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Abstract

We study the popular randomized rumour spreading protocol push. Initially, a node in a
graph possesses some information, which is then spread in a round based manner. In each
round, each informed node chooses uniformly at random one of its neighbours and passes the
information to it. The central quantity to investigate is the runtime, that is, the number of
rounds needed until every node has received the information.

The push protocol and variations of it have been studied extensively. Here we study the
case where the underlying graph is complete with n nodes. Even in this most basic setting,
specifying the limiting distribution of the runtime as well as determining related quantities,
like its expectation, have remained open problems since the protocol was introduced.

In our main result we describe the limiting distribution of the runtime. We show that it
does not converge, and that it becomes, after the appropriate normalization, asymptotically
periodic both on the log2 n as well as on the lnn scale. In particular, the limiting distribution
converges only if we restrict ourselves to suitable subsequences of N, where simultaneously
log2 n−blog2 nc → x and lnn−blnnc → y for some fixed x, y ∈ [0, 1). On such subsequences
we show that the expected runtime is log2 n+ lnn+h(x, y)+ o(1), where h is explicitly given
and numerically | suph− inf h| ≈ 2 · 10−4.

This “double oscillatory” behaviour has its origin in two key ingredients that were also
implicit in previous works: first, an intricate discrete recursive relation that describes how the
set of informed nodes grows, and second, a coupon collector problem with batches of size n
that takes the lead when the protocol is almost finished. Rounding in the recursion introduces
the periodicity on the log2 n scale – as it is the case in many discrete systems – and rounding
in the batched problem is the source of the second periodicity.

1 Introduction
We consider the well-known and well-studied rumour spreading protocol Push. It has applications
in replicated databases [6], multicast [1] and blockchain technology [19]. Push operates on graphs
and proceeds in rounds as follows. In the beginning, one node has a piece of information. In sub-
sequent rounds each informed node chooses a neighbour independently and uniformly at random
and informs it. For a graph G = (V,E) with |V | = n and a node v ∈ V we denote by X(G, v) the
(random) number of rounds needed to inform all nodes, where at the beginning of the first round
only v knows the information. We call X(G, v) the runtime (on G with start node v). The most
basic case, and the one that we study here, is when G is the complete graph Kn. Since in that
case the initially informed node makes no difference, we will abbreviate X(Kn, v) = Xn for any
starting node v.

Related Work There are several works studying the runtime of push on the complete graph.
The first paper considering this protocol is by Frieze and Grimmett [12], who showed that with
high probability (whp), that is, with probability 1− o(1) as n→∞, that

Xn = log2 n+ lnn+ o(lnn).
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Moreover, they obtained bounds for (very) large deviations of Xn from its expectation. In [20],
Pittel improved upon the results in [12], in particular, he showed that for any f : N → R+ with
f = ω(1), whp,

|Xn − log2 n− lnn| ≤ f(n).
The currently most precise result in this context was obtained by Doerr and Künnemann [7],
who considered in great detail the distribution of Xn. They showed that Xn can be stochastically
bounded (from both sides) by coupon collector type problems. This gives a lot of control regarding
the distribution of Xn, and it allowed them to derive, for example, very sharp bounds for tail
probabilities. Apart from that, it enabled them to consider related quantities, as for example the
expectation of Xn. Among other results, their bounds on the distribution of Xn imply that

blog2 nc+ lnn− 1.116 ≤ E[Xn] ≤ dlog2 ne+ lnn+ 2.765, (1.1)

which pins down the expectation up to a constant additive term. Besides on complete graphs, push
has been extensively studied on several other graph classes. For example, Erdős-Rényi random
graphs [9, 10], random regular graphs and expander graphs [11, 18, 5]. More general bounds
that only depend on some graph parameter have also been derived, e.g. the diameter [9], graph
conductance [17, 3, 4, 13] and node expansion [4, 22, 15, 14].

Results In order to state our main result we need some definitions first. Set

g = g(1) : [0, 1]→ [0, 1], x 7→ xex−1 and g(i) : [0, 1]→ [0, 1], g(i) = g ◦ g(i−1), i ≥ 2.

