1910.02151v2 [cs.DS] 8 Mar 2020

arXiv

Towards a Definitive Measure of Repetitiveness*

Tomasz Kociumakal’** [0000—0002—2477—1702
2,3,% x x[0000—0002—2286—741.X]

I, Gonzalo
Navarro , and Nicola Prezza*[0000—0003-3553—4953]
! Dept. of Computer Science, Bar-Ilan University, Ramat Gan, Israel
kociumaka@mimuw.edu.pl
2 Millennium Institute for Foundational Research on Data (IMFD), Chile
3 Dept. of Computer Science, University of Chile, Chile gnavarro@dcc.uchile.cl
4 Dept. of Business and Management, Luiss Guido Carli, Rome, Italy
nprezza@luiss.it

Abstract. Unlike in statistical compression, where Shannon’s entropy
is a definitive lower bound, no such clear measure exists for the compress-
ibility of repetitive sequences. Since statistical entropy does not capture
repetitiveness, ad-hoc measures like the size z of the Lempel-Ziv parse
are frequently used to estimate repetitiveness. Recently, a more princi-
pled measure, the size v of the smallest string attractor, was introduced.
The measure v lower bounds all the previous relevant ones (including
z), yet length-n strings can be represented and efficiently indexed within
space O(vlog 2), which also upper bounds most measures (including z).
While ~y is certainly a better measure of repetitiveness than z, it is NP-
complete to compute, and no o(+ylog n)-space representation of strings is
known.

In this paper, we study a smaller measure, § < =, which can be com-
puted in linear time. We show that ¢ better captures the compressibility
of repetitive strings. For every length n and every value § > 2, we con-
struct a string such that v = £2(dlog %). Still, we show a representation
of any string S in O(dlog %) space that supports direct access to any
character S[i] in time O(log %) and finds the occ occurrences of any pat-
tern P[1..m] in time O(mlogn + occlog®n) for any constant ¢ > 0.
Further, we prove that no o(dlogn)-space representation exists: for ev-
ery length n and every value 2 < § < n'~°, we exhibit a string family
whose elements can only be encoded in f2(dlog %) space. We complete
our characterization of § by showing that, although +, z, and other repet-
itiveness measures are always O(d log %), for strings of any length n, the
smallest context-free grammar can be of size 2(§1log®n/loglogn). No
such separation is known for ~.

Keywords: Data compression - Lempel-Ziv parse - Repetitive sequences

* Part of this work was carried out during the Dagstuhl Seminar 19241, “25 Years of
the Burrows—Wheeler Transform”.

** Supported by ISF grants no. 1278/16, 824/17, and 1926/19, a BSF grant no. 2018364,
and an ERC grant MPM (no. 683064) under the EU’s Horizon 2020 Research and
Innovation Programme.

*** Supported in part by Fondecyt grant 1-170048, Chile; Millennium Institute for Foun-
dational Research on Data (IMFD), Chile.

http://arxiv.org/abs/1910.02151v2

2 T. Kociumaka, G. Navarro, and N. Prezza
1 Introduction

The recent rise in the amount of data we aim to handle [41] is driving research
into compressed data representations that can be used directly in compressed
form [32]. Interestingly, much of today’s fastest-growing data is highly repetitive,
which enables space reductions of orders of magnitude [19]: genome collections,
versioned text and software repositories, periodic sky surveys, and other sources
produce data where each element in the collection is very similar to others.
Since a significant fraction of the data of interest consists of sequences, text
indexes are important actors in this research. These are data structures that offer
fast pattern matching (and possibly other more sophisticated capabilities) over
a collection of strings. Though compressed text indexes are already mature [33]
and offer fast pattern searching within space close to the statistical entropy
of the string collection, such kind of entropy is unable to capture repetitive-
ness [28,32]. Achieving orders-of-magnitude space reductions requires instead to
resort to other kinds of compressors, such as Lempel-Ziv [29], grammar compres-
sion [26], run-length compressed Burrows—Wheeler transform [19], and others.
Various compressed indexes build on those methods; see a thorough review [19].
Unlike statistical compression, where Shannon’s notion of entropy [40] is a
clear lower bound to what compressors can achieve, a similar notion capturing
repetitiveness has been elusive. Beyond Kolmogorov’s complexity [27], which is
uncomputable, repetitiveness is measured in ad-hoc terms, as the results of what
specific compressors achieve. A list of such measures on a string S[1 .. n| follows:

Lempel-Ziv compression [29] parses .S into a sequence of phrases, with each
phrase defined as the longest string that has appeared previously in S. The
associated measure is the number z of phrases produced. The measure can
be computed in O(n) time [38].

Bidirectional macro schemes [42] extend Lempel-Ziv so that the source of
each phrase may precede or follow it, as long as no circular dependencies
are introduced. The associated measure b is the number of phrases of the
smallest parsing. It holds b < z = O(blog %) [18], but computing b is NP-
complete [20].

Grammar-based compression [26] builds a context-free grammar that gen-
erates S and only S. The associated measure is the size g of the smallest
grammar (i.e., the total length of the right-hand sides of the rules). It holds
2z < g=0(zlog2) and, while it is NP-complete to compute g, grammars of
size O(zlog 2) can be constructed in linear time [39,11,21].

