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Abstract. We consider the Sherali-Adams (SA) refutation system to-
gether with the unusual binary encoding of certain combinatorial prin-
ciples. For the unary encoding of the Pigeonhole Principle and the Least
Number Principle, it is known that linear rank is required for refutations
in SA, although both admit refutations of polynomial size. We prove that
the binary encoding of the Pigeonhole Principle requires exponentially-
sized SA refutations, whereas the binary encoding of the Least Number
Principle admits logarithmic rank, polynomially-sized SA refutations.
We continue by considering a refutation system between SA and Lasserre
(Sum-of-Squares). In this system, the unary encoding of the Least Num-
ber Principle requires linear rank while the unary encoding of the Pi-
geonhole Principle becomes constant rank.

Keywords: Proof Complexity · Lift-and-Project Methods · Binary en-
coding

1 Introduction

It is well-known that questions on the satisfiability of propositional CNF formu-
lae may be reduced to questions on feasible solutions for certain Integer Linear
Programs (ILPs). In light of this, several ILP-based proof (more accurately, refu-
tation) systems have been suggested for propositional CNF formulae, based on
proving that the relevant ILP has no solutions. Typically, this is accomplished
by relaxing an ILP to a continuous Linear Program (LP), which itself may have
(non-integral) solutions, and then modifying this LP iteratively until it has a
solution iff the original ILP had a solution (which happens at the point the LP
has no solution). Among the most popular ILP-based refutation systems are
Cutting Planes [11, 6] and several proposed by Lovász and Schrijver [18].

Another method for solving ILPs was proposed by Sherali and Adams [22],
and was introduced as a propositional refutation system in [7]. Since then it has
been considered as a refutation system in the further works [9, 1]. The Sherali-
Adams system (SA) is of significant interest as a static variant of the Lovász-
Schrijver system without semidefinite cuts (LS). It is proved in [15] that the
SA rank of a polytope is less than or equal to its LS rank; hence we may claim
that SA is at least as strong as LS (though it is unclear whether it is strictly
stronger).
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Various fundamental combinatorial principles used in Proof Complexity may
be given in first-order logic as sentences ϕ with no finite models and in this
article we will restrict attention to those in Π2-form. Riis discusses in [21] how
to generate from prenex ϕ a family of CNFs, the nth of which encodes that
ϕ has a model of size n, which are hence contradictions. Following Riis, it is
typical to encode the existence of the witnesses to an existentially quantified
variable in longhand with a big disjunction, of the form Sa,1∨ . . .∨Sa,n, that we
designate the unary encoding. Here the arity of a is the number of universally
quantified variables preceding the existentially quantified variable, on which it
might depend.

As recently investigated in the works [10, 3, 4, 17, 13, 8], it may also be pos-
sible to encode the existence of such witnesses succinctly by the use of a binary
encoding. Essentially, the existence of the witness is now given implicitly as any
propositional assignment to the relevant variables Sa,1, . . . , Sa,logn, which we
call S for Skolem, gives a witness; whereas in the unary encoding a solitary true
literal tells us which is the witness. Combinatorial principles encoded in binary
are interesting to study for Resolution-type systems since they still preserve
the hardness of the combinatorial principle while giving a more succinct propo-
sitional representation. In certain cases this leads to obtain significant lower
bounds in an easier way than for the unary case [10, 4, 17, 8].

The binary encoding also implicitly enforces an at-most-one constraint at the
same time as it does at-least-one. When some big disjunction Sa,1 ∨ . . .∨Sa,n of
the unary encoding is translated to constraints for an ILP it enforces Sa,1 + . . .+
Sa,n ≥ 1. Were we to insist that Sa,1+. . .+Sa,n = 1 then we encode immediately
also the at-most-one constraint. We paraphrase this variant as being (the unary)
encoding with equalities or “SA-with-equalities”.