As we will see later, the function g describes, for a wide range of the parameters, the evolution
of the number of uninformed nodes; in particular, if at the beginning of some round there are xn
uninformed nodes, then at the end of the same round there will be (roughly) g(x)n uninformed
nodes, and after i rounds there will be (roughly) g(i)(x)n uninformed nodes. This fact is not new
– at least for bounded i – and has been observed long ago, see for example [20, Lem. 2]. For x ∈ R
define the function

c(x) = −x+ lim
a→∞,a∈N

lim
b→∞,b∈N

−a+ b+ ln
(
g(b)(1− 2−a−x)

)
, (1.2)

whose actual meaning will become clear later. We will show that the double limit exists, so that
this indeed defines a function c : R→ R. Moreover, we will show that c is continuous and periodic
with period 1, that is, if we write {x} = x − bxc then c(x) = c({x}), and that (numerically)
| sup c − inf c| ≈ 10−9, cf. Figure 1. The Gumbel distribution will play a prominent role in our
considerations. We say that a real valued random variable G follows a Gum(α) distribution with
parameter α ∈ R, G ∼ Gum(α), if for all x ∈ R

P [G ≤ x] = e−e
−x−α

, x ∈ R.

Finally, let γ denote the Euler-Mascheroni constant. With all these ingredients we can now state
our main result, which specifies – see also below – the distribution of the runtime of push on the
complete graph.

Lemma 1.1. Let G ∼ Gum(γ). Then, as n→∞

sup
k∈N

∣∣∣P [Xn ≥ k]− P
[⌈
G+ log2 n+ lnn+ γ + c({log2 n})

⌉
≥ k

]∣∣∣ = o(1).

This lemma does not look completely innocent, and it actually has striking consequences. It
readily implies the following result, which establishes that the limiting distribution Xn is periodic
both on the log2 n and on the lnn scale. In order to formulate it, we need a version of the Gumbel
distribution where we restrict ourselves to integers only. More specifically, we say that a random
variable G follows a discrete Gumbel distribution, G ∼ dGum(α), if the domain of G is Z and

P [G ≤ k] = e−e
−k−α

, k ∈ Z.
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Figure 1: The function c(x) − c(0), c(0) ≈ 0.105, plotted for values of x between 0 and 2. The periodic
nature of the function and its small amplitude are evident.

Theorem 1.2. Let x, y ∈ [0, 1) and (ni)i∈N be a strictly increasing sequence of natural numbers,
such that log2 ni − blog2 nic → x and lnni − blnnic → y as i → ∞. Then in distribution, as
i→∞

Xni −
(
blog2 nic+ blnnic

)
→ dGum(−x− y − c(x)).

Some remarks are in place. First, it is a priori not obvious (at least it was not to us) that
subsequences as required in the theorem indeed exist. They do, and the fundamental reason for
this is that real numbers can be approximated arbitrarily well by rational numbers; we include a
short proof of the existence in the Appendix. Second, it is a priori not clear that x + c(x) is not
constant for x ∈ [0, 1). If it was constant, Theorem 1.2 would imply that the limiting distribution
of Xn is periodic on the lnn scale only. Although we didn’t manage to prove that x + c(x) is
not constant, we have stong numerical evidence that it indeed is not so. In particular, as we shall
also see later, the double limit in the definition of c converges exponentially fast and thus it is
not difficult to obtain accurate estimates for it and explicit error bounds. We leave it as an open
problem to study the behavior of c more accurately.

Our next result addresses moments of Xn. Bounds given in previous works, for example in [7],
guarantee that Xn− log2 n− lnn and all integer powers of it are uniformly integrable. This allows
us to conclude that the expectation and all of its moments also converge.

Theorem 1.3. Let x, y ∈ [0, 1) and (ni)i∈N be a strictly increasing sequence of natural numbers,
such that log2 ni−blog2 nic → x and lnni−blnnic → y as i→∞. Then for all k ∈ N, as i→∞

E
[(
Xni − (blog2 nic+ blnnic)

)k]→ E
[(
dGum(−x− y − c(x))

)k]
.