Run-length grammar compression [35] allows in addition rules A — B* (¢
repetitions of B) of constant size. The measure is the size g,; of the smallest
run-length grammar, and it holds § < g,; < g and g,; = O(blog %) [18].

Collage systems [25] extend run-length grammars by allowing truncation: in
constant space we can refer to a prefix or a suffix of another nonterminal.
The associated measure ¢ satisfies ¢ < g,; and ¢ = O(z) [31].

Burrows—Wheeler transform (BWT) [10] is a permutation of S that tends
to have long runs of equal letters if S is repetitive. The number r of maximal

Towards a Definitive Measure of Repetitiveness 3

equal-letter runs in the BWT can be found in linear time. It is known that
g =O(rlog2) [19] and & < r = O(blog®n) = O(zlog”n) [18,23].
CDAWGS [9] are automata that recognize every substring of S. The associ-
ated measure of repetitiveness is e, the size of the smallest such automaton
(compressed by dissolving states of in-degree and out-degree one), which is
built in linear time [9]. The measure e is always larger than r, g, and z [4,3].

An improvement to this situation is the recent introduction of the concept
of string attractor [24]. An attractor I' is a set of positions in S such that any
substring of S has an occurrence covering a position in I". The size «y of the small-
est attractor asymptotically lower bounds all the repetitiveness measures listed
above. Recent results [24,34,36,13] show that efficient queries can be supported
within O(vlog %) space® and that g,; = O(~log %) Previous solutions support
random access to S, or indexed searches on S, within space O(zlog 2) [5,6,12,17],
O(g) [14,15,16,8,1], O(g,1) [19], O(r) or O(rlog %) [30,4,19], and O(e) [2,3], none
improving in general upon the space O(ylog %) within which one can offer effi-
cient access [24] and indexing [34,13]. Using indexes based on = is not exempt of
problems, however. Computing ~ is NP-hard [24], and therefore one has to resort
to approximations like z, in which case the representation is only guaranteed to
be of size O(zlog 2). While this problem has been recently sidestepped [13], it is
still unclear whether v is the definitive measure of repetitiveness. In particular,
it is unknown whether one can always represent S within O(7) space (while this
is possible in O(b) space) or even within o(ylogn) space.

Our contributions. In this paper, we study a new measure of repetitiveness,
6, which arguably captures better the concept of compressibility in repetitive
strings and is more convenient to deal with. Although this measure was al-
ready introduced in a stringology context [37] and used to build indexes of size
O(vlog %) without knowing [13], its properties and full potential have not been
explored. It always holds that § < «, and ¢ can be computed in O(n) time [13].
First, we show that d can be asymptotically strictly smaller than +: for every
length n and every value 0 > 2, there exist a string such that v = £2(d log %). Still,
we develop a representation of S of size O(d log %) that allows accessing any char-
acter S[i] in time O(log %) and finds the occ occurrences of any pattern P[1..m]
in time O(mlogn + occlog® n) for any constant € > 0. For this, we reduce the
size of block trees [5] to O(dlog %). Therefore, we obtain improved space and
the same time performance compared to previous results based on v [24,34,36].
Further, we show that, for every length n and every value 2 < § < n'=¢ (where
e > 0 is an arbitrary constant), there exists a string family whose elements can
only be represented in £2(0log %) space. Thus, o(dlogn) space is unreachable
in general; no such limit is known for v. We complete our characterization of
d by proving that, although v, b, z, and c are always O(dlog %), the smallest

® Throughout the paper, the size of data structures is measured in machine words.
® The most recent index [13] locates patterns in O(m + (occ + 1)logn) time and
O(vlog %) space (being thus faster but still using more space).

4 T. Kociumaka, G. Navarro, and N. Prezza

context-free grammar can be of size g = 2(6log® n/loglogn) for strings of any
length n. Again, no such lower bound is known to hold on ~.

2 Measure &

The measure ¢ has recently been defined by Christiansen et al. [13, Section 5.1],
though it is based on the expression dj(S)/k, introduced by Raskhodnikova et
al. [37] to approximate z. Below we summarize what is known about it.

Definition 1. Let d(S) be the number of distinct length-k substrings in S. Then
d =max{di(S)/k:ke[l..n]}.
Lemma 1 (Based on [37, Lemma 3]). It always holds that z = O(dlog %).

Proof. Raskhodnikova et al. [37] prove that if d¢(S) < m - £ for every £ < {,
then z < 4(mlogly + ﬁ) Plugging o = % and m = §, we conclude that
2z <4(0log% +6) = O(dlog). 0

Since b, ¢, and v are O(z), these three measures are all upper bounded by
O(élog %). Additionally, we conclude that g.; < g = O(zlog2) = O(§ log? %)
and note that = O(Jlog® n) has been proved recently [23].

Before we proceed, let us recall the concept of an attractor.

Definition 2 (Kempa and Prezza [24]). An attractor of a string S[1..n] is
a set of positions I' C [1..n] such that every substring S[i..j] has at least one
occurrence S[i'..j'] = Sli..j] that covers an attractor position p € I' N[i"..j'].