The Pigeonhole Principle (PHP), which essentially asserts that n pigeons
may not be assigned to n− 1 holes such that no hole has more than one pigeon,
and the Least Number Principle (LNP), which asserts that a partially-ordered
n-set possesses a minimal element, are ubiquitous in Proof Complexity. Typically
(and henceforth) we work under the same name with their negations, which are
expressible in (Π2) first-order logic as formulae with no finite models.

In [9] we have proved that the SA rank of (the polytopes associated with)
(the unary encoding of) each of the Pigeonhole Principle and Least Number
Principles is n− 2 (where n is the number of pigeons and elements in the poset,
respectively). It is known that SA polynomially simulates Resolution (see e.g.
[9]) and it follows there is a polynomially-sized refutation in SA of the Least
Number Principle. That there is a polynomially-sized refutation in SA of the
Pigeonhole Principle is noted in [20].

In this paper we consider the binary encodings of the Pigeonhole Principle
and the Least Number Principle as ILPs. We additionally consider their (unary)
encoding with equalities. We first prove that the binary encoding of the Pigeon-
hole Principle requires exponential size in SA. We then prove that the (unary)
encoding of the Least Number Principle with equalities has SA rank 2 and
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polynomial size. This allows us to prove that the binary encoding of the Least
Number Principle has SA rank at most 2 log n and polynomial size.

The divergent behaviour of these two combinatorial principles is tantalising
– while the Least Number Principle becomes easier for SA in the binary en-
coding (in terms of rank), the Pigeonhole Principle becomes harder (in terms of
size). Such variable behaviour has been observed for the Pigeonhole Principle in
Resolution, where the binary encoding makes it easier for treelike Resolution (in
terms of size) [8].

We continue by considering a refutation system SA+Squares which is be-
tween SA and Lasserre (Sum-of-Squares) [14] (see also [15] for comparison be-
tween these systems). SA+Squares appears as Static LS+ in [12]. In this system
one can always assume the non-negativity of (the linearisation of) any squared
polynomial. In contrast to our system SA-with-equalities, we see that the rank
of the unary encoding of the Pigeonhole Principle is 2, while the rank of the
Least Number Principle is linear. We prove this by showing a certain moment
matrix in positive semidefinite. Our rank results for the unary encoding can
be contrasted in Table 1. Owing to space restrictions, many of our proofs are
omitted.

unary case SA SA-with-equalities SA+Squares

PHP linear linear constant

LNP linear constant linear

binary case SA

PHP exponential

LNP polynomial

unary case SA SA-with-equalities SA+Squares

PHP [9] ([9]) Theorem 4 ([12])

LNP [9] Theorem 3 Theorem 5

binary case SA

PHP Theorem 2

LNP Corollary 2

Table 1. Rank based complexity for the unary encoding in different systems (on the
left) and size based complexity for the binary encoding (on the right). The lower table
shows where the corresponding result is proved.

2 Preliminaries

Let [m] be the set {1, . . . ,m}. Let us assume, without loss of much generality,
that n is a power of 2. Cases where n is not a power of 2 are handled in the
binary encoding by explicitly forbidding possibilities.

If P is a propositional variable, then P 0 = P indicates the negation of P ,
while P 1 indicates P . A term is a conjunction of propositional literals.

From a CNF formula F := C1 ∧ . . . ∧ Cr in variables v1, . . . , vm we generate
an ILP in 2m variables Zvλ , Z¬vλ (λ ∈ [m]). For literals l1, . . . , lt s.t. (l1∨ . . .∨ lt)
is a clause of F we have the constraining inequality

(2.1) Zl1 + . . .+ Zlt ≥ 1.

We also have, for each λ ∈ [m], the equalities of negation

(2.2) Zvλ + Z¬vλ = 1
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together with the bounding inequalities

(2.3) 0 ≤ Zvλ ≤ 1 and 0 ≤ Z¬vλ ≤ 1.

