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Abstract

The fastest known classical algorithm deciding the k-colorability of n-vertex graph requires running
time Ω(2n) for k ≥ 5. In this work, we present an exponential-space quantum algorithm computing
the chromatic number with running time O(1.9140n) using quantum random access memory (QRAM).
Our approach is based on Ambainis et al’s quantum dynamic programming with applications of Grover’s
search to branching algorithms. We also present a polynomial-space quantum algorithm not using QRAM
for the graph 20-coloring problem with running time O(1.9575n). In the polynomial-space quantum
algorithm, we essentially show (4− ǫ)n-time classical algorithms that can be improved quadratically by
Grover’s search.
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Table 1: O(2d
∗

kn)-time quantum algorithms not using QRAM.

k d∗k 2d
∗

k

3 0.2051 1.1528
4 0.4039 1.3231
5 0.5553 1.4695
6 0.6099 1.5261
7 0.7234 1.6511
8 0.7299 1.6585

k d∗k 2d
∗

k

9 0.8041 1.7460
10 0.8298 1.7775
11 0.8298 1.7775
12 0.8676 1.8246
13 0.8874 1.8499
14 0.8938 1.8580

k d∗k 2d
∗

k

15 0.9488 1.9303
16 0.9488 1.9303
17 0.9488 1.9303
18 0.9536 1.9366
19 0.9690 1.9575
20 0.9691 1.9575

1 Introduction

Exhaustive search is believed to be (almost) the fastest classical algorithm for many NP-complete problems
including SAT, hitting set problem, etc [8]. Grover’s quantum search quadratically improves the running
time of exhaustive search [15]. Hence, the best classical running time for many NP-complete problems can be
quadratically improved by quantum algorithms. On the other hand, non-trivial faster classical algorithms are
known for some NP-complete problems including the travelling salesman problem (TSP), the graph coloring
problem, etc. For these problems, more complicated techniques, such as dynamic programming, arithmetic
algorithm based on inclusion–exclusion principle, etc., are used in the fastest known classical algorithms. It
is not obvious how to boost these classical algorithms by a quantum computer. Recently, Ambainis et al.
showed a general idea of quantum dynamic programming using quantum random access memory (QRAM)
and showed quantum speedup for many NP-hard problems including TSP, set cover, etc [1]. Ambainis et
al.’s work gives a new general method for exact exponential-time quantum algorithms.

In this work, we present exact exponential-time quantum algorithms for the graph coloring problem.
The fastest known classical algorithm computes the chromatic number of n-vertex graph with running time
poly(n)2n on the random access memory (RAM) model. The main result of this work is the following
theorem.

Theorem 1. There is an exponential-space bounded error quantum algorithm using QRAM for the chromatic
number problem with running time O∗

(
(237/3533/75−9/707−5/28)n

)
1 = O(1.9140n).

The quantum algorithm in Theorem 1 is based on Ambainis et al’s quantum dynamic programming for
TSP with applications of Grover’s search to Byskov’s algorithm enumerating all maximal independent sets
(MISs) of fixed size [7]. Byskov’s algorithm is not naive exhaustive search, but is a branching algorithm (also
referred as Branch & Reduce), for which Grover’s search can be applied [12]. While RAM is widely accepted
model of classical computation, QRAM is sometimes criticized due to the difficulty of implementation. In
this paper, we also present quantum algorithms not using QRAM.

Theorem 2. For k ≤ 20, there exists ǫ > 0 such that there is polynomial-space bounded error quantum
algorithms not using QRAM for the graph k-coloring problem with running time 2(1−ǫ)n.

Note that classical algorithms with running time 2(1−ǫ)n are known only for k = 3, 4 [2], [7]. Running
times of the quantum algorithms in Theorem 2 are shown in Table 1. For proving Theorem 2, we essentially
show classical algorithms with running time 4(1−ǫ)n that can be improved quadratically by Grover’s search.
These classical algorithms are obtained by generalizing Byskov’s techniques for reducing the graph k(≥ 4)-
coloring problem to the graph 3-coloring problem [7].

1.1 Related work

Since a graph is k-colorable if and only if the set of vertices can be partitioned into k independent sets, many
algorithms for the graph k-coloring problem use enumeration algorithms of independent sets. There is a

1In this paper, O∗(f(n)) means O(poly(n)f(n)).
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simple branching algorithm enumerating all MISs in time O∗(3n/3) = O(1.4423n) [11]. Lawler showed that
3-colorability can be decided in time O∗(3n/3) by enumerating all MISs and checking the bipartiteness of
the subgraph induced by the complement of each MIS [17]. Lawler also showed that the chromatic number
can be computed in time O(2.4423n) by a simple dynamic programming.

Beigel and Eppstein showed an efficient algorithm for the graph 3-coloring problem with running time
O(1.3289n) [2]. Byskov showed reduction algorithms from the graph k(≥ 4)-coloring problem to the graph
3-coloring problem [7]. By using Beigel and Eppstein’s graph 3-coloring algorithm, Byskov showed classical
algorithms for the graph 4-, 5- and 6-coloring problems with running time O(1.7504n), O(2.1592n) and
O(2.3289n), respectively. Fomin et al. showed an algorithm for the graph 4-coloring problem with running
time O(1.7272n) by using the path decomposition [10].

In 2006, Björklund and Husfeldt, and Koivisto showed an exponential-space O∗(2n)-time algorithm for
the chromatic number problem on the RAM model [3], [16]. These algorithms are based on the inclusion–
exclusion principle. They also showed that if there is a polynomial-space O∗(αn)-time algorithm counting
the number of independent sets, then there is a polynomial-space O∗((1 + α)n)-time algorithm computing
the chromatic number [3], [5]. Since the fastest known polynomial-space algorithm computes the number of
independent sets with running time O(1.2356n) [13], there is a polynomial-space O(2.2356n)-time algorithm
computing the chromatic number.