Lemma 2 ([13, Lemma 5.6]). Every string S satisfies § < .

Proof. Every length-k substring has an occurrence covering an attractor position,
so there can be at most kv distinct substrings, i.e., di(S)/k < yforallk <n. O

Lemma 3 ([13, Lemma 5.7]). The measure § can be computed in O(n) time
and space given S[1..n].

Proof. One can use the suffix tree or the LCP table of S to retrieve dj(S) for
all k € [1..n] in O(n) time, and then compute ¢ from this information. O

3 Lower Bounds in Terms of &

In this section, we prove lower bounds in terms of the measure . First, we show
that there exist string families where 6 = o(7y); in fact, 0 can be smaller by up to
a logarithmic factor. Second, we prove that there are string families that cannot
be encoded in o(§logn) space: for every length n and every value 2 < § < n'=¢
(where € > 0 is an arbitrary constant), there is a string family whose elements
require £2(dlog %) space to represent. Third, although in the next section we
give an O(0 log %)-space representation, below we construct a family of strings
which cannot be represented using context-free grammars of size O(dlog §); a
nearly logarithmic-factor separation exists.

Towards a Definitive Measure of Repetitiveness 5

3.1 Lower bounds on attractors

Consider an infinite string S [1..], where So.[i] = b if i = 27 for some integer
Jj > 0, and Sy[i] = a otherwise. For n > 1, let S,, be the length-n prefix of S.
We shall prove that the strings in this family satisfy 6 = O(1) and v = 2(logn).

Lemma 4. For every n > 1, the string S, satisfies § <2 and v > & |logn].

Proof. For each j > 1, every pair of consecutive bs in S, [2/7! + 1..] is at
distance at least 2. Therefore, the only distinct substrings of length k < 27
in S,.[2771 + 1. are of the form a* or a’ba*~"~! for i € [0..k — 1]. Hence,
the distinct length-k substrings of S, are those starting up to position 2971,
Sooli..i+k —1] for i € [1..2771], and the k + 1 already mentioned strings,
for a total of d(Ss) < 2771 + k + 1. Plugging j = [logk], we get di(Ss) <
gMogk1=1 4 | 41 < 2l°gk |k < 2, concluding that §(S,,) < 2 holds for every n.

Next, observe that for each j > 0, the substring ba? ~'b has its unique occur-
rence in So at S [27 .. 2771, The covered regions are disjoint across even inte-
gers j, so each one requires a distinct attractor element. Consequently, (S,) > %
for n > 27. Plugging j = [logn|, we get v(S,) > 3 |logn]. O

We can also show that there are strings with § = o(y) as long as 2 < § < o(n).

Theorem 1. For every length n and value § € [2..n], there is a string S[1..n]
with v = 2(dlog %).

Proof. Let us first fix an integer m > 1 such that n > 4m — 1 and decompose
n—m+1=73", n; roughly equally (so that n; > 3 and n; = £2(Z)). We shall
build a string S over an alphabet consisting of 3m — 1 characters: a; and b; for
i €[l..m]and $; for i € [1..m — 1]. For this, we take S to be the string S,
built for Lemma 4, with alphabet {a,b} replaced by {a;,b;}, and we define S to
be the concatenation of the strings S interleaved with sentinels $;.

Notice that, for each k, we have dj(S) < (m — 1)k + 31", di(S™) because
every substring contains $; or is contained in S for some i. Hence, 6(S) <
3m — 1. (In fact, §(S) = 3m — 1 because d;(S) = 3m — 1.) Furthermore, v(S5) >
S (SW) = 2(mlog) = (5 log %) since the alphabets of S() are disjoint.

This construction proves the theorem for § = 3m — 1 and n > 4m — 1. If
0 mod 3 # 2, we pad the string with O(1) additional sentinels. Each one increases
6(5), v(S), and n by 1. Finally, we note that the claim for 6 = £2(n) reduces to
~v = §2(0), and the latter relation follows directly from Lemma 2. O

3.2 Lower bounds on text entropy and grammar size

We now show that there are string families that cannot be encoded in o(dlogn)
space, that is, o(d log? n) bits. It is not known if the same occurs with .
Consider a family S* consisting of variants of the infinite string S, constructed
in the previous section, where the positions of bs are further apart and slightly
perturbed. More specifically, for each S € S§*, the first b is placed at position

6 T. Kociumaka, G. Navarro, and N. Prezza

S[1] and then, for j > 2, the jth b is placed anywhere in S[2 4772 +1..4971].
The family S;; consists of length-n prefixes of the infinite strings of the family
S*.

Lemma 5. For every n > 1, the family S;; needs h(Z(log2 n) bits to be encoded.

Proof. In our definition of §*, the location of the jth b can be chosen among
2 - 4772 positions, and each combination of these choices generatez)s a different
string in S* as long as n > 47~!. Hence, |S}| = H;J;Q 24772 = 2907) for n > 4%,

To distinguish strings in S}, any encoding needs log |S*| = 2(log” n) bits. O

Theorem 2. For every length n and value § € [2..n], there exists a family of
length-n strings of common measure § that needs £2(6 log? %) bits to be encoded.