For x, y ∈ [0, 1) and a strictly increasing sequence of natural numbers (ni)i∈N such that {log2 ni} →
x and {lnni} → y Theorem 1.3 immediately implies that, as i→∞,

E
[
Xni

]
= log2 ni + lnni + h(x, y) + o(1),

where we abbreviated h(x, y) = E
[
dGum(−x− y − c(x))

]
− x− y, cf. Figure 2 for a visualization

of h. Similarly, to obtain an expression for the variance of the runtime, see that

Var[Xni ] = Var
[
Xni − (blog2 nic+ blnnic)

]
= E

[(
Xni − (blog2 nic+ blnnic)

)2]− E
[
Xni − (blog2 nic+ blnnic)

]2
3
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Figure 2: Let (ni)i∈N be a sequence of natural numbers such that {log2 ni} → x and {lnni} → y for
x, y ∈ [0, 1). The left figure shows the function h(x, y) (appearing in the expectation of Xni) for values of
x and y between 0 and 1. The right figure shows Var[Xni ] as a function of x, y.

and using Theorem 1.3, consequently

Var[Xni ] = E
[
dGum(−x− y − c(x))2

]
− E

[
dGum(−x− y − c(x))

]2
+ o(1).

To determine the expectation and variance of the runtime we need to consider various moments
of the discrete Gumbel distribution. To this end, let X be an integer valued random variable with
finite kth moment, then

E
[
Xk
]
=
∑
`∈Z

`kP [X = `] =
∑
`∈Z

`k
(
P [X ≤ `]− P [X ≤ `− 1]

)
,

and therefore, for all α ∈ R and k ∈ N,

E
[
dGum(α)k

]
=
∑
`∈Z

`k
(
e−e

−`−α
− e−e

−`−α+1
)
.

This sum converges exponentially fast, both for `→∞ and `→ −∞, and thus allows for effective
numerical treatment. In summary, improving (1.1), we get for all n ∈ N the numerical bounds

log2 n+ lnn+ 1.18242 ≤ E[Xn] ≤ log2 n+ lnn+ 1.18263,

as inf0≤x,y≤1 h(x, y) = 1.18242 . . . , sup0≤x,y≤1 h(x, y) = 1.18262 . . . and

1.7277 ≤ Var[Xn] ≤ 1.7289.

These numerical bounds are (essentially) best possible, see also Figure 2. Higher moments can be
estimated similarly.

Let us close this section with a final remark on the function c defined in (1.2), as this might
be helpful in future works. This function is defined as the limit of a sequence in two parameters
a, b; the main reason for this is its combinatorial origin, which will become apparent in the proofs.
However, all that is actually important is that b is large enough, in the sense that the difference
b− a → ∞ as a → ∞. So, if we write h for an integer function that diverges to infinity, then we
could define

d(x) = −x+ lim
a→∞,a∈N

h(a) + ln
(
g(a+h(a))(1− 2−a−x)

)
.

Then c(x) = d(x) (which we state without proof, as we do not need it here), and c can be
represented as a limit of an (one-dimesional) sequence.
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Outline In the next section we give an outline of the proof of our main results. At the beginning
of the rumour spreading process push is dominated by an exponential growth of the informed nodes
(Lemma 2.2). For the main part, where most nodes get informed, it closely follows a deterministic
recursion (Lemma 2.1) and at the end it is described by a coupon collector type problem (Lemma
2.3). Based on these lemmas we give the rigorous proof of our claims in Section 3. The proof to
these three important lemmas can also be found there, in Subsections 3.3-3.5. Subsections 3.6 and
3.7 contain all other proofs.

Further Notation Unless stated otherwise, all asymptotic behaviour in this paper is for n→∞.
Consider a graph G = (V,E). For t ∈ N0 (= N ∪ {0}) we denote by It ⊆ V the set of informed
nodes at the end of round t; in particular |I0| = 1. Analogously we write Ut = V \It for the set
of uninformed nodes. For an event A, we sometimes write PA[·] instead of P [· | A] to denote
the conditional probability and we write EA[·] = E[· | A]. If we condition on It, then we also
abbreviate P [· | It] = Pt[·] and E[· | It] = Et[·].