Let PF0 be the polytope specified by these constraints on the real numbers. It is
clear that this polytope contains integral points iff the formula F is satisfiable.
In general, PF0 is non-empty; in fact, if F is a contradiction that does not admit
refutation by unit clause propagation, this is the case (we may use unit clause
propagation to assign 0 − 1 values to some variables, thereafter assigning 1/2
to those variables remaining). Note that it follows that any unsatisfiable Horn
CNF F (i.e., where each clause contains at most one positive variable) has SA
rank 0, since F must then admit refutation by unit clause propagation (which
may be used to demonstrate PF0 empty).

Sherali-Adams (SA) provides a static refutation method that takes the poly-
tope PF0 defined by (2.1) − (2.3) and r-lifts it to another polytope PFr in∑r+1
λ=0

(
2m
λ

)
dimensions. Specifically, the variables involved in defining the poly-

tope PFr are Zl1∧...∧lr+1
(l1, . . . , lr+1 literals of F ) and Z∅. Let us say that the

term Zl1∧...∧lr+1
has rank r. Note that we accept commutativity and idempo-

tence of the ∧-operator, e.g. Zl1∧l2 = Zl2∧l1 and Zl1∧l1 = Zl1 . Also ∅ represents
the empty conjunct (boolean true); hence we set Z∅ := 1. For literals l1, . . . , lt,
s.t. (l1 ∨ . . . ∨ lt) is a clause of F , we have the constraining inequalities

(2.1′) Zl1∧D + . . .+ Zlt∧D ≥ ZD,

for D any conjunction of at most r literals of F . We also have, for each λ ∈ [m]
and D any conjunction of at most r literals, the equalities of negation

(2.2′) Zvλ∧D + Z¬vλ∧D = ZD

together with the bounding inequalities

(2.3′) 0 ≤ Zvλ∧D ≤ ZD and 0 ≤ Z¬vλ∧D ≤ ZD.

For r′ ≤ r, the defining inequalities of PFr′ are consequent on those of PFr .
Equivalently, any solution to the inequalities of PFr gives rise to solutions of the
inequalities of PFr′ , when projected on to its variables. If D′ is a conjunction of
r′ literals, then ZD∧D′ ≤ ZD follows by transitivity from r′ instances of (2.3′).
We refer to the property ZD∧D′ ≤ ZD as monotonicity. Finally, let us note that
Zv∧¬v = 0 holds in PF1 and follows from a single lift of an equality of negation.

The SA rank of the polytope PF0 (formula F ) is the minimal i such that PFi
is empty. Thus, the notation rank is overloaded in a consistent way, since PFi is
specified by inequalities in variables of rank at most i. The largest r for which
PFr need be considered is 2m − 1, since beyond that there are no new literals
to lift by. Even that is somewhat further than necessary, largely because, if the
conjunction D contains both a variable and its negation, it may be seen from
the equalities of negation that ZD = 0. In fact, it follows from [15] that the SA
rank of PF0 is always ≤ m− 1 (for a contradiction F ).
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The number of defining inequalities of the polytope PFr is exponential in r;
hence a naive measure of SA size would see it grow more than exponentially
in rank. However, not all of the inequalities (2.1′) − (2.3′) may be needed to
specify the empty polytope. We therefore define the SA size of the polytope PF0
(formula F ) to be the size (of an encoding) of a minimal subset of the inequalities
(2.1′)− (2.3′) of PF2m that specifies the empty polytope.

Let us now consider principles which are expressible as first-order formulae,
with no finite models, in Π2-form, i.e. as ∀~x∃~wϕ(~x, ~w) where ϕ(~x, ~w) is a formula

built on a family of relations ~R. For example the Least Number Principle, which
states that a finite partial order has a minimal element is one of such principles.
Its negation can be expressed in Π2-form as:

∀x, y, z∃w ¬R(x, x) ∧ (R(x, y) ∧R(y, z)→ R(x, z)) ∧R(x,w).