Proof. By Lemma 5, encoding S, requires Q(log2 n) bits. Below, we prove that
the measure ¢ for any string in S is at most 2. Starting from position 4771 + 1,
the distances between two consecutive bs are at least 47. Therefore, the distinct
substrings of length k < 47 are either those that start at position i € [1..4771]
or those of the form a* or a’ba*~i~! for i € [0..k — 1], which yields a total of
di(S) < 471+ k+1. Plugging j = [4 log k], we get dj () < Alzlogk1-1 41 <
4218k L | < 9k, By definition of §, we conclude that §(S) < 2 for every S € S=.

As in the proof of Theorem 1, one can generalize this result to larger 9. a

The family S} also gives strings that do not satisfy g = O(d logn).
Theorem 3. For every length n, there is a string with g = 2(5log® n/ loglogn).

Proof. Consider the same family S, which needs h(Z(log2 n) bits to be repre-
sented. If we could encode it with a grammar of size g, each grammar element
would be a nonterminal that could be encoded with O(logg) bits. Therefore,
our grammar representation would require O(glogg) bits. Since this must be
2(log®n), it follows that g = 2(log®n/loglogn) for any grammar of size g
encoding S. Since 6 = O(1) for every string S € S, it follows that g =
2(51og®n/ loglogn). O

4 Block Trees in -Bounded Space

The block tree [5] is a data structure designed to represent repetitive strings
S[L..n] in O(zlog %) space while offering efficient access. In this section, we
show that the block tree is easily tuned to use O(dlog %) space while retaining
its functionality. Note that, given the lower bounds of Section 3, we cannot hope
for a representation of size o(d log %).

4.1 Block trees

Given integer parameters r and s, the root of the block tree divides S into s equal-
sized (that is, with the same number of characters) blocks (assume for simplicity

Towards a Definitive Measure of Repetitiveness 7

that n = s - r* for some integer t).” Blocks are then classified into marked
and unmarked. If two adjacent blocks Bj, Bs form the leftmost occurrence of
the underlying substring Bj By, then both B; and Bs; are marked. Blocks B
that remain unmarked are replaced by a pointer to the pair of adjacent blocks
B, By that contains the leftmost occurrence of B, and the offset € > 0 where B
starts inside B;. Marked blocks are divided into r equal-sized sub-blocks, which
form the children of the current block tree’s level, and processed similarly in a
recursive fashion. Let o be the alphabet size. The level where the blocks become
of length below log, n corresponds to the leaves of the block tree, and its blocks
store their plain string content using O(logn) bits. The height of the block tree

is then h = O(log, 2L%) = O(log, 1%2) € O(log 2).

The block tree construction guarantees that the blocks By and By to which
any unmarked block points exist and are marked. Therefore, any access to a
position S[i] can be carried out in O(h) time, by descending from the root to a
leaf and spending O(1) time in each level: To obtain BJi] from a marked block
B, we simply compute to which sub-block B[i] belongs among the children of B.
To obtain Bl[i] from an unmarked block B pointing to By, By with offset €, we
switch either to Bj[e 4 ¢] or to Bale + i — | B1|], which are marked blocks.

By storing further data associated with marked and unmarked blocks, the
block tree offers the following functionality [5]:

Access: any substring S[i..i+ ¢ — 1] is extracted in time O(h[£/log, n]).

Rank: rank,(S,i) is the number of times symbol a occurs in S[1..i]. Tt is
computed in time O(h) by multiplying the space by O(o).

Select: select,(S,) is the position of the jth occurrence of symbol a in S. It
is computed in time O(loglog 2 4 hloglogr) by multiplying the space by
O(o).

It is shown that there are only O(zr) blocks in each level of the block tree

. 1
(except the first, which has s); therefore its size is O(s + 2rlog, {3557

4.2 Bounding the space in terms of &

We now prove that there are only O(dr) blocks in each level of the block tree,

and therefore, choosing s = § yields a structure of size O(drlog, leggg) with

height O(log, legg;:) For r = O(1), the space is O(dlog %) and the height is
O(log %).

Let us call level k of the block tree the one where blocks are of length r*.
In level k, then, S is covered regularly with blocks B = S[rF(i — 1) + 1..7r%i]
of length 7 (though mnot all of them are present in the block tree). Note that
k reaches its maximum in the root (where we have the largest blocks) and the
minimum in the leaves of the block tree.

7 If not, we simply pad S with spurious symbols at the end; whole spurious blocks are
not represented. The extra space incurred is only O(rh) for a block tree of height h.
The actual construction [5] uses instead blocks of sizes |n/s| and [n/s].

8 T. Kociumaka, G. Navarro, and N. Prezza

Lemma 6. The number of marked blocks of length r* in the block tree is O(6).

Proof. Any marked block B must belong to a sequence of three blocks, B~-B-BT,
such that B is inside the leftmost occurrence of B~ - B or B - BT, or both (B~
and BT do not exist for the first and last block, respectively).

