and (ii) when color ε(i, j) (resp. τi(s, r))
should be in the list, we the list contains ε′(i, j) (resp. τ ′i(s, r)) instead, and
vice-versa. For an example of the forward edge gadget, please refer to Figure 6.

{σ(1, 3), σ′(1, 3), α}

{σ(1, 3), y(1, 3), ρ}

{y(1, 3), ε(1, 3), λ}

{y(1, 3), τ1(3, 4), λ}

{y(1, 3), τ1(3, 4), λ}

{y(1, 3), τ ′1(2, 3), λ}

{y(1, 3), τ ′1(2, 3), λ}

{y(1, 3), x(1, 3), γ}

{y(1, 3), ε′(1, 3), λ}

{y(1, 3), ε′(1, 3), λ}

{y(1, 3), τ ′1(3, 4), λ}

{y(1, 3), τ1(2, 3), λ}

Figure 6: Example of a forward edge gadget
−→
G(1, 3, u, v) with k = 4, Z = 3, e↓ =

2, and u↓ = 1. Vertices with no explicit list have list equal to {y(1, 3), x(1, 3), γ}.
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Backward Edge Gadget. For each p ∈ [t] ∪ {0}, once again, let (i, j, u, v) ∈
(Hp,Vp) be a tuple where i < j. We add to G a backward edge gadget, denoted
by
←−
G(j, i, v, u). This gadget has vertices r(j, i, v, u), a(j, i, v, u), and b(j, i, v, u)

defined similarly as to the forward gadget, with the root vertex having the
list {σ(j, i), σ′(j, i), α}, while the other two have the list {σ(j, i), y(j, i), ρ}. To
a(j, i, v, u), we append a path with 2e↓ + 2(k − 1)v↓ vertices. First, choose e↓
even vertices to assign the list {y(j, i), ε(i, j), λ}. Now, for each r in j < r ≤ k,
choose v↓ even vertices to assign the list {y(j, i), τ ′j(i, r), λ}. Then, for each s 6= i
satisfying s < j, choose v↓ even vertices and assign the list {y(j, i), τj(s, i), λ}.
All the odd vertices are assigned the list {y(j, i), x(j, i), γ}. The path appended
to b(j, i, v, u) is similarly defined, except that: (i) the length and number of
chosen vertices are proportional to e↑ and v↑; and (ii) when the color ε(i, j)
(resp. τj(s, r)) is in the list, we replace it with ε′(i, j) (resp. τ ′j(s, r)), and
vice-versa. Note that, for every edge gadget, either forward or backward, the
number of vertices is equal to 3 + 2(e↑+ e↓) + 2(k− 1)(u↑+ u↓) = 3 + 2kZ. We
say that an edge gadget is selected if its root vertex is colored with σ(i, j), we
say that it is passed if the root is colored with σ′(i, j), otherwise we say that it
is suppressed.

Instance Selector Gadget. We now move on to a more delicate piece of
the composition: the instance selector gadget. For each color c that is neither
a Shading color nor a Propagation color, we add a choice gadget C(c) which
contains a perfect matching Bc = {b(c, 1), . . . , b(c, s)}, where s = log2 |H| =
log2(t + 1) and b(c, i) = {(c, i)0, (c, i)1} is an edge of the matching, and an
independent set Ic = {z0(c), . . . , zt(c)}. We say that b(c, i) is the i-th bit of
gadget C(c) and that the i-th bit is equal to µ ∈ {0, 1} if (c, i)µ is colored with
β. We connect zp(c) to Bc as follows: if the i-th least significant bit of p is 0,
connect zp(c) to (c, i)0, otherwise connect it to (c, i)1. As to the lists, we define
L((c, j)0) = L((c, j)1) = {c, β} and L(zp(c)) = {c, c̄}. Intuitively, the vertices
of the matching that are colored with β encode the binary representation of a
unique p ∈ [t] ∪ {0}, which implies that only zp(c) may be colored with c, all
other vertices of Ic must be colored with c̄. This index p will be precisely the
index of the instance (Hp,Vp) that will be a YES instance of Multicolored
Clique.

