
ar
X

iv
:1

71
2.

09
16

6v
4

 [
cs

.D
S]

 3
1

M
ay

 2
02

0

Near-linear Time Algorithm for Approximate Minimum Degree

Spanning Trees ∗

Ran Duan†1, Haoqing He‡1, and Tianyi Zhang§1

1Institute for Interdisciplinary Information Sciences, Tsinghua University

June 2, 2020

Abstract

Given a graph G = (V,E), we wish to compute a spanning tree whose maximum vertex
degree, i.e. tree degree, is as small as possible. Computing the exact optimal solution is known
to be NP-hard, since it generalizes the Hamiltonian path problem. For the approximation version
of this problem, a Õ(mn) time algorithm that computes a spanning tree of degree at most ∆∗+1
is previously known [Fürer & Raghavachari 1994]; here ∆∗ denotes the minimum tree degree of
all the spanning trees. In this paper we give the first near-linear time approximation algorithm
for this problem. Specifically speaking, we propose an Õ(1

ǫ
7m) time algorithm that computes

a spanning tree with tree degree (1 + ǫ)∆∗ + O(1

ǫ
2 logn) for any constant ǫ ∈ (0, 1

6
). Thus,

when ∆∗ = ω(logn), we can achieve approximate solutions with constant approximate ratio
arbitrarily close to 1 in near-linear time.

∗This work has been supported in part by the Zhongguancun Haihua Institute for Frontier Information Technology.
†duanran@mail.tsinghua.edu.cn
‡hehq13@mails.tsinghua.edu.cn
§tianyi-z16@mails.tsinghua.edu.cn

1

http://arxiv.org/abs/1712.09166v4

1 Introduction

Computing minimum degree spanning trees is a fundamental problem that has inspired a long time
of research. Let G = (V,E) be an undirected graph, and we wish to compute a spanning tree of G
whose tree degree, or maximum vertex degree in the tree, is the smallest. Clearly this problem is
NP-hard as the Hamiltonian path problem can be reduced to it, and so we could only hope for a
good approximation in polynomial time. The optimal approximation of this problem was achieved
in [7] where the authors proposed a 1Õ(mn) time algorithm that computes a spanning tree of tree
degree ≤ ∆∗ + 1; conventionally n = |V |,m = |E| and ∆∗ denotes the minimum tree degree of all
the spanning trees. For convenience, in this paper the degree of a vertex usually means its tree
degree in the current spanning tree.

1.1 Our results

The major result of this paper is a near-linear time algorithm for computing minimum degree
spanning trees in undirected graphs. To the best of our knowledge, this is the first near-linear time
algorithm for this problem. Formally we propose the following statement.

Theorem 1. For any constant ǫ ∈ (0, 16), there is an algorithm that runs in O(1
ǫ7
m log7 n) time

which computes a spanning tree with tree degree at most (1 + ǫ)∆∗ + 576
ǫ2

log n.

The core argument of Theorem 1 is that, starting from an arbitrary spanning tree, we repeat-
edly search for a sequence of distinct non-tree edges, named as augmenting sequence (The formal
definition is given in Section 3.1), to modify the current spanning tree which immediately reduces
the degree of some high-degree vertex. The idea of augmenting sequence is similar to [7], that is,
given a fixed degree bound k, an augmenting sequence w.r.t. the current spanning tree and k is a
sequence of vertex-disjoint non-tree edges (w1, z1), (w2, z2), · · · , (wh, zh) such that w1, w2, · · · , wh−1

have tree degree k − 1 and wh, z1, z2, · · · , zh have tree degree < k − 1. Also there is a vertex w0

with tree degree ≥ k on the tree path between w1 and z1, and wi for 1 ≤ i < h is on the tree path
between wi+1 and zi+1 but not on the tree path between wj and zj for j > i + 1. Then we can
add theses edges (w1, z1) · · · , (wh, zh) to the spanning tree and delete the edges associated with
w0, · · · , wh−1 on the cycles formed, so the total degree of vertices with degree ≥ k will decrease by
1 but more degree-(k − 1) vertices may emerge.

In our process of searching, similar to the blocking flow approach [3] for max-flow, we first
construct a layering of the graph by the shortest length of augmenting sequences, then each time find
a shortest augmenting sequence in the layering and do such tree modification by this augmenting
sequence, thus after near-linear time the shortest length of augmenting sequences would increase.
We repeat this until the length of the shortest augmenting sequence is longer than 1

ǫ
log n. When

this happens, the number of layers also exceeds 1
ǫ
log n, so there are two adjacent layer whose ratio

is at most 1 + ǫ, then if the number of augmenting sequences we found are not too large (not too
many new degree-(k − 1) vertices emerge), we can argue a 1 +O(ǫ) approximation for the optimal
solution ∆∗. In the whole procedure of our algorithm, we can let k = (1−O(ǫ))∆ for the degree ∆
of the current spanning tree, and make k increase by one after each iteration until in some iteration
the sum of degree of all the vertices with degree ≥ k is not significantly decreased. See Section 3.2.

1
Õ(·) hides poly-logarithmic factors.

2

1.2 Related work

There is a line of works that are concerned with low-degree trees in weighted undirected graphs. In
this scenario, the target low-degree that we wish to compute is constrained by two parameters: an
upper bound B on tree degree, an upper bound C on the total weight summed over all tree edges.
The problem was originally formulated in [4]. Two subsequent papers [10, 11] proposed polynomial
time algorithms that compute a tree with cost ≤ wC and degree ≤ w

w−1bB+logb n, ∀b, w > 1. This
result was substantially improved by [2]; using certain augmenting path technique, their algorithm
is capable of finding a tree with cost ≤ C and degree B+O(log n/ log log n). Results and techniques
from [2] might sound similar to ours, but in undirected graphs we are actually faced with different
technical difficulties. [2]’s result was improved by [8] where for all k, a spanning tree of degree
≤ k + 2 and of cost at most the cost of the optimum spanning tree of maximum degree at most k
can be computed in polynomial time. The degree bound was later further improved from k + 2 to
the optimal k + 1 in [15].

Another variant is minimum degree Steiner trees which is related to network broadcasting
[13, 14, 5]. For undirected graphs, authors of [7] showed that the same approximation guarantee
and running time can be achieved as with minimum degree spanning trees in undirected graphs, i.e.,
a solution of tree degree ∆∗+1 and a running time of Õ(mn). For the directed case, [5] showed that
directed minimum degree Steiner tree problem cannot be approximated within (1−ǫ) log |D|,∀ǫ > 0
unless NP ⊆ DTIME(nlog logn), where D is the set of terminals.