For the sake of computing our bound, let # be a symbol not appearing in
S and let us add 2 - r* characters equal to # at the beginning of S and 7*
characters equal to # at the end of S. We index the added prefix in negative
positions (up to index 0), so that S[—2-rF +1..0] = #27" Now consider
all the r* text positions p belonging to a marked block B. The long substring
E=S[p—2-7%..p+2-r¥ —1] centered at p, of length 47, contains B~ - B- B¥,
and thus E contains the leftmost occurrence L of B~ - B or B-B™. All those long
substrings F must then be distinct: if two long substrings E and E’ are equal,
and E’ appears after F in S, then E’ does not contain the leftmost occurrence
of any substring L.

Since we added a prefix of length 2 - ¥ and a suffix of length r* consisting
of character # to S, the number of distinct substrings of length 47* is at most
dy+(S) + 3rF. Therefore, there can be at most dy,x (S) + 3r* long substrings F
as well, because they must all be distinct. Since each position p inside a block
B induces a distinct long substring E, and each marked block B contributes
r¥ distinct positions p, there are at most (dy,.«(S) + 3r%)/r* marked blocks B
of length 7. The total number of marked blocks of length 7% is thus at most
(dyyr (S) + 3rF) Jrk = 4 - d g (S)/(47%) + 3rk JrF < 45 + 3. O

Since the block tree has at most 46 + 3 marked blocks per level, it has O(ér)
blocks across all the levels except the first. This yields the following result.

Theorem 4. Let S[1..n|, over alphabet [1..c]|, have compressibility measure 6.
Then the block tree of S, with parameters r and s, is of size O(s + 6rlog, 2E2)

slogn
words and height h = O(log,. "10%0)_

slogn

Note that & = O(Zlog %) = O(£,/%) due to Lemma 1, so log % = O(log Z_j)
= O(logZ2) = O(log%). Hence, the query time we obtain using O(dlog %)
space is asymptotically the same as the O(log %) time obtained in O(vy log%)
space [34,36] or the O(log 2) time obtained in O(zlog Z) space [5].

5 Text Indexing in J-Bounded Space

We now show that not only efficient access of S can be supported within O(élog %)
space, but also text indexing, that is, efficiently listing all the positions in S where
a pattern P[l..m] appears. For consistency with previous works, in this section
we speak of a text T'[1..n] instead of a string S[1..n].

Our index builds on top of a slight variant of the block tree of the previous
sections, with » = 2, s = §, and stopping only when the leaves are of length 1.
This block tree is of size O(dlog %) and of height O(log %).

Towards a Definitive Measure of Repetitiveness 9

To build the index, we follow the same ideas of the “universal index” [34],
whose space will be improved without affecting its search time complexities.
That index builds on a variant of block trees designed for attractors: the I'-tree
has a first level with « equal-sized blocks, and at any other level k, it marks the
blocks that are at distance < 2* from an attractor position. Unmarked blocks
B then point to some copy of B that crosses an attractor position (the blocks
overlapping that copy are marked by definition). In the I'-tree pointers can
go leftward or rightward, not necessarily to a leftmost occurrence. The space
of the I'-tree is O(vylog 2), which we now know, by Theorem 4, that is never
asymptotically smaller than that of block trees with parameters r = 2 and s = J.

Karp—Rabin fingerprinting [22] assigns a string S[1..¢] the signature x(S) =
(3¢, S[i] - ¢i=1) mod p for suitable integers ¢ > 1 and prime p. It is possible to
build a signature formed by a pair of functions (k1, k2) guaranteeing no collisions
between substrings of S[1..n], in O(nlogn) expected time [7]. Our index will
need to compute Karp-Rabin fingerprints £(7'[i..j]) in time O(log %). This is
done on block trees by using the same algorithm described for the I'-tree.

Lemma 7. Let T[1..n] have compressibility measure 0, and let k be a Karp—
Rabin function. Then we can store a data structure of size O(6log %) supporting
the computation of k on any substring of T in O(log %) time.

Proof. The structure is the described block tree variant, with some further fields.
We store x(T[1..2%i]) at the ith top-level block, for all i and k = [log %]. We
also store k(B) for each block B stored in the tree and, for the unmarked blocks
B pointing to By, Bs with offset €, we also store x(Bi[l + €..]). Navarro and
Prezza [34, Lem. 1] show that this suffices to compute x(T[i..j]) within O(1)
time per level of the I'-tree; their proof holds verbatim for the block tree. a

Let us say that a block is explicit if it is stored in the block tree. Thus, a block
is explicit if and only if it is marked or it is the child of a marked block.

Lemma 8 (See [34, Lem. 2]). Any substring T[i..j] of length at least 2 either
overlaps two consecutive explicit blocks or is completely inside an unmarked block.

Proof. The leaves of the block tree, read left to right, partition 7" into a sequence
of explicit blocks. The leaves are either unmarked blocks or blocks of length 1.
Since |T[i..j]| > 2, if it is not completely inside an unmarked block, it cannot be
contained in a leaf, so it must cross a boundary between two explicit blocks. O

We now divide the possible occurrences of P[1..m] in T into primary (those
overlapping two consecutive explicit blocks) and secondary (those inside an un-
marked block). The technique used on I'-trees [34, Sec. 3] applies verbatim
here: Primary occurrences are found using a grid of (s — 1) x (s — 1), where
s = O(dlog %) is the number of leaves in the block tree, which finds the occ,
primary occurrences in time O((m + occ,)log® s), for any constant & > 0. The
ranges to search in the grid are obtained using their following result [34, Lem. 3].