Naturally, our goal is to force that the same p is encoded by all choice
gadgets, i.e. that the same instance (Hp,Vp) is picked for all colors. To do so,
we pick any choice gadget C(c) to be a primary gadget, and, for every other
choice gadget C(d), we add the edges (c, i)0(d, i)1 and (c, i)1(d, i)0; this way, the
i-th bit of C(d) has (d, i)0 colored with β if and only if (c, i)0 is colored with β.
The union of all these choice gadgets is our instance selector gadget, which we
present an example of in Figure 7.

To conclude the construction of G, let c be a color that has an associated
choice gadget C(c), zp(c) be a vertex of the independent set Ic, and G(i, j, u, v)
be an edge gadget (either forward or backward). If c is a Suppression color and
uv ∈ E(V pi , V

p
j ) (suppose u ∈ V pi ), then add an edge between zp(c) and every

vertex in G(i, j, u, v) that has c in its list. Otherwise, if c is not a Suppression
color and e /∈ E(V pi , V

p
j ), then add an edge between zi(c) and every vertex in

G(i, j, u, v).

Numerical Targets. The final ingredients are the numerical targets. Recall
that q is the number of colors, that M = |E(V pi , V

p
j )| for every triple i, j, p,
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{c, c̄} {c, β} {d, β} {d, d̄}

z3(c)

z2(c)

z1(c)

z0(c) z0(d)

z1(d)

z2(d)

z3(d)

Figure 7: Instance selector gadget for log2 |H| = 2. Black rectangles are vertices
corresponding to bit value 1; white rectangles correspond to bit value 0.

that k = |Vp| for every p ∈ [t] ∪ {0}, and that Z is the suitable huge integer
of the order of n3. For simplicity, we define W = log2 |H|. The numerical
targets are defined according to the following list; the term W + 1 in most
targets comes from the fact that, for each color c that is neither a Shading color
nor the Propagation color, we must use c exactly W + 1 times in the instance
selector gadget. Intuitively, the numerical targets for these colors fulfill the
exact the same roles as in Section 5, the extra W + 1 term is present so we can
appropriately color the instance selector gadget.

Selection: h(σ(i, j)) = 1 + 2(M − 1) +W + 1 = 2M +W and h(σ′(i, j)) = M − 1 +
W + 1 = M +W . Since only one edge may be chosen from V pi to V pj , the
non-selection color σ′(i, j) must be used in M − 1 edges of G(i, j). Thus,
exactly oneG(i, j, u, v) is selected and, to achieve the target of 1+2(M−1),
for every fg ∈ E(V pi , V

p
j )\{uv}, both a(i, j, f, g) and b(i, j, f, g) must also

be colored with σ(i, j).

Helper: h(y(i, j)) = 2 + kMZ +W + 1 = 3 + kMZ +W and h(x(i, j)) = kMZ −
kZ + W + 1 = (M − 1)kZ + W + 1. The goal here is that, if a forward
or backward gadget G(i, j, u, v) is selected, all the odd positions must be
colored with y(i, j), otherwise every even position must be colored with
it.

Symmetry: h(ε(i, j)) = h(ε′(i, j)) = Z + W + 1. If the previous condition holds
and r(i, j, u, v) is colored with σ(i, j), then ε(i, j) appears in e↑ vertices
of the gadget rooted at r(i, j, u, v). To meet the target Z, e↓ vertices of
another gadget must also be colored with it; as we show, the only way is
if r(j, i, v, u) is colored with σ(j, i).

Consistency: Simply set h(τi(s, r)) = h(τ ′i(s, r)) = Z + W + 1. Similar to symmetry
colors.