There is almost no previous theoretical work on quantum algorithms for the graph coloring prob-
lems. Fürer mentioned that Grover’s algorithm can be applied to branching algorithms so that Beigel
and Eppstein’s algorithm for the graph 3-coloring problem can be improved to running time O(

√
1.3289

n
) =

O(1.1528n) [12]. The quantum algorithms for Theorem 2 are basically obtained by applying Grover’s search
to generalized Byskov’s reduction algorithms on the basis of Fürer’s observation.

For general NP-hard problems, Ambainis et al. showed exponential-space exponential-time quantum
algorithms using QRAM for many NP-hard problems [1]. The quantum algorithm for Theorem 1 is based on
Ambainis et al’s algorithm for TSP with application of Grover’s search to Byskov’s algorithm enumerating
MISs of fixed size on the basis of Fürer’s observation.

1.2 Overview of quantum algorithms

1.2.1 Quantum algorithm for the chromatic number problem

Similarly to Ambainis et al.’s quantum algorithm for TSP, the quantum algorithm for Theorem 1 is a simple
divide-and-conquer algorithm with dynamic programming approach. The basic classical algorithm was shown
in [4, Proposition 3]. The chromatic number of a graph G is equal to a sum of the chromatic numbers of
G[S] and G[V \ S] for some non-empty S ( V unless G is one-colorable. If we can assume that S has size
exactly ⌊n/2⌋ or ⌈n/2⌉, then we can consider a classical algorithm that recursively finds S of size ⌊n/2⌋ or
⌈n/2⌉ minimizing χ(G[S]) + χ(G[V \ S]). Let T (n) be the running time of this algorithm. Then, it follows
T (n) =

(
n

⌊n/2⌋

)
(T (⌊n/2⌋)+T (⌈n/2⌉)) so that we can apply Ambainis et al’s quantum dynamic programming

straightforwardly and obtain O(1.7274n)-time quantum algorithm [1]. However, the balanced partition S
satisfying χ(G) = χ(G[S]) + χ(G[V \ S]) does not necessarily exist. Hence, we use the following useful fact.

Fact 1. Let a1, . . . , ak be positive integers, and n :=
∑k

i=1 ai. Assume that a1 ≥ ai for all i ∈ {1, 2, . . . , k}.
Then, for any m ∈ {1, 2, . . . , n−1}, there exists S ⊆ {2, 3, . . . , k} such that

∑
i∈S ai ≤ m and

∑
i∈{2,...,k}\S ai ≤

n−m− 1.

Proof. Let t := max
{
j ∈ {2, . . . , k} |

∑j
i=2 ≤ m

}
. Let S := {2, 3, . . . , t}. Then,

∑
i∈{t+1,t+2,...,k} ai ≤∑

i∈{1,t+2,t+3,...,k} ai = n−
∑

i∈{2,3,...,t+1} ai ≤ n−m+ 1.

From Fact 1, we can consider following quantum algorithm computing the chromatic number. First,
the algorithm precomputes the chromatic number of all induced subgraphs with size at most n/4. This
precomputation is based on Lawler’s formula

χ(G) = 1 + min
I∈MIS(G)

χ(G[V \ I]) (1)
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where MIS(G) denotes the set of all MISs of G [17]. There is a classical algorithm enumerating all MISs
with running time 3n/3. We will show in Section 3 that Grover’s search can be applied to this algorithm
so that the quantum algorithm can search all MISs with running time 3n/6. Here, computed chromatic
numbers are stored to QRAM. Hence, we can apply Grover’s search for computing the minimum in (1). The

precomputation requires the running time O∗
(∑n/4

i=1

(
n
i

)
3i/6

)
= O(1.8370n). Then, the main part of the

algorithm computes the chromatic number of G by using the formula

χ(G) = 1 + min
I∈MIS(G)

min
S⊆V \I, |S|≤n/2, |V \I\S|≤n/2

{χ(G[S]) + χ(G[V \ I \ S])}

for χ(G) ≥ 3. This formula is justified by Fact 1 for m = ⌊n/2⌋. At the third level, the number of vertices in
a graph is at most n/4. Hence, the chromatic number was precomputed and stored to QRAM. The running
time of the main part of the quantum algorithm is

O∗

(
3n/6

√(
n

n/2

)
3n/12

√(
n/2

n/4

))
= O(2.2134n).

Quantum algorithm for Theorem 1 searches all MISs of size t for each t ∈ {1, 2, . . . , n} separately. Then,
precise analysis shows that the running time of the improved quantum algorithm is O(1.9140n).

1.2.2 Quantum algorithms for the graph k-coloring problem

We will derive classical algorithms that can be improved quadratically by Grover’s search. In the classical
algorithms, the graph k-coloring problem is reduced to the graph k′-coloring problems for some k′ < k. Since
a graph G is k-colorable if and only if there exists a subset S of vertices such that G[S] is ⌊k/2⌋-colorable and
G[V \ S] is ⌈k/2⌉-colorable. Let us consider a classical algorithm that simply searches S ⊆ V satisfying the
above condition. Let Tk(n) be the running time of this algorithm for the graph k-coloring problem. Then,
Tk(n) satisfies

T1(n) = T2(n) = 1,

Tk(n) =

n∑

i=0

(
n

i

)
(T⌊k/2⌋(i) + T⌈k/2⌉(n− i))

where polynomial factors in n are ignored. Then, we obtain T4(n) = O∗(2n), T8(n) = O∗(3n) and T16(n) =
O∗(4n). Let us consider a quantum algorithm that uses Grover’s search for finding S. Let T ∗

k (n) be the

running time of the quantum algorithm. Then, it follows T ∗
k (n) =

∑n
i=0

√(
n
i

)
(T ∗

⌊k/2⌋(i) + T ∗
⌈k/2⌉(n − i)),

which implies T ∗
k (n) = O∗(

√
Tk(n)). Hence, we obtain T ∗

4 (n) = O(1.4143n), T ∗
8 (n) = O(1.7321n) and

T ∗
16(n) = O∗(2n). This yields a weaker version of Theorem 2 that is valid for k ≤ 8 rather than k ≤ 20.