Lemma 9. Let X be a sorted set of suffixes of T, and k a Karp—Rabin function.
If one can extract a substring of length ¢ from T in time fe(¢) and compute K on

10 T. Kociumaka, G. Navarro, and N. Prezza

it in time fp (L), then one can build a data structure of size O(|X|) that obtains
the lexicographic ranges in X of the m — 1 suffizes of a given pattern P in worst-
case time O(m(fr(m) +logm) + fe(m)), provided that is collision-free among
substrings of T whose lengths are powers of two.

Since in our case fc(m) = O(mlog %) and fn(m) = O(log %), we can find all
the ranges to search for in time O(mlog %*). The occs secondary occurrences
are obtained as on I'-trees [34, Sec. 3.2], within O((occ, + occ,) loglog %) time.

Theorem 5. Let T[1..n| have measure 6. Then there exists a data structure
of size O(6log %) such that the occurrences of any pattern P[1..m] in T can be
located in time O(mlogn + occlog® n), for any constant & > 0.

6 Conclusions

We have made a step towards establishing the right measure of repetitiveness
for a string S[1..n]. Compared with the most principled prior measure, the
size 7 of the smallest attractor, the proposed measure § has several important
advantages:

1. It lower bounds the previous measure, d < -, and can be computed in linear
time, while finding v is NP-hard.

2. We can always encode S in O(dlog %) space, and this is worst-case optimal
in terms of §: for any length n and any value 2 < § < n'=¢ (where ¢ > 0 is an
arbitrary constant), there are text families needing 2(0 log %) space. Thus,
o(dlogn) space is unreachable. Instead, no text family is known to require
w(v) space, nor it is known if o(ylogn) space can be reached.

3. Measures v, b, ¢, and z are upper bounded by O(dlog %), and g = O(§ log? %)
but there are text families where the smallest context-free grammar is of size
g = 2(61og? n/loglogn). This lower bound is not known to hold on 7.

4. The encodings using O(dlog %) space support direct access and indexed
searches, with the same complexities obtained within attractor-bounded
space, O(vlog %) An exception is a very recent faster index [13].

An ideal compressibility measure for repetitive sequences should be always
reachable and string-wise optimal, apart from being practical to compute. Mea-
sure dlog % is reachable and fast to compute, though optimal only in a coarse
sense (i.e., not string-wise but within the class of all the strings with the same &
value).

Note that we do not know if one can always encode a string within O(7)
space. If this was the case, then v would be a better measure than d log %, except
for being hard to compute. Otherwise, a good alternative could be b, which is
always reachable and might be string-wise optimal within some broad class of
representations that exploit repetitiveness, yet NP-hard to compute. It is not
known, however, if b or « are monotone, that is, smaller on 7" than on 771",
whereas ¢ clearly is. This fascinating quest is then still open.

Towards a Definitive Measure of Repetitiveness 11

On the more practical side, it would be interesting to obtain faster indexes of

size O(0 log %). Our index requires O(mlogn + occlog® n) search time, while in
O(vlog) space, it is possible to search in O(m + (occ + 1) log® n) time [13].

References

1.

10.

11.

12.

13.

14.

15.

16.

Belazzougui, D., Cording, P.H., Puglisi, S.J., Tabei, Y.: Access, rank, and se-
lect in grammar-compressed strings. In: Proc. 23rd ESA. pp. 142-154 (2015).
https://doi.org/10.1007/978-3-662-48350-3_13

Belazzougui, D., Cunial, F.: Fast label extraction in the CDAWG. In: Proc. 24th
SPIRE. pp. 161-175 (2017). https://doi.org/10.1007/978-3-319-67428-5_14
Belazzougui, D., Cunial, F.: Representing the suffix tree with the CDAWG. In: Proc.
28th CPM. pp. 7:1-7:13 (2017). https://doi.org/10.4230/LIPIcs.CPM.2017.7
Belazzougui, D., Cunial, F., Gagie, T., Prezza, N., Raffinot, M.: Composite
repetition-aware data structures. In: Proc. 26th CPM. pp. 26-39. Springer (2015).
https://doi.org/10.1007/978-3-319-19929-0_3

Belazzougui, D., Gagie, T., Gawrychowski, P., Kérkkéainen, J., Pereira, A.O.,
Puglisi, S.J., Tabei, Y.: Queries on LZ-bounded encodings. In: Proc. 25th DCC.
pp. 83-92 (2015). https://doi.org/10.1109/DCC.2015.69

. Bille, P., Ettienne, M.B., Gortz, I.L., Vildhgj, H-W.: Time-space trade-offs

for Lempel-Ziv compressed indexing. Theor. Comput. Sci. 713, 66-77 (2018).
https://doi.org/10.1016/j.tcs.2017.12.021

Bille, P., Gortz, IL., Sach, B., Vildhgj, H.W.: Time-space trade-offs
for longest common extensions. J. Discrete Algorithms 25, 42-50 (2014).
https://doi.org/10.1016/j.jda.2013.06.003