Suppression: Let Q =
∣∣∣⋃p∈[t]∪{0} {(i, j, u, v) | (i, j, u, v) ∈ (Hp,Vp)}

∣∣∣, i.e. the number
of tuples (i, j, u, v) that belong to some of the t + 1 instances of Mul-
ticolored Clique, which equals the number of edge gadgets we added
to G. We first set h(α) = Q − 2

(
k
2

)
M + W + 1: we want that every
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gadget corresponding to a tuple (i, j, u, v) not in the chosen instance be
suppressed, i.e. have the root colored with α. Then, we set h(ρ) =
2(Q − 2

(
k
2

)
M) + W + 1: the same gadgets that have the root colored

with α must have the neighbors of the root colored with ρ. Afterwards,
we set h(λ) = h(γ) = (Q−2

(
k
2

)
M)kZ+W+1: each gadget whose root was

colored by α will have every vertex, except for the root and its neighbors,
colored with λ or γ; since the gadget is a path and has 2kZ + 3 vertices,
each suppressed gadget will contribute with kZ vertices colored with λ
and kZ colored with γ.

Shading: For a Selection, Helper, Symmetry, Consistency, or Suppression color c,
set h(c̄) = t− 1: color c̄ can only by used in the independent set Ic, and c̄
must be used in all but one vertex of Ic, since only one zp(c) will not be
adjacent to a vertex of Bc colored with c.

Propagation: Finally, we set h(β) = q−1
2 W , since each of the q−1

2 choice gadgets has
exactly W vertices that must be colored with β.

We now show that the composition is correct. We being with the auxiliary
Lemma 31, as it presents many of the ideas required for the proof of Theorem 40.

Lemma 31. Let ϕ be a list coloring of G that meets the numerical targets for
Shading colors, c be the color corresponding to the primary choice gadget, and
zp(c) ∈ Ic be such that ϕ(zp(c)) = c. Then, the following conditions hold:

1. For every choice gadget C(d), ϕ(zp(d)) = d.

2. The Propagation color β is used exactly h(β) times.

3. If d 6= β and d is not a Shading color, then d is used in W + 1 vertices of
the instance selector gadget.

4. The Suppression colors can be used on a (forward or backward) edge gadget
G(i, j, u, v) if and only if (i, j, u, v) /∈ (Hp,Vp).

5. Suppression colors are the only colors that can be used on a (forward or
backward) edge gadget G(i, j, u, v) where (i, j, u, v) /∈ (Hp,Vp).

6. For every Suppression color d, |ϕd| = h(d).

Proof. Note that we do not assume that ϕ satisfies every numerical target given
by h, it is simply a proper coloring of G that respects the lists given by L. We
prove the conditions in the order they were given in the statement.

1. By construction, the i-th bit of C(c) is equal to 0 if and only if the i-th
bit of the binary representation of p is equal to 0. Moreover, for every
other color d with a choice gadget, the i-th bit of C(d) cannot be equal to
1, otherwise, (c, i)0(d, i)1 would be a monochromatic edge. Thus, zp(d) is
the unique vertex of Id that does not have a neighbor colored with d and,
since, |ϕd̄| = h(d̄), ϕ(zp(d)) = d.

2. This follows directly from the fact that there are q−1
2 choice gadgets and,

in each C(d), β can only be used in the perfect matching Bd and must be
used |Bd|

2 = log2 |H| = W .
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3. Note that that d is used in every vertex of Bd not colored with β and there
is zp(d) is the unique vertex of Id where ϕ(zp(d)) = d. Since no other choice
gadget contains a vertex with d on their list, d is used |Bd|

2 + 1 = W + 1
times.

4. If a Suppression color d can be used on G(i, j, u, v), then zp(d) is not
adjacent to any vertex of G(i, j, u, v), which, by construction, implies the
(i, j, u, v) /∈ (Hp,Vp). For the converse, if (i, j, u, v) /∈ (Hp,Vp) then zp(d)
is not adjacent to the vertices of G(i, j, u, v), which implies that d can
be used in G(i, j, u, v). By condition 1, these arguments hold for every
Suppression color.