The minimum degree tree problem can also be formulated in directed graphs. This problem was
first studied in [6] where the authors proposed a polynomial time algorithm that finds a directed
spanning tree of degree at most O(∆∗ log n). The approximation guarantee was improved to roughly
O(∆∗ + log n) in [12, 9] while the time complexity became nO(logn). The problem becomes much
easier when G is acyclic, as shown in [18], where a directed spanning tree of degree ≤ ∆∗ + 1 is
computable in polynomial time. The approximation was greatly advanced to ∆∗ + 2 in [1] by an
LP-based polynomial time algorithm, and this problem has become more-or-less closed since then.

2 Preliminary

Let G = (V,E) be the graph we consider, and we assume G is a connected graph. Logarithms
are taken at base 2. During the execution of our algorithm, a spanning tree T will be maintained.
For every u ∈ V , let deg(u) be the tree degree of u in T, and the degree of the spanning tree T is
defined as ∆ = maxu∈V deg(u). Our algorithm will repeatedly modify T to reduce its degree ∆.
Let ∆∗ denote the minimum degree of all the spanning trees. For each pair u, v ∈ V , let ρu,v be the
unique tree path that connects u and v in T. For each 1 ≤ k ≤ n, define Sk = {u | deg(u) ≥ k} to
be the set of vertices of degree at least k, Nk = {u | deg(u) = k} to be the set of vertices of degree
exactly k, and dk =

∑

u∈Sk
deg(u) to be the sum of degrees of vertices in Sk.

2.1 Boundary edge and boundary set

Boundary edge and boundary set are important concepts to get the lower bound of ∆∗.

Definition 1. For a graph G = (V,E) and a sequence of disjoint vertex subsets V1, V2, · · · , Vl ⊆ V ,
an edge (u, v) ∈ E is called a boundary edge if u ∈ Vi, v ∈ Vj for 1 ≤ i 6= j ≤ l, or u ∈ Vi for some

3

i but v /∈ V1 ∪ · · · ∪ Vl. A vertex set W is called a boundary set (with respect to V1, V2, · · · , Vl), if
for every boundary edge (u, v), at least one of u, v belongs to W .

Lemma 2. Let V1, V2, · · · , Vl ⊆ V be a sequence of disjoint vertex subsets, W be a boundary set
and ∆∗ be the minimum degree of all the spanning tree in G. Then, ∆∗ ≥ l−1

|W | .

Proof. By Definition 1, every set Vi can only be connected to other vertices by boundary edges, so
for any spanning tree T of G, there are at least l − 1 boundary edges connecting V1, V2, · · · , Vl in
T . Then for any boundary edge (u, v), at least one of u, v belongs to W . Thus by the pigeon-hole
principle, there exists a u ∈W whose tree degree is ≥ l−1

|W | .

3 A (1 + ǫ)∆∗ + O(1
ǫ2 logn) Approximation

Let ǫ ∈ (0, 1
48) be a fixed parameter. This algorithm starts from an arbitrary spanning tree T and

keeps modifying T to decrease its tree degree ∆. It consists of two phases: the large-step phase and
the small-step phase.

• In the large-step phase, as long as ∆ ≥ 10 log2 n
ǫ3

, we repeatedly apply a near-linear time
subroutine that, either ∆ is reduced to ≤ (1 − ǫ) · ∆ or a spanning tree T is returned with
the guarantee that ∆ = (1 +O(ǫ))∆∗.

• In the small-step phase, we need to deal with the situation where 9 logn
ǫ2
≤ ∆ < 10 log2 n

ǫ3
. In

this case we repeatedly run a weaker near-linear time subroutine that either ∆ is reduced by
1 or a spanning tree T is returned with the guarantee that ∆ ≤ (1 +O(ǫ))∆∗ +O(logn

ǫ2
).

Both phases rely on a degree reduction algorithm AugSeqDegRed(k). The AugSeqDegRed(k)
efficiently reduces the total degree of vertices with degree ≥ k by 1 using an augmenting sequence
technique.

For the rest of this section, we first propose and analyze the degree reduction algorithm AugSe-
qDegRed which underlies the core of our main algorithm. After that we specify how the large-step
phase and the small-step phase work. Finally, we prove Theorem 1.

3.1 Degree reduction via augmenting sequences

For a fixed threshold k ≤ ∆, a simple idea is that we repeatedly look for non-tree edges that
connect two vertices of tree degree ≤ k−2 from different components of T\Sk and add these edges
to T, while at the same time we delete some edges incident on Sk to eliminate cycles, so the tree
degrees of vertices become more balanced. In this algorithm, we continue to explore possibilities of
improving the tree structure using the idea of augmenting sequence as in [7]. For a non-tree edge
(u, v) that connects two different components Cu, Cv of T \Sk where deg(u) = k− 1, we try to add
(u, v) to T and delete some edge incident on Sk to eliminate cycles. At the same time, as deg(u)
increases to k, we keep looking for a sequence of distinct non-tree edges inside Cu to add to T and
delete a sequence of tree edges to eliminate cycles.

A difficulty is that when the degrees of some original (k − 1)-degree vertices decrease, it is
hard to make the layering of the graph stable. Therefore, we define marked vertices instead of the
concept of the vertices with degree ≥ k− 1. Given a degree threshold k ≤ ∆, a vertex gets marked

4

whenever its tree degree becomes k − 1, and it stays marked even if its tree degree becomes below
k− 2 afterwards. We only re-initialize the set of marked vertices when we change k in Section 3.2.
Then we can define augmenting sequence formally.

Definition 2 (augmenting sequence). An h-length augmenting sequence consists of a sequence of
vertex-disjoint non-tree edges (w1, z1), (w2, z2), · · · , (wh, zh) ∈ E with the following properties.

(i) ∃w0 ∈ ρw1,z1 ∩ Sk, and for all 0 ≤ i < h,wi ∈ ρwi+1,zi+1
\ (

⋃h
j=i+2 ρwj ,zj).

(ii) All zi’s are unmarked (∀1 ≤ i ≤ h); wi’s are marked for all 1 ≤ i < h and wh is unmarked.

Then the tree can be modified by the augmenting sequence (w1, z1), (w2, z2), · · · , (wh, zh) by:

Lemma 3 (tree modification). Given an augmenting sequence (w1, z1), (w2, z2), · · · , (wh, zh) ∈ E,
one can modify T such that dk decreases and no vertices are added to Sk. Also ∆ cannot increase.