1.3 Organization

In Section 2, notations and known classical and quantum algorithms are introduced. In Section 3, we present
details of quantum algorithm for branching algorithms. In Section 4, we prove Theorem 1. In Section 5, we
prove a weaker version of Theorem 2 that is valid for k ≤ 19 rather than k ≤ 20. Theorem 2 is obtained
by improving the quantum algorithms in Section 5. The details of the proof of Theorem 2 are shown in
Appendix B.

2 Preliminaries

2.1 Definitions and notations

For a finite vertex set V , a set E of edges consists of subsets of V of size two. A pair (V,E) of finite
vertex set V and a set E of edges is called an undirected simple graph. In this paper, we simply call a
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graph rather than an undirected simple graph. The number of vertices |V | is denoted by n. A mapping
c : V → {1, 2, . . . , k} is called k-coloring if c(v) 6= c(w) for all {v, w} ∈ E. For a graph G, the smallest k
such that there exists a k-coloring is called the chromatic number of G, and denoted by χ(G). A subset
I ⊆ V of vertices is called an independent set if {v, w} /∈ E for all v, w ∈ I. An independent set I is said
to be maximal if there is no strict superset of I that is an independent set. A maximal independent set of
size t is called t-MIS. For S ⊆ V , G[S] denotes a induced subgraph (S, {{v, w} ∈ E | v, w ∈ S}) of G. Let
h(δ) := −δ log δ − (1 − δ) log(1 − δ) for δ ∈ [0, 1] where 0 log 0 = 0. In this paper, the base of logarithm is
2. The notation g(n) = O∗(f(n)) means that g(n) = O(ncf(n)) for some constant c. For O∗(λn), we often
round λ up to the fourth digit after the decimal point. In this case, we can use O() rather than O∗(). For

example, we often write g(n) = O(1.4143n) rather than g(n) = O∗(2n/2). The notation g(n) = Õ(f(n))
means that g(n) = O((log f(n))cf(n)) for some constant c.

2.2 Known classical algorithm for enumerating all t-MISs

Byskov showed the following theorem.

Theorem 3 (Byskov [7]). The maximum number of t-MISs of n-vertex graphs is

I(n, t) := ⌊n/t⌋(⌊n/t⌋+1)t−n(⌊n/t⌋+ 1)n−⌊n/t⌋t.

Furthermore, there is a classical algorithm enumerating all t-MISs of n-vertex graph in time O∗(I(n, t)).

We can straightforwardly obtain the following lemma and corollary.

Lemma 2. For any constant δ ∈ (0, 1), I(n, ⌊δn⌋) = O(2E(δ)n) where

E(δ) := ((⌊δ−1⌋+ 1)δ − 1) log⌊δ−1⌋+ (1 − ⌊δ−1⌋δ) log(⌊δ−1⌋+ 1).

Here, E(δ) is concave (and hence, continuous) and piecewise linear for δ ∈ (0, 1). The maximum of E(δ) is
given at δ = 1/3.

Corollary 3. For any a ∈ R≥0 and t ∈ Z≥3, the maximum of E(δ)− aδ for δ ∈ [1/t, 1] is given at δ = 1/s
for some s ∈ {3, 4, . . . , t}.

2.3 Grover’s search

Here, Grover’s search is briefly introduced without using quantum circuit, unitary oracle, etc.

Theorem 4 (Grover [15], Boyer et al. [6]). Let A : {1, 2, . . . , N} → {0, 1} be a bounded-error quantum algo-
rithm with running time T . Then, there is a bounded-error quantum algorithm computing

∨
x∈{1,...,N} A(x)

with running time Õ(
√
NT ). If it is guaranteed that |A−1(1)| ≥M or |A−1(1)| = 0, then there is a bounded-

error quantum algorithm with running time Õ(
√
N/MT ).

Theorem 5 (Dürr and Høyer [9]). Let A : {1, 2, . . . , N} → {1, 2, . . . ,M} be a bounded-error quantum algo-
rithm with running time T . Then, there is a bounded-error quantum algorithm computing minx∈{1,...,N} A(x)

with running time Õ(
√
NT ).

2.4 QRAM

QRAM is the quantum analogue of RAM which can be accessed in a superposition [14]. QRAM has been
used in many quantum algorithms [1]. RAM is the memory that can be accessed in constant or logarithmic
time with respect to the memory size. For computing the minimum of f(x,W ) for all x ∈ {1, 2, . . . , N} where
W denotes a read-only RAM, we can replace RAM with QRAM and apply Grover’s search for computing
the minimum. Then, we obtain Õ(

√
NT )-time quantum algorithm where T denotes the running time for

computing f .
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3 Grover’s search for branching algorithms