5. Let g be a vertex of G(i, j, u, v), L(g) = {d, e, f}, and d be the unique
suppression color in L(v). By the construction of G, v is adjacent to
zp(e) and zp(f) which, again by condition 1, satisfy ϕ(zp(e)) = e and
ϕ(zp(f)) = f . Moreover, gzp(d) /∈ E(G), every neighbor of g in C(d) is
colored with d̄, and no neighbor of g in G \ C(d) has color d on their list,
so g can only be colored with d.

6. Once again, let Q =
∣∣∣⋃p∈[t]∪{0} {(i, j, u, v) | (i, j, u, v) ∈ (Hp,Vp)}

∣∣∣. By
the previous conditions, Suppression color α is used W + 1 = log2 |H|+ 1
times in the instance selector gadget and, for every (i, j, u, v) /∈ (Hp,Vp), α
is used once; equivalently, for every element of S = {(i, j, u, v) | (i, j, u, v) ∈
(Hp,Vp}, α is not used. Thus, α is used in Q − |S| + W + 1 = Q −
2
(
k
2

)
M +W +1 = h(α) vertices. For color ρ, note that ρ can must be used

on a(i, j, u, v) and b(i, j, u, v) if r(i, j, u, v) is colored with α, so ρ is used
twice as many times on the edge gadgets, i.e. |ϕρ| = 2|ϕα| − (W + 1) =

2(Q− 2
(
k
2

)
M) +W + 1 = h(ρ). Finally, color λ is used on half of the 2kZ

vertices of G(i, j, u, v) \N [r(i, j, u, v)], and γ on the other half, whenever
r(i, j, u, v) is colored with α. Consequently, |ϕλ| = |ϕγ | = |ϕα|kZ− (kZ−
1)(W + 1) = (Q − 2

(
k
2

)
M)kZ + W + 1 = h(λ) = h(γ).

Lemma 32. If (Hp,Vp) admits a solution Q, then (G,L, h) admits a list col-
oring that satisfies by h.

Proof. Let Q be the solution to (Hp,Vp) and be c the color corresponding to
the primary choice gadget. We begin with the following partial coloring ϕ′ of
G:

• For every choice gadget C(d), set ϕ′(zp(d)) = d and, for every zq(d) ∈
Ic \ {zp(d)}, set ϕ′(zq(d)) = d̄.

• Color the i-th bit of Bd so that ϕ′((d, i)0) = β if and only if the i-th least
significant bit of p if 0; the other vertex of b(d, i) is colored with d.

• For every tuple (i, j, u, v) /∈ (Hp,Vp) that has an associated edge gadget
G(i, j, u, v), color its vertices using the unique Suppression color present
on their list.

Claim 33. The partial coloring ϕ′ is a proper partial coloring of G.
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Proof of the claim. First, no two adjacent vertices of the instance selector gad-
get have the same color since: (i) each bit b(d, i) ∈ Bd has one vertex of
each color, (ii) every neighbor of zp(d) is colored with β, (iii) no neighbor of
zs(d) ∈ Id \ {zs(d)} has d̄ on their list, and (iv) the vertex of b(c, i) colored with
β is adjacent to the vertex of b(d, i) that is colored with d. As to the colored
edge gadgets, each pair of adjacent vertices in such a gadget G(i, j, u, v) has a
different Suppression color on their list; since these were the colors currently
used, no monochromatic edge may exist in G(i, j, u, v). Finally, no zp(d) is ad-
jacent to a vertex of G(i, j, u, v) colored with d, since we only used Suppression
colors in G(i, j, u, v) and, when d is a Suppression color, zp(d) is adjacent to
edge gadgets where (i, j, u, v) ∈ (Hp,Vp).