Proof. We modify T in an inductive way. For i = h−1, h−2, · · · , 0, as wi ∈ ρwi+1,zi+1
, we can take an

arbitrary tree edge (wi, x) ∈ ρwi+1,zi+1
, and then perform an update T← T∪{(wi+1, zi+1)}\{(wi, x)}

which guarantees that T is still a spanning tree. Because wj /∈ ρwi+1,zi+1
for 0 ≤ j ≤ i − 1, tree

update T← T ∪ {(wi+1, zi+1)} \ {(wi, x)} does not change the connected components of T \ {wj},

so the property that wj ∈ ρwj+1,zj+1
\ (

⋃h
l=j+2 ρwl,zl),∀0 ≤ j < i is preserved.

During the process, if for any zi, deg(zi) (1 ≤ i ≤ h) becomes k − 1 during the process, mark
zi. By definition, dk decreases as w0 loses a tree neighbour; plus, no vertices are newly added to
Sk because all deg(wi), 1 ≤ i < h are unchanged and deg(wh) ≤ k − 2, deg(zi) ≤ k− 2,∀1 ≤ i ≤ h.
Also vertices in Sk can only lose tree neighbors so ∆ cannot increase.

Now, back to the AugSeqDegRed algorithm. The core of this algorithm is that, if the currently
shortest augmenting sequences have length h (h < 1+log1+ǫ n), it searches for augmenting sequences
of length h and applies Lemma 3 to decrease dk. When there is no augmenting sequence of length
h, it repeats this process for some larger h. Finally this algorithm terminates when h ≥ 1+log1+ǫ n
and we prove a lower bound on ∆∗ based on the structure of T.

First, we introduce the Layering algorithm which computes an auxiliary layering of the graph
that will also help tree modification later. Initially set B0 ← Sk. Inductively, supposeB0, B1, · · · , Bh, h ≥
0 is already computed, then we compute the forest spanned by T \ (

⋃h
i=0 Bi); for each u ∈

V \ (
⋃h

i=0Bi), let Ch
u be the connected component of T \ (

⋃h
i=0 Bi) that contains u. If there

exists an edge (u, v) ∈ E such that both u, v are unmarked vertices, and that Ch
u 6= Ch

v , then the
algorithm terminates and reports that the shortest length of augmenting sequences is equal to h+1;
otherwise, we compute Bh+1 to be the set of all marked vertices u ∈ V \ (

⋃h
i=0 Bi) such that there

exists an unmarked adjacent vertex v with Ch
u 6= Ch

v , and then continue until h > 1 + log1+ǫ n.
Note that whenever Bh = ∅, Bh+1, · · · , B⌈1+log1+ǫ n⌉

are all empty. The pseudo code is shown in
the Layering algorithm 1.

After we have invoked Layering and computed a sequence of vertex subsets B0, B1, · · · , Bh which
naturally divides the graph into h+2 layers (including a layer of other vertices), every time we will
find a length-(h+1) augmenting sequence (w1, z1), (w2, z2), · · · , (wh+1, zh+1) such that wi ∈ Bi for
1 ≤ i ≤ h, then apply tree modifications of Lemma 3 by this augmenting sequence. Repeat this
until there is no more length-(h + 1) augmenting sequences any more. The difficulty in searching
for the shortest augmenting sequences is that, for a search that starts from a pair of adjacent and
unmarked vertices u, v satisfying Ch

u 6= Ch
v and goes up the layers Bh, Bh−1, · · · , B1, B0, not every

5

Algorithm 1: Layering

1 B0 ← Sk, h← 0;
2 while h < 1 + log1+ǫ n do

3 compute the forest {Ch
u} spanned by T \ (

⋃h
i=0 Bi);

4 if exists unmarked u, v such that (u, v) ∈ E, Ch
u 6= Ch

v then

5 break;

6 else

7 compute Bh+1 to be the set of all marked vertices u ∈ V \ (
⋃h

i=0 Bi) such that there

exists an unmarked adjacent vertex v with Ch
u 6= Ch

v ;
8 h← h+ 1;

9 return h and B0, B1, · · · , Bh;

route can reach the top layer B0 because some previous (h+1)-length augmenting sequences have
already blocked the road. Therefore, a depth-first search needs to be performed. To save running
time, some tricks are needed: if a certain vertex has been searched before by some previous (h+1)-
length augmenting sequences and has failed to lead a way upwards to B0, then we tag this vertex
so that future depth-first searches may avoid this tagged vertex; if a certain edge has been searched
before, then we tag this edge whatsoever. The AugDFS algorithm may be a better illustration of
this algorithm. The recursive algorithm AugDFS takes the layer number i and an edge (u, v) as
input and keeps searching for edges between a vertex w ∈ (u, v) ∩ Bi−1 and an unmarked vertex
z. If such an edge is found, invoke AugDFS with the parameter (i − 1, (w, z)) and return the
result plus (u, v). The pseudo code is shown in the AugDFS algorithm 2. Later we will prove that
AugDFS(h+1,(u,v)) always returns an augmenting sequence if exists.

Algorithm 2: AugDFS(i,(u,v))

1 if i = 1 then

2 return (u, v);

3 for untagged w ∈ ρu,v ∩Bi−1 do

4 for unmarked z such that (w, z) is untagged and Ci−2
z 6= Ci−2

w do

5 pi−1 ← AugDFS(i-1,(w,z));
6 tag (w, z);
7 if pi−1 6= null then
8 let pi be pi−1 plus (u, v);
9 return pi;

10 tag w;

11 return null;

The upper-level AugSeqDegRed algorithm repeatedly applies Layering followed by several rounds
of AugDFS. Each time AugDFS returns an augmenting sequence p, modify T by Lemma 3 via p.
The repeat-loop ends when h ≥ 1 + log1+ǫ n. The pseudo code is shown in the AugSeqDegRed
algorithm 3.

6

Algorithm 3: AugSeqDegRed(k)

1 mark all degree k − 1 vertices, unmark other vertices;
2 repeat

3 run Layering which computes h and B0, B1, · · · , Bh;
4 untag all vertices and edges;

5 for (u, v) ∈ E such that u, v are unmarked and adjacent, and that Ch
u 6= Ch

v do

6 p←AugDFS(h+1,(u,v));
7 if p 6= null then
8 modify T by augmenting sequence p via Lemma 3;

9 until h ≥ 1 + log1+ǫ n;
10 return T;

Before proving termination of AugSeqDegRed, we first need to argue some properties of Layering.
The following lemma will serve as the basis for our future proof.