Bille, P., Landau, G.M., Raman, R., Sadakane, K., Satti, S.R., Weimann, O.: Ran-
dom access to grammar-compressed strings and trees. STAM J. Comput. 44(3),
513-539 (2015). https://doi.org/10.1137/130936889

Blumer, A., Blumer, J., Haussler, D., McConnell, R.M., Ehrenfeucht, A.: Complete
inverted files for efficient text retrieval and analysis. J. ACM 34(3), 578595 (1987).
https://doi.org/10.1145/28869.28873

Burrows, M., Wheeler, D.J.: A block-sorting lossless data compres-
sion algorithm. Tech. Rep. 124, Digital Equipment Corporation (1994),
https://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf

Charikar, M., Lehman, E., Liu, D., Panigrahy, R., Prabhakaran, M., Sahai, A.,
Shelat, A.: The smallest grammar problem. IEEE Trans. Inf. Theory 51(7), 2554~
2576 (2005). https://doi.org/10.1109/TIT.2005.850116

Christiansen, A.R., Ettienne, M.B.: Compressed indexing with sig-
nature grammars. In: Proc. 13th LATIN. pp. 331-345 (2018).
https://doi.org/10.1007/978-3-319-77404-6_25

Christiansen, A.R., Ettienne, M.B., Kociumaka, T., Navarro, G.,
Prezza, N.: Optimal-time dictionary-compressed indexes (2019),
https://arxiv.org/abs/1811.12779

Claude, F., Navarro, G.: Self-indexed grammar-based compression. Fundam. In-
form. 111(3), 313-337 (2011). https://doi.org/10.3233/F1-2011-565

Claude, F., Navarro, G.: Improved grammar-based compressed indexes. In: Proc.
19th SPIRE. pp. 180-192 (2012). https://doi.org/10.1007/978-3-642-34109-0_19
Gagie, T., Gawrychowski, P., Kéarkkdinen, J., Nekrich, Y., Puglisi, S.J.: A
faster grammar-based self-index. In: Proc. 6th LATA. pp. 240-251 (2012).
https://doi.org/10.1007/978-3-642-28332-1_21

https://doi.org/10.1007/978-3-662-48350-3_13
https://doi.org/10.1007/978-3-319-67428-5_14
https://doi.org/10.4230/LIPIcs.CPM.2017.7
https://doi.org/10.1007/978-3-319-19929-0_3
https://doi.org/10.1109/DCC.2015.69
https://doi.org/10.1016/j.tcs.2017.12.021
https://doi.org/10.1016/j.jda.2013.06.003
https://doi.org/10.1137/130936889
https://doi.org/10.1145/28869.28873
https://www.hpl.hp.com/techreports/Compaq-DEC/SRC-RR-124.pdf
https://doi.org/10.1109/TIT.2005.850116
https://doi.org/10.1007/978-3-319-77404-6_25
https://arxiv.org/abs/1811.12779
https://doi.org/10.3233/FI-2011-565
https://doi.org/10.1007/978-3-642-34109-0_19
https://doi.org/10.1007/978-3-642-28332-1_21

12

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

T. Kociumaka, G. Navarro, and N. Prezza

Gagie, T., Gawrychowski, P., Karkkainen, J., Nekrich, Y., Puglisi, S.J.: LZ77-based
self-indexing with faster pattern matching. In: Proc. 11th LATIN. pp. 731-742.
Springer (2014). https://doi.org/10.1007/978-3-642-54423-1_63

Gagie, T., Navarro, G., Prezza, N.: On the approximation ratio
of Lempel-Ziv parsing. In: Proc. 13th LATIN. pp. 490-503 (2018).
https://doi.org/10.1007/978-3-319-77404-6_36

Gagie, T., Navarro, G., Prezza, N.: Fully-functional suffix trees and opti-
mal text searching in BWT-runs bounded space. J. ACM 67(1), 1-54 (2020).
https://doi.org/10.1145/3375890

Gallant, J.K.: String Compression Algorithms. Ph.D. thesis, Princeton Univ.
(1982)

Je, A.: A really simple approximation of smallest grammar. Theor. Comput. Sci.
616, 141-150 (2016). https://doi.org/10.1016/j.tcs.2015.12.032

Karp, R.M., Rabin, M.O.: Efficient randomized pattern-matching algorithms. IBM
J. Res. Dev. 31(2), 249-260 (1987). https://doi.org/10.1147/rd.312.0249

Kempa, D., Kociumaka, T.: Resolution of the Burrows-Wheeler transform conjec-
ture (2019), https://arxiv.org/abs/1910.10631

Kempa, D., Prezza, N.: At the roots of dictionary compression: String attractors. In:
Proc. 50th STOC. pp. 827-840 (2018). https://doi.org/10.1145/3188745.3188814
Kida, T., Matsumoto, T., Shibata, Y., Takeda, M., Shinohara, A., Arikawa, S.: Col-
lage system: A unifying framework for compressed pattern matching. Theor. Com-
put. Sci. 298(1), 253-272 (2003). https://doi.org/10.1016,/S0304-3975(02)00426-7
Kieffer, J.C., Yang, E.. Grammar-based codes: A new class of univer-
sal lossless source codes. IEEE Trans. Inf. Theory 46(3), 737-754 (2000).
https://doi.org/10.1109/18.841160