Fürer mentioned that Grover’s search can be applied to branching algorithms [12]. Since the details of the
quantum algorithm were not explicitly described in [12], we will show the details in this section. A branching
algorithm is an algorithm which recursively reduce a problem into some problems of smaller parameters. We
now consider decision problems with ℓ parameters n1, n2, . . . , nℓ that are non-negative integers. If the
parameters are sufficiently small, we do not apply any branching rule and solve this problem in some way.
For a problem P with parameters n1, . . . , nℓ that are not sufficiently small, we choose a branching rule b(P )
such that P is reduced to mb(P ) problems P1, P2 . . . , Pmb(P )

of the same class. Here, Pi has parameters

f
b(P ),i
1 (n1), . . . , f

b(P ),i
ℓ (nℓ) for some function f

b(P ),i
j satisfying f

b(P ),i
j (nj) ≤ nj for i = 1, 2, . . . ,mb(P ) and

j = 1, 2, . . . , ℓ. At least one of the parameters of Pi must be smaller than the same parameter of P for all
i ∈ 1, 2, . . . ,mb(P ). The solution of P is true if and only if at least one of the solutions of P1, . . . , Pmb(P )

is true. Hence, we will call this algorithm OR-branching algorithm. For a problem P of this class, we can
consider a computation tree that represents the branchings of the reductions. The computation tree for P
is a single node if P has sufficiently small parameters so that any branching rule is not performed, and is a
rooted tree where children of the root node are the root nodes of the computation trees for P1, P2, . . . , Pmb(P )

if some branching rule b(P ) is applied to P . Let L(n1, . . . , nℓ) be the maximum number of leaves of the
computation tree for P with parameters n1, . . . , nℓ. Assume that the running time of the computation at

a non-leaf node, including computations of b(P ), Pi, and f
b(P ),i
j , is polynomial with respect to n1, . . . , nℓ.

Then, the total running time of the OR-branching algorithm is at most poly(n1, . . . , nℓ)L(n1, . . . , nℓ)T where
T is the running time for the computation at a leaf node. We can apply Grover’s search to OR-branching
algorithms if we have an upper bound of L(n1, . . . , nℓ) with some properties.

Lemma 4. Let U(n1, . . . , nℓ) be an upper bound of L(n1, . . . , nℓ) that can be computed in polynomial time
with respect to the parameters, and satisfies

U(n1, . . . , nℓ) ≥
mb∑

i=1

U(f b,i
1 (n1), . . . , f

b,i
ℓ (nℓ))

for any branching rule b. Then, there is a bounded-error quantum algorithm with running time poly(n1, . . . , nℓ)√
U(n1, . . . , nℓ)T .

Proof. If we can assign an integer s ∈ {1, 2, . . . , U(n1, . . . , nℓ)} to every leaf of the computation tree, and
can compute the corresponding leaf from given s in polynomial time with respect to the parameters, then,
we can apply Grover’s search for computing

a(P ) =
∨

Q∈W (P )

a(Q)

where a(P ) denotes the solution of a problem P and W (P ) denotes the set of all problems correspond-
ing to leaves of the computation tree for P . Then, we obtain quantum algorithm with running time
poly(n1, . . . , nℓ)

√
U(n1, . . . , nℓ)T [12]. The algorithm computing s-th leaf of a problem P is shown in Algo-

rithm 1. We will show the validity of Algorithm 1.

Proposition 5. For any problem Q that corresponds to a leaf node of the computation tree of a problem P
with parameters n1, . . . , nℓ, there exists s ∈ {1, 2, . . . , U(n1, . . . , nℓ)} such that Leaf(P, s) = Q.

Proof. The proof is an induction on the depth of the computation tree for P . If the computation tree for P
consists of a single node, then Algorithm 1 returns P . Assume that the proposition holds for any P with the
computation tree of depth at most d. We will consider a problem P with computation tree of depth d + 1.
Let i be the index of the branching at P that achieves Q. From the induction hypothesis, there exists s′ ∈
{1, . . . , U(f b,i

1 (n1), . . . , f
b,i
ℓ (nℓ))} such that Leaf(Pi, s

′) = Q. Let s := s′ +
∑i−1

j=1 U(f b,j
1 (n1), . . . , f

b,j
ℓ (nℓ)).

Then, Leaf(P, s) = Q. Here, s ≤∑mb

j=1 U(f b,j
1 (n1), . . . , f

b,j
ℓ (nℓ)) ≤ U(n1, . . . , nℓ).
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Algorithm 1 Algorithm computing s-th leaf of P

1: function Leaf(P , s)
2: if P is a leaf then return P
3: Compute the branching rule b← b(P )
4: for i ∈ {1, 2, . . . ,mb − 1} do
5: Compute Pi and its parameters n′

1, . . . , n
′
ℓ = f b,i

1 (n1), . . . , f
b,i
ℓ (nℓ)

6: if s ≤ U(n′
1, . . . , n

′
ℓ) then return Leaf(Pi, s)

7: else s← s− U(n′
1, . . . , n

′
ℓ)

8: return Leaf(Pmb
, s)

From Proposition 5 and a fact that Leaf(P, s) always returns a problem corresponding to one of the leaf
nodes for P , we obtain

a(P ) =
∨

s∈{1,...,U(n1,...,nℓ)}

a(Leaf(P, s)).

Since the depth of the computation tree for P is at most
∑ℓ

j=1 nj , the running time of Leaf(P, s) is
polynomial with respect to the parameters. Hence, there is a quantum algorithm computing a(P ) with
running time poly(n1, . . . , nℓ)

√
U(n1, . . . , nℓ)T .

For a problem P whose solution is an integer, we can also consider a branching algorithm satisfying
a(P ) = min

mb(P )

i=1 a(Pi) for children P1, . . . , Pmb(p)
of P . In this case, we will call this algorithm MIN-

branching algorithm. Similarly to OR-branching algorithm, we can apply Grover’s search to MIN-branching
algorithm from Theorem 5.

In this paper, we apply Lemma 4 to Byskov’s algorithm in Theorem 3. Byskov showed the upper bound
I(n, t) satisfying the conditions in Lemma 4 for the branching algorithm with two parameters n and t. Hence,
we can apply Grover’s search to Byskov’s algorithm in Theorem 3. Since

∑n
t=1 I(n, t) = O∗(3n/3), there is

a bounded-error quantum algorithm searching all MISs in time O∗(3n/6) as well.