Lemma 4 (the blocking property). Throughout each iteration of the repeat-loop in AugSeqDegRed,
for any 1 ≤ i < h and any two adjacent vertices u, v ∈ V \ (

⋃i
j=0Bj) such that u is unmarked and

Ci
u 6= Ci

v, then v ∈ Bi+1. (Recall that C
h
u is the connected component of T \ (

⋃h
i=0 Bi) that contains

u.)

Proof. By rules of Layering, this blocking property holds right after Layering outputs them. This
claim continuous to hold afterwards because tree modifications only merge components Ci

u’s and
never split any Ci

u’s.

Here is an important corollary of this Lemma 4.

Corollary 5. Throughout each iteration of the repeat-loop, for any w ∈ Bi, 1 ≤ i ≤ h, suppose
w is adjacent to an unmarked z such that Ci−1

w 6= Ci−1
z . Then ρw,z only contains vertices from

V \ (
⋃i−2

j=0Bj).

Proof. Suppose otherwise, then there would be a vertex x ∈ ρw,z ∩Bj , j ≤ i− 2, then in this case

Cj
w 6= Cj

z , and thus by Lemma 4 w ∈ Bj+1 which is a contradiction as j + 1 < i.

Now we have the following lemmas:

Lemma 6. If AugDFS(h+1, (u,v)) returns a sequence of edges (w1, z1), · · · , (wh+1, zh+1), then
wi ∈ Bi for 1 ≤ i ≤ h, and wh+1, z1, · · · zh+1 are unmarked, also the edges are vertex-disjoint.

Proof. The initial u, v are unmarked. From the algorithm, when calling AugDFS(i, (u,v)), we find a
w ∈ ρu,v∩Bi−1 and z is unmarked , so the correspondingwi ∈ Bi for 1 ≤ i ≤ h, and wh+1, z1, · · · zh+1

are unmarked, also the vertices {wi|1 ≤ i ≤ h} are distinct. To see that wh+1, z1, · · · zh+1 are
distinct, we argue that in one execution of AugDFS(i, (u,v)), w and z have Ci−2

z 6= Ci−2
w but Ci−3

z =
Ci−3
w , since if Ci−3

z 6= Ci−3
w , w would be in Bi−2 by the algorithm Layering. Thus wh+1, z1, · · · zh+1

are in distinct components in T \ (
⋃h

i=0 Bi).

Lemma 7. In the AugSeqDegRed algorithm, AugDFS(h+1, (u,v)) returns either null or an aug-
menting sequence.

7

Proof. Assume a sequence of edges (w1, z1), · · · , (wh+1, zh+1) is returned by AugDFS(h+1, (u,v)).
Property (ii) in Definition 2 is proved by Lemma 6. Now let us focus on property (i). We can take
an arbitrary w0 ∈ ρw1,z1 ∩B0 since C0

w1
6= C0

z1
by the algorithm. Also since wi ∈ Bi,∀0 ≤ i ≤ h, by

Corollary 5 we know ρwi,zi does not contain any wj , 0 ≤ j ≤ i− 2, so property (ii) holds.

The following statement concludes the AugSeqDegRed algorithm will terminate quickly.

Lemma 8. In the AugSeqDegRed algorithm, h is increased by at least one during each repeat-loop,
except the last one.

Proof. By the rules of Layering, it is easy to see that at the beginning when Layering outputs
B0, B1, · · · , Bh, the shortest length of augmenting sequence is equal to h+1. So it suffices to prove
that by the end of this iteration the shortest augmenting sequence has length > h+ 1.

First we need to characterize all augmenting sequences using B0, B1, · · · , Bh. Let the sequence
(w1, z1), (w2, z2), · · · , (wl, zl) be an arbitrary augmenting sequence and let w0 be the B0-vertex on
ρw1,z1 . We argue that l ≥ h+ 1, and more importantly, if l = h+ 1, it must be that wi ∈ Bi,∀0 ≤
i ≤ h. We inductively prove that wi ∈

⋃i
j=0Bj for i = 0, 1, · · · , l − 1. The basis is obvious as is

required by property (i) in Definition 2. Now assume wi ∈ Br for some r ≤ i. Then, from algorithm
Layering, it would not be hard to see wi+1 ∈

⋃r+1
j=0 Bj ⊆

⋃i+1
j=0Bj. Now, since components {Cr

u}
for r ≤ h − 1 are not connected by edges whose both endpoints are unmarked by Lemma 4, so
ρwl,zl ∩

⋃h−1
j=0 Bj = ∅, and on the other hand wl−1 ∈ ρwl,zl ∩

⋃l−1
j=0Bj, so l ≥ h+1. Plus, we can see

from the induction that, when l = h+ 1 it must be that wi ∈ Bi,∀0 ≤ i ≤ h.
For any unmarked and adjacent vertices u, v such that Ch

u 6= Ch
v , consider the instance of

AugDFS with input (h+ 1, (u, v)). We make two claims.

(1) If there is an (h+1)-length augmenting sequence ending with (u, v), AugDFS would succeed in
finding one.

(2) If it has returned null, then there would be no (h+ 1)-augmenting sequence ending with (u, v)
throughout the entire repeat-loop iteration.

If (1), (2) can be proved, then by the end of this repeat-loop iteration, there would be no
(h+ 1)-length augmenting sequences because such augmenting sequence should end with a pair of
adjacent unmarked vertices. Next we come to prove (1), (2).

(1) The depth-first search of AugDFS exactly coincides with the conditions that wi ∈ Bi, except
that it skips all tagged vertices and edges. Now we prove that omitting tagged vertices and
edges does not miss any (h+1)-length augmenting sequences. For an edge (w, z) to be tagged,
either a further recursion AugDFS has succeeded or failed in finding an augmenting sequences;
in the former case, Ci−2

w and Ci−2
z has been merged, and so the condition Ci−2

w 6= Ci−2
z would

be violated afterwards; in the latter case, we would not need to recur on (w, z) since the
components w.r.t. B0, · · · , Bi−2 also can only merge. For a vertex w to be tagged, we must
have enumerated all of its untagged edges (w, z) but failed to find any augmenting sequences,
and therefore any future depth-first searches on w would still end up in vain.

(2) If AugDFS has once failed to find any augmenting sequences starting with (u, v), then all
vertices w ∈ ρu,v ∩Bh visited by this instance of AugDFS should be tagged and they would be
omitted by all succeeding instances of AugDFS. Therefore ρu,v∩Bh would stay unchanged since

8

then. Hence, if we re-run AugDFS with h + 1, (u, v), it will return null without any recursion
because all vertices in ρu,v ∩Bh are tagged.

Suppose AugSeqDegRed has terminated with B0, B1, · · · , B⌈log1+ǫ n+1⌉. We introduce the notion
of a clean component, a sequence of disjoint vertex subsets, and apply Lemma 2 to get the lower
bound on ∆∗.