2 Proof Overview
Let us start the proof of Lemma 1.1 about the distribution of the runtime of push on Kn with a
simple observation, that is more or less explicit also in previous works. Note that as long as the
total number of pushes performed is o(

√
n), then whp no node will be informed twice – this is a

simple consequence of the famous birthday paradox. That is, whp as long as |It| = o(
√
n), every

node in It will inform a currently uninformed node and thus |It+1| = 2|It|. In particular, whp

|It0 | = 2t0 , where t0 := b0.49 · log2 nc. (2.1)

Soon after round t0 things get more complicated. We continue with a definition. Apart from the
functions g(i) defined in the previous section, we will also need the following functions. Set

f = f (1) : [0, 1]→ [0, 1], x 7→ 1− e−x(1− x) and f (i) : [0, 1]→ [0, 1], f (i) = f ◦ f (i−1), i ≥ 2.

Some elementary properties of f are: f is strictly increasing and concave, and f (b)(x) → 1 as
b→∞ for all x ∈ (0, 1]. Moreover, f (i)(x) = 1− g(i)(1− x) for all x ∈ [0, 1] and i ∈ N. It is also
not difficult to establish, see also [20] and Lemma 3.5 below, that f captures the behavior of the
expected number of informed nodes after one round of the protocol. Moreover, |It+1| is typically
close to f(|It|/n)n. Here we will need a more explicit qualitative control of how |It| behaves, since
our aim is to specify the limiting distribution. We show the following statement, which implies
that if we start in round t0 (set T = t0 in that lemma) then whp for all succeeding rounds t0 + t
the number of informed nodes is close to f (t)(|It0/n|)n.

Lemma 2.1. Let 0 < c < 0.49 and T ≥ c log2 n. Then

PT

[ ⋂
t∈N0

{∣∣|IT+t| − f (t) (|IT |/n)n
∣∣ ≤ n1−c/4}] = 1−O(n−c

2/10).

Thus, the key to understanding |It| is to understand how f behaves when iterated very many
times. Note that when the number of informed nodes is xn for some very small x, then the e−x
term in the definition of f can be approximated by 1− x and therefore f(x) ≈ 1− (1− x)2 ≈ 2x.
This crude estimate suggests that the number of informed nodes doubles every round as long as
there are only few informed nodes, and we know already that the doubling is perfect if xn = o(

√
n).

Our next lemma actually shows that the doubling continues to be almost perfect, as long as the
total number of nodes is not close to n.

Lemma 2.2. Let a, T ∈ N be such that 2−a < 0.1 and T ≤ b0.49 · log2 nc. Set t1 := blog2 nc − a.
Then ∣∣∣2t1 − f (t1−T )

(
2T /n

)
n
∣∣∣ ≤ 2−2a+1n.
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Combining the previous lemmas we have thus established that for any a ∈ N with 2−a < 0.1 whp

(1− 2−a+2) · 2t1 ≤ |It1 | ≤ 2t1 , t1 := blog2 nc − a. (2.2)

Here we can think of a being very large (but fixed) and then the two bounds are very close to
each other; in particular, |It1 | ≈ 2blog2 nc−a and thus It contains a linear number of nodes. Up to
that point we have studied the behaviour of the process up to time t1. Next we perform another b
steps, where again b is fixed. Applying Lemma 2.1 once more and using that f (b)(x) is increasing
and is less than 1 for x < 1 yields with room to spare that whp(

1− n−1/6
)
f (b)

(
(1− 2−a+2)2t1/n

)
≤ n−1 |It2 | ≤

(
1 + n−

1/6
)
f (b)

(
2t1/n

)
, t2 := t1 + b. (2.3)

In essence, this says that if we write x = log2 n − blog2 nc = {log2 n}, then (we begin getting
informal and obtain that)

|It2 | ≈ f (b)
(
2t1/n

)
n = f (b)

(
2−a−x

)
n, where t2 = blog2 nc − a+ b.