Using a similar analysis to Lemma 31, we conclude that |ϕ′d| = h(d) for
every Suppression, Shading, and Propagation color d and, for all other colors
f , we must use f exactly h(f) − (W + 1). Moreover, the only edge gadgets
G(i, j, u, v) that remain uncolored are those where (i, j, u, v) ∈ (Hp,Vp), and no
Suppression color d can be used in vertices of G(i, j, u, v) since zp(d) is adjacent
to vertices of G(i, j, u, v) if and only if (i, j, u, v) ∈ (Hp,Vp). We proceed to
extend ϕ′ into a coloring ϕ of G as follows: for each edge uv ∈ Q, we color
the root of G(i, j, u, v) with σ(i, j), each odd vertex with y(i, j), and every even
vertex with the only remaining color; for all other still uncolored gadgets, we
color the root with σ′(i, j), every even vertex with y(i, j) and all odd vertices
with the only possible color left on their lists. The following claim concludes
the proof of this lemma.

Claim 34. The coloring ϕ is a proper coloring of G that meets the numerical
targets given by h.

Proof of the claim. First, note that each Selection color d ∈ S ∪ S ′ is used the
appropriate number of times since: (i) it is used W + 1 times in the instance
selector gadget, (ii) no gadget G(i, j, u, v) where (i, j, u, v) /∈ (Hp,Vp) can be
colored with d, and (iii) only one edge uv ∈ E(V pi , V

p
j ) belongs to Q. For each

color y(i, j) ∈ Y and edge uv with u ∈ V pi , gadget G(i, j, u, v) has, at least,
e↑+ e↓+ (k− 1)(u↑+u↓) = kZ vertices colored with y(i, j), since either all odd
vertices or even vertices are colored with it. For the remaining W + 3 uses of
y(i, j), note that the selected gadget G(i, j, u, v) has a(i, j, u, v) and b(i, j, u, v)
also colored with y(i, j), and Cy(i,j) has W + 1 vertices colored with y(i, j). As
to the other helper color, x(i, j), we use it only on Cx(i,j) and on passed gadgets
– in this case, in every odd vertex (except the a’s and b’s); this sums up to
W + 1

∑
e∈E(V p

i ,V
p
j )\Q e↑ + e↓ + (k − 1)(u↑ + u↓) = kMZ − kZ + W + 1 =

h(x(i, j)). In terms of symmetry colors, ϕ only uses ε(i, j) on Cε(i,j) and on
the selected gadgets G(i, j, u, v) and G(j, i, v, u) (i < j); in particular, ε(i, j)
is used e↓ times in G(j, i, v, u) and e↑ times on G(i, j, u, v), so it holds that
|ϕε(i,j)| = e↑ + e↓ +W + 1 = Z +W + 1. Note that the same argument applies
for color ε′(i, j). Finally, for consistency colors, note that τi(r, s) is used only
on Cτi(r,s) and on the selected gadgets G(i, r, u, v) and G(i, s, u, w), specifically,
if i < r < s, τi(r, s) is used u↑ times in G(i, r, u, v) and u↓ times in G(i, s, u, w),
since edges uv, uw must be incident to the same vertex of Q∩V pi . Consequently
τi(r, s) is used in u↑ + u↓ + W + 1 = Z + W + 1 vertices. The reasoning for
τ ′i(r, s) is similar. For all other colors, we had already established that their
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numerical targets had already been met; since no additional vertex used any of
them, it follows that ϕ meets all numerical targets and is a proper coloring.

Lemma 35. If G admits a list coloring ϕ that respects L and satisfies the
numerical targets h, then at least one instance (Hp,Vp) of H admits a solution.

Proof. Let C(c) be the primary choice gadget of G and zp(c) be the unique
vertex of Ic where ϕ(zp(c)) = c. We are going to show that (Hp,Vc) contains a
multicolored clique of appropriate size. As a consequence of Lemma 31, a gadget
G(i, j, u, v) is not suppressed if and only if (i, j, u, v) ∈ (Hp,Vp). Moreover, these
gadgets must be colored using Selection, Helper, Symmetry, and Consistency
colors, and each color d of this family must still be used h′(d) = h(d)−W − 1
times. We break the proof in the following claims, where Gp(i, j) are all the
gadgets where (i, j, u, v) ∈ (Hp,Vp).