Kolmogorov, A.N.: Three approaches to the quantitative defini-
tion of information. Int. J. Comput. Math. 2(1-4), 157-168 (1968).
https://doi.org/10.1080/00207166808803030

Kreft, S., Navarro, G.: On compressing and indexing repetitive sequences. Theor.
Comput. Sci. 483, 115-133 (2013). https://doi.org/10.1016/j.tcs.2012.02.006
Lempel, A., Ziv, J.: On the complexity of finite sequences. IEEE Trans. Inf. Theory
22(1), 75-81 (1976). https://doi.org/10.1109/TIT.1976.1055501

Mékinen, V., Navarro, G., Sirén, J., Vilimaki, N.: Storage and retrieval of
highly repetitive sequence collections. J. Comput. Biol. 17(3), 281-308 (2010).
https://doi.org/10.1089/cmb.2009.0169

Navarro, G., Ochoa, C., Prezza, N.: On the approximation ratio of ordered parsings
(2019), https://arxiv.org/abs/1803.09517

Navarro, G.: Compact Data Structures — A practical approach. Cambridge Univer-
sity Press (2016). https://doi.org/10.1017/cb0o9781316588284

Navarro, G., Mékinen, V.: Compressed full-text indexes. ACM Computing Surveys
39(1) (2007). https://doi.org/10.1145/1216370.1216372

Navarro, G., Prezza, N.: Universal compressed text indexing. Theor. Comput. Sci.
762, 41-50 (2019). https://doi.org/10.1016/j.tcs.2018.09.007

Nishimoto, T., I, T., Inenaga, S., Bannai, H., Takeda, M.: Fully dynamic data
structure for LCE queries in compressed space. In: Proc. 41st MFCS. pp. 72:1—
72:15 (2016). https://doi.org/10.4230/LIPIcs. MFCS.2016.72

Prezza, N.: Optimal rank and select queries on dictionary-compressed text. In: Proc.
30th CPM. pp. 4:1-4:12 (2019). https://doi.org/10.4230/LIPIcs.CPM.2019.4
Raskhodnikova, S., Ron, D., Rubinfeld, R., Smith, A.D.: Sublinear algorithms
for approximating string compressibility. Algorithmica 65(3), 685-709 (2013).
https://doi.org/10.1007/s00453-012-9618-6

https://doi.org/10.1007/978-3-642-54423-1_63
https://doi.org/10.1007/978-3-319-77404-6_36
https://doi.org/10.1145/3375890
https://doi.org/10.1016/j.tcs.2015.12.032
https://doi.org/10.1147/rd.312.0249
https://arxiv.org/abs/1910.10631
https://doi.org/10.1145/3188745.3188814
https://doi.org/10.1016/S0304-3975(02)00426-7
https://doi.org/10.1109/18.841160
https://doi.org/10.1080/00207166808803030
https://doi.org/10.1016/j.tcs.2012.02.006
https://doi.org/10.1109/TIT.1976.1055501
https://doi.org/10.1089/cmb.2009.0169
https://arxiv.org/abs/1803.09517
https://doi.org/10.1017/cbo9781316588284
https://doi.org/10.1145/1216370.1216372
https://doi.org/10.1016/j.tcs.2018.09.007
https://doi.org/10.4230/LIPIcs.MFCS.2016.72
https://doi.org/10.4230/LIPIcs.CPM.2019.4
https://doi.org/10.1007/s00453-012-9618-6

38.

39.

40.

41.

42.

Towards a Definitive Measure of Repetitiveness 13

Rodeh, M., Pratt, V.R., Even, S.: Linear algorithm for data compression via string
matching. J. ACM 28(1), 16-24 (1981). https://doi.org/10.1145/322234.322237
Rytter, W.: Application of Lempel-Ziv factorization to the approximation of
grammar-based compression. Theor. Comput. Sci. 302(1-3), 211-222 (2003).
https://doi.org/10.1016/S0304-3975(02)00777-6

Shannon, C.E.: A mathematical theory of communication. Bell Syst. Tech. J. 27,
398-403 (1948). https://doi.org/10.1002/j.1538-7305.1948.tb01338.x

Stephens, Z.D., Lee, S.Y., Faghri, F., Campbell, R.H., Zhai, C., Efron,
M.J., Iyer, R., Schatz, M.C., Sinha, S., Robinson, G.E.: Big data:
Astronomical or genomical? PLOS Biology 13(7), 1002195 (2015).
https://doi.org/10.1371/journal.pbio.1002195

Storer, J.A., Szymanski, T.G.: Data compression via textual substitution. J. ACM
29(4), 928-951 (1982). https://doi.org/10.1145/322344.322346

https://doi.org/10.1145/322234.322237
https://doi.org/10.1016/S0304-3975(02)00777-6
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://doi.org/10.1371/journal.pbio.1002195
https://doi.org/10.1145/322344.322346

	Towards a Definitive Measure of Repetitiveness