Definition 3. After an instance of AugSeqDegRed has been executed, for any vertex u ∈ V \
(
⋃h

i=0 Bi), an arbitrary component Ch
u , 0 ≤ h ≤ ⌈log1+ǫ n + 1⌉ is called clean if all vertices in Ch

u

are unmarked.

Lemma 9. For any 0 ≤ h < ⌈log1+ǫ n+ 1⌉, suppose T \ (
⋃h

i=0Bi) has l clean components, then a
lower bound holds that ∆∗ ≥ l−1∑h+1

i=0 |Bi|
.

Proof. Since h < ⌈log1+ǫ n+1⌉, Bh is not the last one, so there is no edge connecting two unmarked

vertices in different components of T \ (
⋃h

i=0 Bi). By Lemma 4, any edge that connects a clean

components of T \ (
⋃h

i=0Bi) outwards must be incident on a vertex in
⋃h+1

i=0 Bi, so
⋃h+1

i=0 Bi is
a boundary set w.r.t. clean components. Therefore by Lemma 2 we have ∆∗ ≥ l−1

|
⋃h+1

i=0 Bi|
=

l−1∑h+1
i=0 |Bi|

Lemma 10. There is an implementation of AugSeqDegRed that runs in O(1
ǫ2
m log2 n) time.

Proof. We discuss some implementation details of Layering, AugDFS and AugSeqDegRed separately,
and analyse their contributions to the total running time in a single run of AugSeqDegRed.

(1) Layering.

For every instance of Layering, computing the forest {Ch
u}u∈V \(

⋃h
i=0 Bi)

can be done in a single

pass of breath-first search which takes O(m) time. Computing Bh+1, if necessary, is easily done
by scanning the edge set E which also takes O(m) time. As the while-loop iterates for at most
1 + log1+ǫ n times, and due to Lemma 8 Layering is invoked for at most 1 + log1+ǫ n times, the
overall contribution of Layering is O(1

ǫ2
m log2 n).

(2) AugSeqDegRed.

Excluding the contributions of AugDFS and Layering, all AugSeqDegRed does is simply un-
tagging all vertices and edges, scanning the edge set (u, v) ∈ E and deciding if Ch

u 6= Ch
v as

well as modifying tree T. As tree components only get merged and never split, we can use
the union-find data structure [17] to support querying whether Ch

u 6= Ch
v in O(α(n)) time.

Every tree modification involves insertions and deletions of O(1
ǫ
log n) edges, as well as merging

O(1
ǫ
log n) pairs of some tree components Ci

u. Using the link-cut tree, every edge insertion and
deletion takes update time O(log n), and every component-merging takes time O(α(n)). Since
every tree modification merges two components in T\Sk, there can be at most O(n) tree modi-
fications throughout AugSeqDegRed. Therefore, the overall contribution of tree modifications is
O(1

ǫ
n log2 n). Hence, AugSeqDegRed’s exclusive contributions to the total running time would

be O(1
ǫ
mα(n) log n+ 1

ǫ
n log2 n).

9

(3) AugDFS.

Now we analyze the overall time complexity induced by AugDFS invoked on line-5 of AugSe-
qDegRed. There are two technical issues to be resolved.

(a) How to enumerate untagged vertices ∈ ρu,v ∩Bi−1?

For each ui ∈ Bi,∀0 ≤ i ≤ h, assign ui a weight of i; vertices that do not belong to any
Bi have weight h + 1. By Corollary 5, to enumerate vertices ∈ ρu,v ∩ Bi−1, it suffices
to enumerate the lightest vertices on ρu,v, which can be done using a link-cut tree data
structure [16] built on T, each enumeration taking O(log n) amortized time. When a vertex
gets tagged, we change its weight to h+1, and so future enumerations on ρu,v ∩Bi−1 may
skip this tagged vertex.

(b) How to enumerate unmarked z connected by an untagged edge (w, z) such that Ci−2
z 6=

Ci−2
w ?

Each w decrementally maintains a list of all its neighbours. While we scan the list, if
the next edge (w, z) satisfies both conditions that Ci−2

z 6= Ci−2
w and z is unmarked, then

the algorithm starts a new iteration and recur; either way we cross the edge (w, z) off the
list. In this way, every edge appears for at most once. Thus the total time of this part is
O(mα(n)); the additional α(n) factor comes from the union-find data structure that helps
deciding if Ci−2

z 6= Ci−2
w .

Note that (a)’s running time is always dominated by (b)’s, then the overall complexity of
AugDFS is O(mα(n) + 1

ǫ
n log2 n).

Summing up (1)(2)(3), the total running time is dominated by the time complexity of Layering
which is O(1

ǫ2
m log2 n).

3.2 Large-step phase and small-step phase

The large-step phase and small-step phase are described in the ImprovedMDST algorithm 4. In

the large-step phase, we deal with the case ∆ ≥ 10 log2 n
ǫ3

. It works by invoking AugSeqDegRed
with an incremental parameters k from (1 − 2ǫ)∆ + 1 if dk−1 ≤ 2dk. Within each iteration, if

AugSeqDegRed fails to reduce dk by a factor of (1 − ǫ2

2 logn), then the algorithm reports a lower
bound on ∆∗ and returns T immediately. Otherwise, increase k by 1 and continue until dk becomes
0. Since dk+1 ≤ dk, dk will become 0 in at most O(log2 n/ǫ2) iterations. Once dk = 0, ∆ must have
decreased and repeat the while-loop. (Note that by Lemma 3, ∆ cannot increase during the whole
algorithm.)

In the small-step phase, we only deal with 9 logn
ǫ2
≤ ∆ < 10 log2 n

ǫ3
. Set c = 2(log1+ǫ n + 2) and

define a potential:

φ(T) =

∆
∑

i=∆+1−logn

ci · |Ni|

The small-step phase works by repeatedly selecting a degree k that maximizes ck · |Nk| and then run
AugSeqDegRed(k) until ∆ decreases. Similar with the large-step phase, if AugSeqDegRed(k) fails to
reduce dk significantly, then the algorithm reports a lower bound on ∆∗ and returns T immediately.
Clearly k must be larger than ∆− log n.