Claim 36. In every list coloring of G satisfying h, exactly one gadget of each
Gp(i, j) is selected, each passed G(i, j, w, z) has all of its kZ even vertices colored
with y(i, j), and the selected G(i, j, u, v) has all of its 2+kZ odd vertices colored
with y(i, j).

Proof of the claim. For the first statement, if no gadget was selected, σ′(i, j)
would be used M > M − 1 times; if more than one is selected, σ′(i, j) does not
meet the target. If G(i, j, u, v) is selected then a(i, j, u, v) and b(i, j, u, v) are
colored with y(i, j). After removing these vertices, we are left with two even
paths of which at most half of its vertices are colored with the same color. As
such there are at most 2+f↓+(k−1)u↓+f↑+(k−1)u↑ = 2+kZ vertices colored
with y(i, j) in this gadget; moreover this bound is achieved if and only if the
odd vertices are colored with y(i, j). For each passed G(i, j, w, z), a(i, j, w, z)
and b(i, j, w, z) are colored with σ(i, j), otherwise the numerical target of σ(i, j)
cannot be met. After the removal of a, b, r(i, j, w, z) we are again left with two
even paths. Thus, at most e↓+(k−1)u↓+e↑+(k−1)u↑ = kZ vertices have color
y(i, j) in this gadget. To see that y(i, j) must be used only for even vertices
of G(i, j, w, z) to meet this bound, note that, if this is not done, then x(i, j)
will never meet its bound, since exactly kMZ − kZ vertices remain (after the
coloring of G(i, j, u, v) and the instance selector gadget) that can be colored
with x(i, j), which is precisely the number of vertices that must still be colored
with x(i, j) to meet its target.

Claim 37. In every list coloring ϕ of G, if G(i, j, u, v) is selected, so is G(j, i, v, u).

Proof of the claim. Suppose i < j, and let e = uv, and ē = vu By Claim 36 we
know that for a selected gadget every odd vertex is colored with y(i, j), so each
even vertex is colored with a non-Helper color. Note that color ε′(i, j) is used
e↓ times in gadget

−→
G(i, j, u, v). Now, we need to select one backward gadget of

Gp(j, i); suppose we select gadget G(j, i, w, z), wz = f 6= ē. Again by Claim 36,
the number of occurrences of ε′(i, j) is f↑ times in G(j, i, w, z), but we have that
e↓ + f↑ 6= Z, a contradiction that ϕ satisfies h.

Claim 38. In every list coloring ϕ of G, if G(i, j, u, v) is selected and e = uv,
then, for every s 6= i, the edge wz of Hp corresponding to the selected gadget
G(i, s, w, z) have w = u.
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Proof. We divide our proof in two cases. First, suppose i < j and s < j. By
Claim 36 τi(s, j) is used in u↑ vertices of G(i, j, u, v). Now, note that the only
possible gadget G(i, s, w, z) that can be chosen such that w ∈ Vi satisfies u↑ +
w↓ = Z must have w = u, since τi(s, j) is used w↓ times in gadget G(i, s, w, z).
The case j < s is similar, but we replace τi with τ ′i in the analysis.

The previous claims guarantee that: two edges incident to vertices of V pi
have the same endpoint in V pi for every i ∈ k and, consequently, for every pair
of edges uv ∈ E(V pi , V

p
j ), uw ∈ E(V pi , V

p
` ), if G(i, j, u, v) and G(i, j, u, w) are

selected, then (j, `, w, v) ∈ (Hp,Vp) and G(j, `, w, v) is also selected.

Lemma 39. Graph G has a vertex cover of size poly(n+ log2 |H|).