This can be translated into a unsatisfiable CNF using a unary encoding of the
witness, as shown below alongside the binary encoding.

LNPn : Unary encoding

P i,i ∀i ∈ [n]

P i,j ∨ P j,k ∨ Pi,k ∀i, j, k ∈ [n]

Si,j ∨ Pi,j ∀i, j ∈ [n]∨
i∈[n] Si,j ∀j ∈ [n]

LNPn : Binary encoding

P i,i ∀x ∈ [n]

P i,j ∨ P j,k ∨ Pi,k ∀i, j, k ∈ [n]∨
i∈[logn] S

1−ai
i,j ∨ Pj,a ∀j, a ∈ [n]

where a1 . . . alogn = bin(a)

Note that we placed the witness in the Skolem variables Si,x as the first argument
and not the second, as we had in the introduction. This is to be consistent with
the Pi,j and the standard formulation of LNP as the least, and not greatest,
number principle. A more traditional form of the (unary encoding of the) LNPn
has clauses

∨
i∈[n] Pi,j which are consequent on

∨
i∈[n] Si,j and Si,j ∨Pi,j (for all

i ∈ [n]).

Indeed, one can see how to generate a binary encoding of C from any combi-
natorial principle C expressible as a first order formula in Π2-form with no finite
models. Exact details can be found in definition 4 in [8].

As a second example we consider the Pigeonhole Principle which states that
a total mapping from [m] to [n] has necessarily a collision when m and n are
integers with m > n. The negation of its relational form for m = n + 1 can be
expressed as a Π2-formula as

∀x, y, z∃w ¬R(x, 0) ∧ (R(x, z) ∧R(y, z)→ x = y) ∧R(x,w)

where 0 represents the object that is among the [n+ 1] but not among the [n].
Its usual unary and binary propositional encoding are:
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PHPmn : Unary encoding∨n
j=1 Pi,j ∀i ∈ [m]

P i,j ∨ P i′,j ∀i 6= i′ ∈ [m], j ∈ [n]

PHPmn : Binary encoding∨logn
j=1 P

1−aj
i,j ∨

∨logn
j=1 P

1−aj
i′,j

∀a ∈ [n], i 6= i′ ∈ [m]

where a1 . . . alogn = bin(a)

where 0 no longer appears now m and n are explicit. Properly, the Pigeonhole
Principle should also admit S variables (as with the LNP) but one notices
that the existential witness w to the type pigeon is of the distinct type hole.
Furthermore, pigeons only appear on the left-hand side of atoms R(x, z) and
holes only appear on the right-hand side. For the Least Number Principle instead,
the transitivity axioms effectively enforce the type of y appears on both the left-
and right-hand side of atoms R(x, z). This accounts for why, in the case of
the Pigeonhole Principle, we did not need to introduce any new variables to
give the binary encoding, yet for the Least Number Principle a new variable S
appears. However, our results would hold equally were we to have chosen the
more complicated form of the Pigeonhole Principle. Note that our formulation
of the Least Number Principle is symmetric in the elements and our formulation
of the Pigeonhole Principle is symmetric in each of the pigeons and holes.

When we consider the Sherali-Adams r-lifts of, e.g., the Least Number Prin-
ciple, we will identify terms of the form ZPi,j∧Si′,j′∧... as Pi,jSi′,j′ . . .. Thus, we

take the subscript and use overline for negation and concatenation for conjunc-
tion. This prefigures the multilinear notation we will revert to in Section 5, but
one should view for now Pi,jSi′,j′ . . . as a single variable and not a multilinear
monomial.

Finally, we wish to discuss the encoding of the Least Number Principle and
Pigeonhole Principle as ILPs with equality. For this, we take the unary encoding
but instead of translating the wide clauses (e.g. from the LNP) from

∨
i∈[n] Si,x

to S1,x + . . . + Sn,x ≥ 1, we instead use S1,x + . . . + Sn,x = 1. This makes the
constraint at-least-one into exactly-one (which is a priori enforced in the binary
encoding). A reader who doesn’t wish to consult the long version of this paper
should consider the Least Number Principle as the combinatorial principle of
the following lemma.