4 Quantum algorithms for the chromatic number problem

The overview of the quantum algorithm was described in Section 1.2.1. The quantum algorithm for Theo-
rem 1 is shown in Algorithm 2. For computing the chromatic number of G[S], when MIS I of size t is chosen,
then we have to chose T ⊆ S \ I satisfying |T | ≤ |S|/2 and |S \ I \ T | ≤ |S|/2 as mentioned in Section 1.2.1.
This implies the condition |S|/2 − t ≤ |T | ≤ |S|/2. Hence, Algorithm 2 computes the chromatic number
correctly. By analyzing the running time of Algorithm 2, we obtain the following theorem.

Theorem 6. Algorithm 2 computes the chromatic number of n-vertex graph with running time O∗
(
(237/35

33/75−9/707−5/28)n
)
= O(1.9140n) with bounded error probability.

Proof. The running time of the precomputation is O∗
(∑⌊n/4⌋

i=1

(
n
i

)
3i/6

)
= O∗

(
2h(1/4)n3n/24

)
= O(1.8370n).

Let T1(n) be the running time of CHR1(V ) and T2(m) be the running time of CHR2(S) for S ⊆ V of size
m. Then, we obtain

T2(m) =

m∑

t=1

√
I(m, t)

⌊(m−t)/2⌋∑

s=max{⌈m/2⌉−t, 1}

√(
m− t

s

)
, (2)

T1(n) =

n∑

t=1

√
I(n, t)

⌊(n−t)/2⌋∑

s=max{⌈n/2⌉−t, 1}

√(
n− t

s

)
(T2(s) + T2(n− t− s))
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Algorithm 2 Algorithm computing the chromatic number of G. Grover’s search is used for mins.

1: function CHR(G)
2: if G is two colorable then return the chromatic number of G
3: χ[∅]← 0
4: for S ⊆ V, S 6= ∅, |S| ≤ ⌊n/4⌋ do (any order consistent with the inclusion relation)
5: χ[S]← 1 + minI∈MIS(G[S]){χ[S \ I]}
6: return CHR1(V )

7: function CHR1(S)
8: c← |S|
9: for t ∈ {1, . . . , |S|}, s ∈ {max{⌈|S|/2⌉ − t, 1}, . . . , ⌊(|S| − t)/2⌋} do

10: a← minI∈MIS(G[S]), |I|=tminT⊆S\I, |T |=s (CHR2(T ) +CHR2(S \ I \ T ))
11: c← min{c, a}
12: return c+ 1

13: function CHR2(S)
14: if G[S] is two colorable then return the chromatic number of G[S]

15: c← |S|
16: for t ∈ {1, . . . , |S|}, s ∈ {max{⌈|S|/2⌉ − t, 1}, . . . , ⌊(|S| − t)/2⌋} do
17: a← minI∈MIS(G[S]), |I|=tminT⊆S\I, |T |=s (χ[T ] + χ[S \ I \ T ])
18: c← min{c, a}
19: return c+ 1

≤
n∑

t=1

√
I(n, t)

min{⌊n/2⌋, n−t}∑

s=0

√(
n− t

s

)
T2(s) (3)

by ignoring polynomial factors in n. Here, T2(m) ≤ ∑m
t=1

√
I(m, t)2

m−t
2 whose exponent is equal to

maxδ∈[0,1] {(E(δ) + (1− δ))/2}. From Corollary 3, it is sufficient to take maximum among δ being an
inverse integer. Numerical calculation shows that the maximum is given at δ = 1/5 and hence T2(m) =
O∗(80m/10) = O(1.5500m). Hence, the exponent of T1(n) is equal to

max
δ∈[0,1/3], λ∈[0,1/2]

{
1

2
E(δ) +

1

2
h

(
λ

1− δ

)
(1− δ) +

(
1

10
log 80

)
λ

}
.

Here, we only consider maximum for t ≤ n/3 since I(n, t) is decreasing with respect to t for t ≥ n/3, and

since the another part
∑

s

√(
n−t
s

)
T2(s) in (3) is decreasing with respect to t. Numerical calculation shows

that the maximum is given at δ = 1/7, λ = 1/2. Hence, we obtain

T1(n) = O∗
((

71/142h(7/12)3/7801/20
)n)

= O∗
(
(237/3533/75−9/707−5/28)n

)
= O(1.9140n).

Careful readers may notice that the running time of the precomputation and the main computation are
not balanced. If the quantum algorithm precomputes the chromatic number of induced subgraphs with
size at most (1/4 + ǫ)n for some ǫ > 0, the precomputation and the main computation require more and
less running time, respectively (we can use Fact 1 for unbalanced m). By optimizing ǫ such that the both
running time are balanced, we may obtain improved running time. This idea improved the running time of
the quantum algorithm for TSP [1], but does not improve the running time of Algorithm 2. Equation (2)
is dominated by t = n/5 and s = (2/5)n. Equation (3) is dominated by t = n/7 and s = n/2. In order
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to exclude s = (2/5)n in the summation in (2), the chromatic number of induced subgraph with size at
most (3/10)n must be precomputed. However, the running time of the precomputation in this case is∑(3/10)n

i=1

(
n
i

)
3i/6 = Ω(1.9460n). Hence, the running time of quantum algorithm is not improved.

5 Quantum algorithms not using QRAM

5.1 Known classical algorithms for k-coloring problem

Beigel and Eppstein showed the fastest known classical algorithm for the graph 3-coloring problem.