10

Algorithm 4: ImprovedMDST

1 Let T be a spanning tree of G with tree degree ∆;
/* Large-step phase */

2 while ∆ ≥ 10 log2 n
ǫ3

do

3 k = (1− 2ǫ)∆ + 1;
4 while dk > 0 do

5 if dk−1 ≤ 2dk then

6 d← dk;
7 run AugSeqDegRed(k);

8 if dk > (1− ǫ2

2 logn) · d then

9 return T;

10 k = k + 1;

11 update the tree degree ∆;

/* Small-step phase */

12 while ∆ ≥ 9 logn
ǫ2

do

13 while ∆ has not changed do

14 pick a k ∈ argmaxi∈[∆+1−logn,∆]{c
i · |Ni|};

15 d← dk;
16 run AugSeqDegRed(k);

17 if dk > (1− ǫ2

2 logn) · d then

18 return T;

19 update the tree degree ∆;

20 return T;

11

Running time

In the large-step phase, every iteration dk shrinks by a factor of ≤ (1 − ǫ2

2 logn), so dk will become

zero in O(log2 n/ǫ2) iterations. We have:

Lemma 11. The running time of the large-step phase is bounded by O(1
ǫ5
m log5 n).

Proof. From the previous subsection we already know that AugSeqDegRed runs in O(1
ǫ2
m log2 n)

time, so here we only need to upper bound the total number of times AugSeqDegRed gets invoked

before ∆ < 10 log2 n
ǫ3

or a spanning tree T is returned within a while-loop. Next we only focus on
the previous cases because it takes a longer running time. In this case, at the end of each iteration,

dk ≤ (1 − ǫ2

2 logn) · d. The inside while-loop would break when k > (1 − 2ǫ)∆ + 2 log2 n
ǫ2

because by
the time

dk ≤

(

1−
ǫ2

2 log n

)

2 log2 n

ǫ2

· d(1−2ǫ)∆ ≤
d(1−2ǫ)∆

n
< 1

As (1 − 2ǫ)∆ + 2 log2 n
ǫ2

≤ (1 − ǫ)∆ when ∆ ≥ 10 log2 n
ǫ3

, which means ∆ has been reduced by a
factor of at most 1 − ǫ in the end of each while-loop and there are at most O(1

ǫ
log n) while-

loops within the large-step phase. In summary, the total running time of the large-step phase is

O
(

log2 n
ǫ2

m× log2 n
ǫ2
× logn

ǫ

)

= O
(

m · log
5 n
ǫ5

)

.

In the small-step phase, every iteration φ(T) shrinks by a factor of ≤ 1− ǫ2

5 log2 n
, after O(log

3 n
ǫ2

)

rounds, φ(T) will be smaller than c∆.

Lemma 12. The running time of the small-step phase is bounded by O(1
ǫ7
m log7 n).

Proof. We already know that AugSeqDegRed runs in O(1
ǫ2
m log2 n) time. Now we study how many

rounds of AugSeqDegRed could be invoked before ∆ changes or this algorithm returns T within
a while-loop. We only focus on the previous cases because it takes a longer running time. For
one execution of AugSeqDegRed, let N ′

k, d
′
k,T

′ (k ∈ [∆ + 1 − log n,∆]) be snapshots of Nk, dk,T
right before we execute AugSeqDegRed, and here we consider the case when ∆ is not changed and
dk ≤ (1− ǫ2

2 logn) · d
′
k.

Next we analyse how φ(T) has decreased. The potential before the change is φ(T′) =
∑∆

i=∆+1−logn c
i·

|N ′
k|. Every time AugSeqDegRed modified T, at least one vertex in Sk lost a tree edge and at most

2 + log1+ǫ n vertices with degree < k − 1 gained a tree edge, and then the total loss of φ(T) would
be at least

(ck − ck−1)− (2 + log1+ǫ n) · (c
k−1 − ck−2) ≥ (ck−1 − ck−2)(c− 2− log1+ǫ n)

= ck ·

(

1−
1

c

)

·

(

1−
2 + log1+ǫ n

c

)

≥ ck ·

(

1−
1

c

)

·
1

2
> 0.4 · ck

After executing AugSeqDegRed, dk has decreased by d′k − dk ≥
ǫ2

2 lognd
′
k ≥

ǫ2

2 logn · k|N
′
k|. For

each tree modification via Lemma 3, at most two vertices in Sk lost one degree (only removing the
edge connected to w0 affects Sk), which makes dk decreased by at most 2k. So there are at least

(d′k − dk)/(2k) ≥
ǫ2

4 logn · |N
′
k| tree modifications via Lemma 3 to T. Therefore,

φ(T) ≤ φ(T′)− (0.4 · ck) ·

(

ǫ2

4 log n
· |N ′

k|

)

≤

(

1−
0.1ǫ2

log2 n

)

φ(T′)

12

The second inequality holds by maximality of ck · |N ′
k| which implies ck · |N ′

k| ≥
1

logn · φ(T
′).

In a nutshell, φ(T) has decreased by a factor of at most 1 − 0.1ǫ2

log2 n
. As long as ∆ has not

changed, φ(T) belongs to the interval (c∆, n · c∆), and consequently, φ(T) could suffer at most

− log
1− 0.1ǫ2

log2 n

n = O(log
3 n
ǫ2

) rounds of AugSeqDegRed before ∆ decreases. There are at most O(log
2 n
ǫ3

)

while-loops in the small-step phase because each while-loop reduces ∆ by at least 1.

In summary, the total running time of the small-step phase is O
(

log2 n
ǫ2

m× log3 n
ǫ2
× log2 n

ǫ3

)

=

O
(

m · log
7 n
ǫ7

)

Approximation guarantee

When a spanning tree T is returned within the large-step phase or the small-step phase, the
vertex subsets B0, B1, · · · , B⌈1+log1+ǫ n⌉

created by AugSeqDegRed satisfies the blocking property
(see Lemma 4). By Lemma 9, there is a lower bound on ∆∗ for each vertex set Bh, 0 ≤ h <
⌈1+log1+ǫ n⌉ as long as we get the lower bound on the number of clean components in T\(

⋃h
i=0Bi).

The following two statements show the lower bound on ∆∗.

Lemma 13. For any vertex subset B and any spanning tree T, the number of connected components
in T \B is at least

∑

u∈B deg(u)− 2|B|+ 2.

Proof. Note that there are at least
∑

u∈B deg(u)−|B|+1 tree edges incident on B, and so removing
all of these edges would break T into ≥

∑

u∈B deg(u) − |B|+ 2 components. Therefore, excluding
singleton components formed by B, there are ≥

∑

u∈B deg(u)−2|B|+2 components from T\B.

Lemma 14. If a spanning tree T is returned within the large-step phase or the small-step phase
and k is the parameter of the last invoked AugSeqDegRed, for any 0 ≤ h < ⌈1 + log1+ǫ n⌉, the

number of clean components in T \ (
⋃h

i=0Bi) is at least k · (1 − 4ǫ)
∑h

i=0 |Bi| + 1 for ǫ ∈ (0, 1
48).