Lemma 1. Let C be any combinatorial principle expressible as a first order
formula in Π2-form with no finite models. Suppose the unary encoding of C with
equalities has an SA refutation of rank r and size s. Then the binary encoding
of C has an SA refutation of rank at most r log n and size at most s.

Proof. We take the SA refutation of the unary encoding of C with equalities of
rank r, in the form of a set of inequalities, and build an SA refutation of the
binary encoding of C of rank r log n, by substituting terms Sx,a in the former
with Sa1x,1 . . . S

alogn
x,logn, where a1 . . . alogn = bin(a), in the latter. Note that the
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equalities of the form ∑
a1...alogn=bin(a)

Sa1x,1 · · ·S
alogn
x,logn = 1

follow from the inequalities (2.2’) and (2.3’). Further, inequalities of the form
Sa1x,1 . . . S

alogn
x,logn ≤ Px,a follow since Sx,jSx,j = 0 for each j ∈ [log n].

3 The lower bound for the binary Pigeonhole Principle

In this section we study the inequalities derived from the binary encoding of the
Pigeonhole principle. We first prove a certain SA rank lower bound for a version
of the binary PHP, in which only a subset of the holes is available.

Lemma 2. Let H ⊆ [n] be a subset of the holes and let us consider binary
PHPm|H| where each pigeon can go to a hole in H only. Any SA refutation of
binary PHPm|H| involves a term that mentions at least |H| pigeons.

The proof of the size lower bound for the binary PHPn+1
n then is by a stan-

dard random-restriction argument combined with the rank lower bound above.
Assume w.l.o.g that n is a perfect power of two. For the random restrictions
R, we consider the pigeons one by one and with probability 1/4 we assign the
pigeon uniformly at random to one of the holes still available. We first need to
show that the restriction is ”good” w.h.p., i.e. neither too big nor too small. The
former is needed so that in the restricted version we have a good lower bound,
while the latter will be needed to show that a good restriction coincides well
any reasonably big term, in the sense that they have in common a sufficiency of
pigeons. A simple application of a Chernoff bound gives the following

Fact 1 If |R| is the number of pigeons (or holes) assigned by R,

1. the probability that |R| < n
8 is at most e−n/32, and

2. the probability that |R| > 3n
8 is at most e−n/48.

So, from now on, we assume that n
8 ≤ |R| ≤

3n
8 . We first prove that a given

wide term, i.e. a term that mentions a constant fraction of the pigeons, survives
the random restrictions with exponentially small probability.

Lemma 3. Let T be a term that mentions at least n
2 pigeons. The probability

that T does not evaluate to zero under the random restrictions is at most
(
5
6

)n/16
.

Proof. An application of a Chernoff bound gives the probability that fewer than
n
16 pigeons mentioned by T are assigned by R is at most e−n/64. For each of these
pigeons the probability that a single bit-variable in T belonging to the pigeon is
set by R to zero is at least 1

5 . This is because when R sets the pigeon, and thus
the bit-variable, there were at least 5n

8 holes available, while at most n
2 choices

set the bit-variable to one. The difference is n
8 which divided by 5n

8 gives 1
5 . Thus

T survives under R with probability at most e−n/64 +
(
4
5

)n/16
<
(
5
6

)n/16
.
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Finally, we can prove that

Theorem 2. Any SA refutation of the binary PHPn+1
n has to contain at least(

6
5

)n/16 − 1 terms.