Theorem 7 (Beigel and Eppstein [2]). There is a classical algorithm for the graph 3-coloring problem
with running time O∗((23/4934/49Λ24/49)n) = O(1.3289n) where Λ denotes the unique real positive root of
x5 − 2x− 2.

For larger k, Byskov showed reduction algorithms from the graph k-coloring problem to the graph 3-
coloring problem [7]. Since a graph G is k-colorable if and only if there exists an MIS I of size at least ⌈n/k⌉
such that G[V \ I] is (k − 1)-colorable, we obtain the following reduction algorithm.

Reduction algorithm 1 (Byskov [7], Lawler[17]). For each t ∈ {⌈n/k⌉, ⌈n/k⌉+ 1, . . . , n}, enumerate all
t-MISs. For each t-MIS I, the algorithm for the graph (k − 1)-coloring is performed to G[V \ I].

Let T
(1)
k (n) be the running time of an algorithm for the graph k-coloring problem using Reduction

algorithm 1. Then, it satisfies

T
(1)
k (n) =

n∑

t=⌈n/k⌉

I(n, t)T
(1)
k−1(n− t) (4)

for k ≥ 4 by ignoring a polynomial factor. By using Reduction algorithm 1 and Theorem 7, Byskov
obtained algorithms for the graph 4- and 5-coloring problems with running time O(1.7504n) and O(2.1592n),
respectively. Byskov also introduced another reduction algorithm. Here, we introduce it in a general form.
Since a graph G is k-colorable if and only if there exists a subset S of vertices of size at least ⌈nk′/k⌉ such
that G[S] is k′-colorable and G[V \ S] is (k − k′)-colorable for arbitrary k′ < k, we obtain the following
reduction algorithm.

Reduction algorithm 2 (Byskov [7], Lawler[17]). Fix k′ ∈ {2, 3, . . . , ⌊k/2⌋}. For each t ∈ {⌈nk′/k⌉, ⌈nk′/k⌉+
1, . . . , n}, enumerate all subsets of vertices of size t. For each subset S of vertices of size t, the algorithms
for the graph k′- and (k − k′)-coloring are performed to G[S] and G[V \ S], respectively.

Let T
(2)
k (n) be the running time of an algorithm for the graph k-coloring problem using Reduction

algorithm 2. Then, it satisfies

T
(2)
k (n) =

n∑

t=⌈nk′/k⌉

(
n

t

)(
T

(2)
k′ (t) + T

(2)
k−k′ (n− t)

)
(5)

for k ≥ 4 by ignoring a polynomial factor. Reduction algorithm 2 is a simple generalization of a reduction

algorithm in [7]. For k = 6, Reduction algorithm 2 with k′ = 3 gives T
(2)
6 (n) = O(2.3289n) while T

(1)
6 (n) =

O(2.5602n) [7].

5.2 Quantum algorithms not using QRAM

In this section, we present quantum algorithms not using QRAM, and prove a weaker version of Theorem 2
that is valid for k ≤ 19 rather than k ≤ 20. Theorem 2 is obtained by improving quantum algorithms
presented in this section. The improved quantum algorithm and the proof of Theorem 2 are shown in
Appendix B. Fürer mentioned that Grover’s search can be applied to Beigel and Eppstein’s algorithm.
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Lemma 6 (Fürer [12]). There is a bounded-error quantum algorithm not using QRAM for the graph 3-
coloring problem with running time O∗((23/4934/49Λ24/49)n/2) = O(1.1528n) where Λ denotes the unique real
positive root of x5 − 2x− 2.

The quantum algorithm in Lemma 6 is obtained by application of Lemma 4 to classical Beigel and
Eppstein’s algorithm in Theorem 7. On the other hand, Beigel and Eppstein also showed a very simple
randomized algorithm for the graph 3-coloring problem with running time O∗(2n/2) [2, Corollary 1]. This
randomized algorithm searches one of the 2n/2 solutions from 2n leaves in a quaternary computation tree
of depth n/2. From Theorem 4, we can apply Grover’s search to the randomized algorithm and obtain a
quantum algorithm with running time O∗(2n/4). The quantum algorithms for Theorem 2 reduce the graph k-
coloring problems to the graph 3-coloring problem. Theorem 2 can be obtained even if this simpler quantum
algorithm is used in place of the involved quantum algorithm in Lemma 6 although the exponents increase.
By applying Reduction algorithms 1 and 2 with Grover’s search, the following Theorem is obtained.

Theorem 8. Assume that there is a polynomial-space bounded-error quantum algorithm not using QRAM
for the graph 3-coloring problem with running time O∗(2f

∗

3 n) for some f∗
3 . Then, there is a polynomial-

space bounded-error quantum algorithm not using QRAM for the graph k-coloring problem with running
time O∗(2f

∗

kn) where

f∗
k := min

{
maxs∈{3,4,...,k}{(log s)/(2s) + (1 − 1/s)f∗

k−1},
min2≤k′≤⌊k/2⌋ maxδ∈[k′/k,1]

{
h(δ)/2 + max{δf∗

k′ , (1 − δ)f∗
k−k′}

}

for k ≥ 4.

Proof. We consider quantum algorithm using Reduction algorithms 1 and 2 with Grover’s search. Since we
can apply Lemma 4 to Byskov’s enumeration algorithm of t-MIS in Reduction algorithm 1, we obtain

T ∗
k (n) ≤

n∑

t=⌈n/k⌉

√
I(n, t)T ∗

k−1(n− t).