Furthermore,

∆∗ ≥ k(1− 4ǫ) ·

∑h
i=0 |Bi|

∑h+1
i=0 |Bi|

Proof. By Lemma 13, the number of tree components in T \ (
⋃h

i=0 Bi) is at least

∑

u∈
⋃h

i=0 Bi

deg(u)− 2

∣

∣

∣

∣

∣

h
⋃

i=0

Bi

∣

∣

∣

∣

∣

+ 2

Let d′k, d
′
k−1, S

′
k−1 and S′

k be snapshots of dk, dk−1, Sk−1 and Sk right before the last instance
of AugSeqDegRed started and let M be the set of all marked vertices /∈ S′

k−1 (i.e., vertices that
are initially unmarked) by the end of AugSeqDegRed. Then, the number of clean components in
T \ (

⋃h
i=0Bi) is at least

∑

u∈
⋃h

i=0 Bi

deg(u)− 2
h

∑

i=0

|Bi|+ 2− |M ∪ S′
k−1|

The argument consists of a lower bound on
∑

u∈
⋃h

i=0 Bi
deg(u) and an upper bound on |M∪S′

k−1|.

13

(1) Lower bound on
∑

u∈
⋃h

i=0 Bi
deg(u).

By the Layering algorithm B0 = Sk, then we have
∑

u∈B0
deg(u) = dk.

For any vertex u ∈
⋃h

i=1Bi, deg(u) = k−1 by the time u was first added to some Bi. After that,
deg(u) could only decrease when we modify T by an augmenting sequence (w1, z1), · · · , (wt, zt)
where u = wj for some 1 ≤ j ≤ t. Since t ≤ ⌈1 + log1+ǫ n⌉, during a tree modification, at least

one vertex in Sk loses one degree and at most ⌈1+ log1+ǫ n⌉ vertices in
⋃h

i=1 Bi lose one degree
separately. As the total number of the degree loss in Sk is (d′k − dk), we have

∑

u∈
⋃h

i=1 Bi

deg(u) ≥ (k − 1)

h
∑

i=1

|Bi| − (d′k − dk)⌈1 + log1+ǫ n⌉

Since dk > (1− ǫ2

2 logn) · d
′
k, we get a lower bound on

∑

u∈
⋃h

i=0 Bi
deg(u),

∑

u∈
⋃h

i=0 Bi

deg(u) ≥ dk + (k − 1)

h
∑

i=1

|Bi| − (d′k − dk)⌈1 + log1+ǫ n⌉

≥ (k − 1)

h
∑

i=1

|Bi|+

(

1−
ǫ2

2 log n

)

d′k −
ǫ2

2 log n
(2 + log1+ǫ n)d

′
k

≥ (k − 1)

h
∑

i=1

|Bi|+

(

1−
3ǫ2

2 log n
−

ǫ

2

)

d′k

(2) Upper bound on |M |.

The argument is similar to (1). An unmarked vertex u is marked only when we modify T by
an augmenting sequence (w1, z1), · · · , (wt, zt) where u = zj for some 1 ≤ j ≤ t or u = wt. Since
t ≤ 1 + log1+ǫ n, during a tree modification, at least one vertex in Sk loses one degree and at
most 2 + log1+ǫ n unmarked vertices are marked. Then we get a upper bound on |M |.

|M | ≤ (d′k − dk)(2 + log1+ǫ n) ≤ ǫ · d′k

(3) Upper bound on |S′
k−1|.

First we claim
d′
k

d′
k−1

≥ 1
ǫ(k−1) when k ≥ 9 logn

ǫ2
− log n ≥ 8 logn

ǫ2
and n > 2ǫ. In the large-step

phase, the inequality holds since d′k ≥
1
2d

′
k−1. In the small-step phase, by maximality of ck ·|Nk|,

we have |Nk| ≥
1
c
· |Nk−1|. Then,

d′k
d′k−1

=

∑∆
i=k i|Ni|

∑∆
i=k−1 i|Ni|

>
k|Nk|

k|Nk|+ (k − 1)|Nk−1|
≥

1

1 + c(k−1)
k

>
1

c+ 1
≥

1

ǫ(k − 1)

The last inequality holds by c = 2 log1+ǫ n+4 ≤ 2 ln 2
ǫ

log n+4, k ·ǫ ≥ 8 logn
ǫ

and ǫ < log n ≤ logn
ǫ

.
Then we have the upper bound on |S′

k−1|:

|S′
k−1| ≤

d′k−1

k − 1
≤ ǫ · d′k

14

Summing up (1), (2), (3), for n > 2 and ǫ ∈ (0, 1
48), k ≥

9 logn
ǫ2
− log n, we have

∑

u∈
⋃h

i=0 Bi

deg(u)− 2
h
∑

i=0

|Bi|+ 2− |M ∪ S′
k−1|

≥

(

1−
3ǫ2

2 log n
− 2.5ǫ

)

· d′k + (k − 1)
h
∑

i=1

|Bi| − 2
h
∑

i=0

|Bi|+ 2

≥ (1− 2.6ǫ) · k|B0| − 2|B0|+ (k − 3)
h

∑

i=1

|Bi|+ 2

≥ k(1− 4ǫ) ·
h
∑

i=0

|Bi|+ 2

We apply Lemma 9, and conclude the proof

∆∗ ≥
k(1 − 4ǫ) ·

∑h
i=0 |Bi|+ 1

∑h+1
i=0 |Bi|

≥ k(1− 4ǫ) ·

∑h
i=0 |Bi|

∑h+1
i=0 |Bi|

In the following two statements, we combine all the inequalities for each Bh and get the upper
bound on ∆ with ∆∗ in both the large-step phase and the small-step phase.

Lemma 15. When a spanning tree T is returned within the large-step phase, it must be that
∆ ≤ (1 + 8ǫ) ·∆∗ for ǫ ∈ (0, 1

48).

Proof. Consider the most recent execution of AugSeqDegRed before returning. By the previ-
ous subsection, this instance of AugSeqDegRed has created a sequence of disjoint vertex subsets
B0, B1, · · · , B1+log1+ǫ n

that satisfy the blocking property. By the pigeon-hole principle, there ex-

ists an h such that
∑h

i=0 |Bi|
∑h+1

i=0 |Bi|
≥ 1

1+ǫ
. Then by Lemma 14, (recall that in the large-step phase

k > (1− 2ǫ)∆)

∆∗ ≥ k(1 − 4ǫ) ·
1

1 + ǫ
>

1− 6ǫ+ 8ǫ2

1 + ǫ
∆

or equivalently, ∆ ≤ 1+ǫ
1−6ǫ+8ǫ2

∆∗ < (1 + 8ǫ)∆∗ when ǫ ∈ (0, 1
48).