We now consider the so-called weak binary PHP, PHPmn , where m is po-
tentially much larger than n. The weak unary PHPmn is interesting because it
admits (significantly) subexponential-in-n refutations in Resolution when m is
sufficiently large [5]. It follows that this size upper bound is mirrored in SA.
However, as proved in [8], the weak binary PHPmn remains almost-exponential-
in-n for minimal refutations in Resolution. We will see here that the weak binary
PHPmn remains almost-exponential-in-n for minimally sized refutations in SA.
In this weak binary case, the random restrictions R above do not work, so we
apply quite different restrictions R′ that are as follows: for each pigeon select in-
dependently a single bit uniformly at random and set it to 0 or 1 with probability
of 1/2 each.

We can easily prove the following

Lemma 4. A term T that mentions n′ pigeons does not evaluate to zero under
R′ with probability at most e−n

′/2 logn.

Proof. For each pigeon mentioned in T , the probability that the bit-variable
present in T is set by the random restriction is 1

logn , and if so, the probability

that the bit-variable evaluates to zero is 1
2 . Since this happens independently

for all n′ mentioned pigeons, the probability that they all survive is at most(
1− 1

2 logn

)n′

.

Now, we only need to prove that in the restricted version of the pigeon-hole
principle, there is always a big enough term.

Lemma 5. The probability that an SA refutation of the binary PHPmn , for
m > n, after R′ does not contain a term mentioning n

2 logn pigeons is at most

e−n/32 log2 n.

We now proceed as in the proof of Theorem 2 to deduce that any SA refuta-
tion of the binary PHPmn must have size exponential in n.

Corollary 1. Any SA refutation of the binary PHPmn , m > n, has to contain
at least en/32 log2 n terms.

Proof. Assume for a contradiction, that there is a refutation with fewer terms of
rank at most n

2 logn . By lemma 4 and a union-bound, there is a specific restriction
that evaluates all these terms to zero. However, this contradicts lemma 5 .
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4 The Least Number Principle with equality

Recall that the unary Least Number Principle (LNPn) with equality has the
following set of SA axioms:

self : Pi,i = 0 ∀ i ∈ n
trans : Pi,k − Pi,j − Pj,k + 1 ≥ 0 ∀ i, j, k ∈ [n]

impl : Pi,j − Si,j ≥ 0 ∀ i, j ∈ [n]
lower :

∑
i∈[n] Si,j − 1 = 0 ∀ j ∈ [n]

Strictly speaking Sherali-Adams is defined for inequalities only. An equality ax-
iom a = 0 is simulated by the two inequalities a ≥ 0,−a ≥ 0, which we refer
to as the positive and negative instances of that axiom, respectively. Also, note
that we have used Pi,j + P i,j = 1 to derive this formulation. We call two terms
isomorphic if one term can be gotten from the other by relabelling the indices
appearing in the subscripts by a permutation.

Theorem 3. For n large enough, the SA rank of the LNPn with equality is at
most 2 and SA size at most polynomial in n.

Corollary 2. The binary encoding of LNPn has SA rank at most 2 log n and
SA size at most polynomial in n.

Proof. Immediate from Lemma 1.

5 SA+Squares

In this section we consider a proof system, SA+Squares, based on inequalities
of multilinear polynomials. We now consider axioms as degree-1 polynomials in
some set of variables and refutations as polynomials in those same variables.
Then this system is gotten from SA by allowing addition of (linearised) squares
of polynomials. In terms of strength this system will be strictly stronger than
SA and at most as strong as Lasserre (also known as Sum-of-Squares), although
we do not at this point see an exponential separation between SA+Squares and
Lasserre. See [14, 15, 2] for more on the Lasserre proof system and [16] for tight
degree lower bound results.

Consider the polynomial Si,jPi,j − Si,jPi,k. The square of this is

Si,jPi,jSi,jPi,j + Si,jPi,kSi,jPi,k − 2Si,jPi,jSi,jPi,k.