For Reduction algorithm 2, we can simply apply Grover’s search, and obtain

T ∗
k (n) ≤

n∑

t=⌈nk′/k⌉

√(
n

t

)(
T ∗
k′(t) + T ∗

k−k′(n− t)
)

for any k′ ∈ {2, . . . , ⌊k/2⌋}. Hence, by choosing the best reduction algorithm, we obtain quantum algorithms
with running time O∗(2F

∗

k n) where F ∗
3 = f∗

3 and

F ∗
k := min

{
maxδ∈[1/k,1]

{
E(δ)/2 + (1− δ)F ∗

k−1

}
,

min2≤k′≤⌊k/2⌋ maxδ∈[k′/k,1]

{
h(δ)/2 + max{δF ∗

k′ , (1− δ)F ∗
k−k′}

}

for k ≥ 4. Since E(δ) is decreasing for δ ≥ 1/3, we can assume that δ ≤ 1/3. From Corollary 3, it is sufficient
to take maximum among δ = 1/s for s ∈ {3, 4, . . . , k}. This proves F ∗

k = f∗
k .

By using Theorem 8 with f∗
3 = (3+4 log 3+24 logΛ)/98 ≤ 0.2051 or f∗

3 = 1/4, we obtain Theorem 2 for
k ≤ 19. In Table 2 in Appendix A, the values of f∗

k and best choices of k′ are shown for f∗
3 = (3 + 4 log 3 +

24 logΛ)/98. We summarize the quantum algorithm in Algorithm 3. It is easy to calculate the exponents
f∗
k efficiently and precisely. The details are explained in Appendix A. Note that if Grover’s search are not
used in Algorithm 3, we obtain classical algorithms with running time O∗(4f

∗

kn). By improving Algorithm 3,
we obtain Theorem 2. When Reduction algorithm 2 is applied, we can assume that k − k′ independent sets
in G[V \ S] are smaller than k′ independent sets in G[S]. Hence, we can use the average size |S|/k′ of k′
independent sets in G[S] as an upper bound of independent sets in G[V \ S]. This idea reduces the running
time of Algorithm 3 and gives Theorem 2. The details are shown in Appendix B.
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Algorithm 3 Algorithm for the k-colorability of G. Grover’s search is used for two
∨
s.

1: function COL(G, k)
2: if k ≤ 2 then return the k-colorability of G by a polynomial-time algorithm

3: if k = 3 then return the 3-colorability of G by Beigel and Eppstein’s algorithm with Grover’s search

4: if k ≤ 5 then

5: for t ∈ {⌈n/k⌉, . . . , n} do
6: if

∨
I∈MIS(G),|I|=tCOL(G[V \ I], k − 1) then return true

7: return false
8: Choose k′ depending on k from Table 2
9: for t ∈ {⌈nk′/k⌉, . . . , n} do

10: if
∨

S⊆V,|S|=tCOL(G[S], k′) ∧COL(G[V \ S], k − k′) then return true

11: return false
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A Calculations of the exponents f ∗k
Here, we consider calculations of the exponents f∗

k . This problem was not dealt in [1]. Fortunately, the
calculation of f∗

k is not difficult. Non-trivial part is the calculation of

max

{
max

δ∈[k′/k,1]
{h(δ)/2 + δf∗

k′}, max
δ∈[k′/k,1]

{h(δ)/2 + (1− δ)f∗
k−k′}

}

Here, the binary entropy function plus a linear function is a concave function. Hence, it is sufficient to find
a stationary point δ∗. For maximizing h(δ)/2 + δf∗

k′ , we need to find δ∗ ∈ [0, 1] such that

1

2
log

1− δ∗

δ∗
+ f∗

k′ = 0.

Since the left-hand side is monotonically decreasing, δ∗ can be approximated efficiently by the binary search.
If δ∗ < k′/k, then, δ = k′/k gives the maximum. The precise values of f∗

k and chosen k′ are shown in Table 2.
Here, k′ = 1 means that Reduction algorithm 1 is chosen.

11



B Improved quantum algorithm for k-coloring problems not using

QRAM

Theorem 9. Assume that there is a polynomial-space bounded-error quantum algorithm not using QRAM
for the graph 3-coloring problem with running time O∗(2f

∗

3 n) for some f∗
3 . Then, there is a polynomial-

space bounded-error quantum algorithm not using QRAM for the graph k-coloring problem with running
time O∗(2d

∗

k(1)n) where d∗3(µ) := f∗
3 for all µ ∈ [1/3, 1] and

d∗k(µ) := min





maxs∈{2,3,...,k}

{
(log s)/(2s) + (1 − 1/s)d∗k−1(1)

}
,

min2≤k′≤⌊k/2⌋ maxδ∈[k′/k,min{1,µk′}]

{
h(δ)/2

+max{δd∗k′(min{1, µ/δ}), (1− δ)d∗k−k′ (min{1, δ/(k′(1− δ))})}
}

for k ≥ 4 and µ ∈ [1/k, 1].

Proof. The quantum algorithms are almost same as those in Theorem 8. When we apply Reduction al-
gorithm 2, we check for all subsets S of vertices of size t whether G[S] is k′-colorable and G[V \ S] is
(k− k′)-colorable. Since we assume that S consists of k′ largest independent sets in a coloring, we can safely
assume that |S| ≥ ⌈nk′/k⌉. At the same time, we can assume that k − k′ independent sets in a coloring of
G[V \ S] have size at most ⌊t/k′⌋, which is the average size of independent sets in a coloring of G[S]. This
knowledge can be used for reducing the running time of quantum algorithms. We can consider a partial
function that outputs true if the given graph can be partitioned into k independent sets of size at most u,
outputs false if the given graph is not k-colorable, and outputs either of true or false for other cases. For
computing this partial function, we can restrict the size of S in Reduction algorithm 2. Since we only have to
consider independent sets of size at most u, we can assume that |S| is at most uk′ and at least n−u(k− k′).
We can assume that u is at least ⌈n/k⌉ since otherwise there is no solution. Then, ⌈nk′/k⌉ ≥ n− u(k− k′).
Hence, we can assume that |S| is at least ⌈nk′/k⌉ and at most min{n, uk′}. Let T ∗