Lemma 16. When a spanning tree T is returned within the small-step phase, it must be that
∆ ≤ (1 + 6ǫ)∆∗ + log n for ǫ ∈ (0, 1

48).

Proof. Consider the most recent execution of AugSeqDegRed before returning. By the previ-
ous subsection, this instance of AugSeqDegRed has created a sequence of disjoint vertex subsets
B0, B1, · · · , B1+log1+ǫ n

that satisfies the blocking property. By the pigeon-hole principle, there

exists an h such that
∑h

i=0 |Bi|
∑h+1

i=0 |Bi|
≥ 1

1+ǫ
. Then by Lemma 14, (recall that in the small-step phase,

k > ∆− log n))

∆∗ ≥ k(1 − 4ǫ) ·
1

1 + ǫ
>

1− 4ǫ

1 + ǫ
(∆ − log n)

or equivalently, ∆ ≤ 1+ǫ
1−4ǫ∆

∗ + log n < (1 + 6ǫ)∆∗ + log n for ǫ ∈ (0, 1
48).

15

Now we can finish the proof of Theorem 1

Proof of Theorem 1. We claim that, for any constant ǫ ∈ (0, 16), the ImprovedMDST algorithm
computes a spanning tree with tree degree at most (1 + ǫ)∆∗ + 576

ǫ2
log n in O(1

ǫ7
m log7 n) time (by

resetting ǫ→ 8ǫ′ where ǫ′ is the ǫ in previous analysis).
By Lemma 11 and Lemma 12, we know the total running time of the ImprovedMDST algorithm

is bounded by O(1
ǫ7
m log7 n). The degree analysis is divided into three cases:

• If T is returned after the small-step phase, then ∆ < 576
ǫ2

log n for ǫ ∈ (0, 16).

• If T is returned during the large-step phase, by Lemma 15, ∆ ≤ (1 + ǫ) ·∆∗ for ǫ ∈ (0, 16).

• If T is returned during the small-step phase, by Lemma 16, ∆ ≤ (1 + 3ǫ
4)∆

∗ + log n for
ǫ ∈ (0, 16).

In summary, the ImprovedMDST algorithm computes a spanning tree with tree degree (1 +
ǫ)∆∗ + 576

ǫ2
log n in O(1

ǫ7
m log7 n) time.

References

[1] Nikhil Bansal, Rohit Khandekar, and Viswanath Nagarajan. Additive guarantees for degree-
bounded directed network design. SIAM Journal on Computing, 39(4):1413–1431, 2009.

[2] Kamalika Chaudhuri, Satish Rao, Samantha Riesenfeld, and Kunal Talwar. What would
Edmonds do? Augmenting paths and witnesses for degree-bounded MSTs. Lecture notes in
computer science, 3624:26, 2005.

[3] Yefim Dinitz. Algorithm for solution of a problem of maximum flow in networks with power
estimation. Soviet Math. Dokl., 11:1277–1280, 01 1970.

[4] Ted Fischer. Optimizing the degree of minimum weight spanning trees. Technical report,
Cornell University, 1993.

[5] Pierre Fraigniaud. Approximation algorithms for minimum-time broadcast under the vertex-
disjoint paths mode. AlgorithmsESA 2001, pages 440–451, 2001.

[6] Martin Fürer and Balaji Raghavachari. An NC approximation algorithm for the minimum
degree spanning tree problem. In Proc. of the 28th Annual Allerton Conf. on Communication,
Control and Computing, pages 274–281, 1990.

[7] Martin Fürer and Balaji Raghavachari. Approximating the minimum-degree Steiner tree to
within one of optimal. Journal of Algorithms, 17(3):409–423, 1994.

[8] Michel X Goemans. Minimum bounded degree spanning trees. In Foundations of Computer
Science, 2006. FOCS’06. 47th Annual IEEE Symposium on, pages 273–282. IEEE, 2006.

[9] Philip N Klein, Radha Krishnan, Balaji Raghavachari, and R Ravi. Approximation algorithms
for finding low-degree subgraphs. Networks, 44(3):203–215, 2004.

16

[10] Jochen Könemann and R Ravi. A matter of degree: Improved approximation algorithms for
degree-bounded minimum spanning trees. In Proceedings of the thirty-second annual ACM
symposium on Theory of computing, pages 537–546. ACM, 2000.

[11] Jochen Könemann and R Ravi. Primal-dual meets local search: approximating mst’s with
nonuniform degree bounds. In Proceedings of the thirty-fifth annual ACM symposium on Theory
of computing, pages 389–395. ACM, 2003.

[12] Radha Krishnan and Balaji Raghavachari. The directed minimum-degree spanning tree prob-
lem. In FSTTCS, volume 2245, pages 232–243. Springer, 2001.

[13] R Ravi. Rapid rumor ramification: Approximating the minimum broadcast time. In Foun-
dations of Computer Science, 1994 Proceedings., 35th Annual Symposium on, pages 202–213.
IEEE, 1994.

[14] R Ravi, Madhav V Marathe, SS Ravi, Daniel J Rosenkrantz, and Harry B Hunt III. Many birds
with one stone: Multi-objective approximation algorithms. In Proceedings of the twenty-fifth
annual ACM symposium on Theory of computing, pages 438–447. ACM, 1993.

[15] Mohit Singh and Lap Chi Lau. Approximating minimum bounded degree spanning trees to
within one of optimal. In Proceedings of the thirty-ninth annual ACM symposium on Theory
of computing, pages 661–670. ACM, 2007.

[16] Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search trees. Journal
of the ACM (JACM), 32(3):652–686, 1985.

[17] Robert Endre Tarjan. Efficiency of a good but not linear set union algorithm. J. ACM,
22(2):215–225, April 1975.

[18] Guohui Yao, Daming Zhu, Hengwu Li, and Shaohan Ma. A polynomial algorithm to com-
pute the minimum degree spanning trees of directed acyclic graphs with applications to the
broadcast problem. Discrete Mathematics, 308(17):3951–3959, 2008.

17

	1 Introduction
	1.1 Our results
	1.2 Related work

	2 Preliminary
	2.1 Boundary edge and boundary set

	3 A (1+)*+ O(12logn) Approximation
	3.1 Degree reduction via augmenting sequences
	3.2 Large-step phase and small-step phase