Using idempotence this linearises to Si,jPi,j + Si,jPi,k − 2Si,jPi,jPi,k. Thus we
know that this last polynomial is non-negative for all 0/1 settings of the variables.
A degree-d SA+Squares refutation of a set of linear inequalities (over terms)
q1 ≥ 0, . . . , qx ≥ 0 is an equation of the form

−1 =

x∑
i=1

piqi +

y∑
i=1

r2i (1)
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where the pi are polynomials with nonnegative coefficients and the degree of the
polynomials piqi, r

2
i is at most d. We want to underline that we now consider a

term like Si,jPi,jPi,k as a product of its constituent variables. This is opposed
to the preceding sections in which we viewed it as a single variable ZSi,jPi,jPi,k .
The translation from the degree discussed here to SA rank previously introduced
may be paraphrased by “rank = degree− 1”.

We show that the unary PHP becomes easy in this stronger proof system
while the LNP remains hard. The following appears as Example 2.1 in [12].

Theorem 4 ([12]). The unary PHPn+1
n has an SA + Squares refutation of

degree 2.

We give our lower bound for the unary LNPn by producing a linear function
v (which we will call a valuation) from terms into R such that

1. for each axiom p ≥ 0 and every term X with deg(Xp) ≤ d we have v(Xp) ≥
0, and

2. we have v(r2) ≥ 0 whenever deg(r2) ≤ d.
3. v(1) = 1.

The existence of such a valuation clearly implies that a degree-d SA+Squares
refutation cannot exist, as it would result in a contradiction when applied to
both sides of eq. (1).
To verify that v(r2) ≥ 0 whenever deg(r2) ≤ d we show that the so-called
moment-matrix Mv is positive semidefinite. The degree-d moment matrix is
defined to be the symmetric square matrix whose rows and columns are indexed
by terms of size at most d/2 and each entry is the valuation of the product of
the two terms indexing that entry. Given any polynomial σ of degree at most
d/2 let c be its coefficient vector. Then if Mv is positive semidefinite:

v(σ2) =
∑

deg(T1),deg(T2)≤d/2

c(T1)c(T2)v(T1T2) = c>Mvc ≥ 0.

(For more on this see e.g. [14], section 2.)
Recall that the unary Least Number Principle (LNPn) has the set of SA axioms
self, trans, impl but where the last axiom lower now has the form

∑
i∈[n] Si,j−1 ≥

0, for all j ∈ [n].

Theorem 5. There is no SA + Squares refutation of the unary LNPn with
degree at most (n− 3)/2.

An alternative formulation of the Least Number Principle asks that the order
be total, and this is enforced with axioms anti-sym of the form Pi,j ∨ Pj,i, or
Pi,j + Pj,i ≥ 1, for i 6= j ∈ [n]. Let us call this alternative formulation TLNP.
Ideally, lower bounds should be proved for TLNP, because they are potentially
stronger. Conversely, upper bounds are stronger when they are proved on the
ordinary LNP, without the total order. Looking into the last proof, one sees that
the lifts of anti-sym are satisfied as we derive our valuation exclusively from total
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orders. This is interesting because an upper bound in Lasserre of order
√
n is

known for TLNPn [19]. It is proved for a slightly different formulation of TLNPn
from ours, but we believe it is straightforward to translate it to our formulation.
Thus, Theorem 5, together with [19], shows a quadratic rank separation between
SA+Squares and Lasserre.

6 Conclusion

Our result that the unary encoding of the Least Number Principle with equalities
has SA rank 2 contrasts strongly with the fact that the unary encoding of the
Least Number Principle has SA rank n−2 [9]. Now we know the unary encoding
of the Pigeonhole Principle has SA rank n − 2 also. This leaves one wondering
about the unary encoding of the Pigeonhole Principle with equalities, which does
appear in Figure 1. In fact, the valuation of [9] witnesses this still has SA rank
n − 2 (and we give the argument in the long version of this paper). That is,
the Pigeonhole Principle does not drop complexity in the presence of equalities,
whereas the Least Number Principle does.
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