k (n, u) denote the running
time of the quantum algorithm. Then, we obtain

T ∗
k (n, u) ≤

n∑

t=⌈n/k⌉

√
I(n, t)T ∗

k−1(n− t, n− t),

T ∗
k (n, u) ≤

min{n,uk′}∑

t=⌈nk′/k⌉

√(
n

t

)(
T ∗
k′(t,min{t, u}) + T ∗

k−k′(n− t,min{n− t, ⌊t/k′⌋})
)

for any k′ ∈ {2, 3, . . . , k}. Note that in Reduction algorithm 1, we cannot assume that enumerated MIS has
size at most u since size of MIS is not restricted. On the other hand, T ∗

k−1(n− t, n− t) in the first inequality
can be replaced by T ∗

k−1(n − t,min{t, u}). However, we do not apply this improvement since numerical
calculation show that this does not improve the exponents of running time for k ∈ {3, 4, . . . , 21} \ {13}. By
choosing the best reduction algorithms, we obtain T ∗

k (n, ⌊µn⌋) = O∗(2d
∗

k(µ)n).

By using Theorem 9 with f∗
3 = (3+4 log 3+24 logΛ)/98 or 1/4, we obtain Theorem 2. Table 1 shows the

values of d∗k(1). Here, k
′ may depend on u. However, even if k′ is determined only by k, the same exponents

are obtained. Chosen k′s are the same as those in Table 2 except for k′ = 7 for k = 17. We summarize the
quantum algorithm in Algorithm 4. The details of numerical calculation of d∗k(1) and their precise values are
shown in Appendix C. Finally, we introduce our ideas that failed to improve the running time. Similarly to
Theorem 9, we can assume that in Reduction algorithm 2, size of independent sets in a coloring of G[S] is
lower bounded by (n− t)/(k − k′), which is the average size of independent sets in G[V \ S]. However, this
idea could not improve the exponents in our numerical calculations. We also tried to use hybrid algorithms
of Reduction algorithms 1 and 2. We introduce a threshold s of size of independent sets. Then, Reduction
algorithms 1 and 2 are both applied on the assumptions that the size of the largest independent set in a
coloring is at least s + 1 and at most s, respectively. The threshold s is optimized so that running time of
Reduction algorithms are balanced. This algorithm failed to improve the running time as well.
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Algorithm 4 Algorithm for the k-colorability of G. If G can be partitioned into k independent sets of size
at most u, then return true. If G is not k-colorable, then return false. Otherwise, return either of true or
false. Grover’s search is used for two

∨
s

1: function COL(G, k, u)
2: if k ≤ 2 then return the k-colorability of G by a polynomial-time algorithm

3: if k = 3 then return the 3-colorability of G by Beigel and Eppstein’s algorithm with Grover’s search

4: if k ≤ 5 then

5: for t ∈ {⌈n/k⌉, . . . , n} do
6: if

∨
I∈MIS(G),|I|=tCOL(G[V \ I], k − 1, |V \ I|) then return true

7: return false
8: Choose k′ that depends on k from Table 2, but k′ = 7 for k = 17
9: for t ∈ {⌈nk′/k⌉, . . . ,min{n, uk′}} do

10: if
∨

S⊆V,|S|=tCOL(G[S], k′, u) ∧COL(G[V \ S], k − k′, ⌊t/k′⌋) then return true

11: return false

Table 3: Precise values of d∗k(1). For k ≤ 13, d∗k(1) = f∗
k .

k d∗k(1) 2d
∗

k(1) k′

13 0.8873694503 1.8498001987 6
14 0.8937052065 1.8579416667 6
15 0.9487955413 1.9302604739 7
16 0.9487955413 1.9302604739 7
17 0.9487955413 1.9302604739 7
18 0.9535113456 1.9365803294 8
19 0.9689936620 1.9574747012 8
20 0.9690025400 1.9574867472 8
21 1.0086631422 2.0120457954 9

C Calculations of the exponents d∗k(µ)

It is much more difficult to calculate d∗k(1) than f∗
k . Non-trivial part is the calculations of

max
{

max
δ∈[k′/k,min{1,µk′}]

{
h(δ)/2 + δd∗k′ (min{1, µ/δ})

}
,

max
δ∈[k′/k,min{1,µk′}]

{
h(δ)/2 + (1− δ)d∗k−k′ (min{1, δ/(k′(1− δ))})}

}
.

In the numerical calculations, the maximum for δ is taken for all δ ∈ {1/216, 2/216, . . . , 216/216}. Computed
d∗k(µ) is cached and reused. Then, we obtain d∗k(1) in Table 1.

As another heuristic way, we assume that the functions h(δ)/2 + δd∗k′ (min{1, µ/δ}) and h(δ)/2 + (1 −
δ)d∗k−k′ (min{1, δ/(k′(1−δ))}) are unimodal, which are functions with a single maximal. On this assumption,
we can apply the golden-section search for finding the maximum efficiently. Obtained approximations of d∗k(1)
are very close to those calculated by the first method. Hence, we believe that the golden-section search gives
very precise approximations of d∗k(1) which are shown in Table 3.

D Further improvements

Theorem 1 would be improved by the following idea. When we consider the partition of a graph G[V \ I] to
G[T ] and G[V \ I \ T ] for some T ⊆ V in Algorithm 2, we can assume that independent sets in a coloring
of G[V \ I \ T ] have size at least n− t− 2s since otherwise there exists more balanced partition. Hence, we
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can use algorithms for the graph ⌊(n− t− s)/(n− t− 2s)⌋-coloring problem in Section 5 for computing the
chromatic number of G[V \ I \ T ].
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