Proof. Note that there are at most
(
k
2

)(
n
2

)
edge gadgets since we have at most

this many tuples of the form (i, j, u, v) where i, j ∈ [k] and u, v ∈ [n]. Moreover,
for each choice gadget C(d), we have |C(d) \ Id| = log2 |H| and, between the
primary choice gadget C(c) and any other C(d) the only edges are between the
bits, i.e. the union of the independent sets of the choice gadgets is also an
independent set I. Finally, since we have q−1

2 ∈ O
(
k2
)
choice gadgets and

k ≤ n, G \ I has poly(n+ log2 |H|) vertices and is a vertex cover of G.

Lemmas 32, 35, and 39 directly imply Theorem 40: the first two lemmas
show that the some (Hp,Vp) ∈ H admits a solution if and only if (G,L, h)
admit a solution, while the third shows that the parameters in (G,L, h) are
bounded by a polynomial on n+ log2 |H|.

Theorem 40. Number List Coloring does not admit a polynomial ker-
nel when parameterized by vertex cover and number of colors, unless NP ⊆
coNP/poly.

To obtain the next two corollaries, note that: (i) adding isolated vertices
with singleton lists to G is a PPT reduction from Number List Coloring
parameterized by vertex cover and number of colors to Equitable List Col-
oring under the same parameterization, and (ii) adding a clique R of same size
as the number of colors and edges between R and vertices of G to simulate the
lists is also a PPT reduction from Equitable List Coloring to Equitable
Coloring; note that the clique may be safely added to the vertex cover, since
its size is linear on the number of colors, which is a parameter.

Corollary 41. Equitable List Coloring does not admit a polynomial ker-
nel when parameterized by vertex cover and number of colors, unless NP ⊆
coNP/poly.

Corollary 42. Equitable Coloring does not admit a polynomial kernel when
parameterized by vertex cover and number of colors, unless NP ⊆ coNP/poly.

10 Final Remarks
In this work we presented an extensive study of multiple parameterizations for
the Equitable Coloring problem, obtaining both tractability, intractabil-
ity, and kernelization results. Specifically, we proved that it is fixed param-
eter tractable when parameterized by distance to cluster and by distance to
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co-cluster. As corollaries, we have that there is an FPT algorithm when param-
eterizing the problem by distance to unipolar and number of colors. Meanwhile,
Equitable Coloring remains W[1]-hard when simultaneously parameterized
by distance to disjoint paths and number of colors; if, on the other hand, we
parameterize by distance to disjoint paths of length at most `, the problem is
fixed-parameter tractable. We then presented a linear kernel under distance to
clique and a cubic kernel when parameterized by the maximum leaf number;
along with Reddy’s [28] polynomial kernel when parameterized by distance to
connected threshold and number of colors, these are the only examples of pos-
itive kernelization results we know of. Our final result showed that, under a
standard complexity hypothesis,Equitable Coloring has no polynomial ker-
nel when jointly parameterized by vertex cover and number of colors. We also
revisited previous works in the literature and restated them in terms of param-
eterized complexity. This review settled the complexity for some parameteriza-
tions weaker than distance to clique and show that some of our results are, in
a sense, optimal: searching for parameters weaker than distance to (co-)cluster
will most likely not yield FPT algorithms. Vertex Coloring is already notori-
ously hard to find polynomial kernels for, as shown by Jansen and Kratsch [22];
in fact, most of the parameterizations under which classical coloring admits a
polynomial kernel do not make Equitable Coloring tractable, painting a
quite bleak future for kernelization algorithms for Equitable Coloring. We
leave three main questions about the tractability of Equitable Coloring:
distance to disconnected threshold, feedback edge set, and the stronger joint
parameterization feedback vertex set and maximum degree, with the first two
being the most interesting cases. We believe it is also possible to improve the
constants on our max leaf number kernel result, but do not yet know how to
obtain a subcubic kernel under the this parameterization. Another interesting
direction would be to improve the running times of known tractable cases and
determining lower bounds for parameters such as vertex cover and distance to
clique. In particular, we would like to know if the algorithms presented in Sec-
tions 3, 4, and 6 have optimal running times or, if not, how one can obtain faster
algorithms.
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