In particular, choosing a priori b large enough makes the fraction |It2 |/n arbitrarily close to 1, that
is, almost all nodes except for a tiny fraction are informed. All in all, up to time t2 we have very
fine control of the number of informed nodes, and we also see how the quantity {log2 n} slowly
sneaks in.

After time t2 the behavior changes once more. In this regime there is an interesting connection
to the well-known Coupon Collector Problem (CCP), which was also exploited in [7]. In order
to formulate the connection, note that the number of pushes that are needed to inform one
uninformed node, having N informed nodes, is (in distribution) equal to the number of coupons
needed to draw the (N+1)st distinct coupon. The CCP is very well understood, and it is a classic
result that, appropriately normalized, the number of coupons tends to a Gumbel distribution.
However, translating the number of required pushes to the number of rounds – the quantity we
are interested in – is not straightforward. In particular, the number of pushes in one round depends
on the current number of informed nodes. On the other hand, after round t2 there are n − o(n)
informed nodes, so that we may hope to approximate the remaining number of rounds with n−1
times the number of coupons in the CCP. The next lemma establishes the precise bridge between
the two problems. There, for two sequences of random variables (Xn)n∈N and (Yn)n∈N we write
Xn - Yn if there is a function h : N→ R+ with h = o(1) such that P [Xn ≥ x] ≤ P [Yn ≥ x]+h(n)
for all n ∈ N, x ∈ R; Xn % Yn is defined with “≥” instead of “≤”.

Lemma 2.3. Let G ∼ Gum(γ), b > 2a ∈ N and assume that ` ·n ≤ |Iblog2 nc−a+b| ≤ u ·n for some
`, u ∈ [0, 1). Then

Xn − blog2 nc+ a− b %
⌈
lnn+ ln

(
1

u
− 1

)
+ γ+

⌉
and

Xn − blog2 nc+ a− b -
⌈
lnn+ ln

(
1

`
− 1

)
+ ln

(
`

e`− e+ 1

)
+ γ +G

⌉
.

Note that the previous discussion guarantees that `, u in Lemma 2.3 are very close to 1 and very
close to each other. So, the term ln(`/(e`− e+ 1)) is very close to 0. We obtain that in distribution

Xn − blog2 nc+ a− b ≈
⌈
lnn+ ln

(
1

u
− 1

)
+ γ +G

⌉
, where u = f (b)

(
2−a−x

)
.

and equivalently with x = log2 n− blog2 nc

Xn ≈
⌈
log2 n+ lnn− a+ b+ ln

(
g(b)(2−a−x)

)
− x+ γ +G

⌉
. (2.4)

Here we now encounter the mysterious function c from (1.2). The next lemma collects some
important properties of it that will turn out to be very helpful.
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Lemma 2.4. The function

c(x) = lim
a→∞,a∈N

lim
b→∞,b∈N

−a+ b+ ln
(
g(b)(1− 2−a−x)

)
− x

is well-defined, continuous and periodic with period 1.

With all these facts at hand, the proof of Lemma 1.1 is completed by considering the random
variable on the right-hand side of (2.4); in particular, the dependence on y = lnn − blnnc arises
naturally. The complete details of the proof, which is based on Lemmas 2.1–2.3 and follows the
strategy outlined here can be found in Section 3 (together with the proofs of the lemmas).

As described in the introduction, apart from the limiting distribution we are interested in the
asymptotic expectation of the runtime. A key ingredient towards the proof of Theorem 1.3 is
uniform integrability, which can be shown by using the distributional bounds from [7]. Uniform
integrability is a sufficient condition that convergence in distribution also implies convergence of
the means.

Lemma 2.5 (uniform integrability). Let k ∈ N and set Yn := Xn−blog2 nc− blnnc. Then Y kn is
uniformly integrable, that is

lim
N→∞

sup
n∈N

E
[
|Yn|k

∣∣∣ 1[|Yn|k > N
]]

= 0.

3 Proof of the Main Result
In this section we complete the proof of Lemma 1.1 outlined in Section 2. Afterwards we give the
(short) proofs for Theorems 1.2 and 1.3.

3.1 Proof of Lemma 1.1
As the outline was indeed rigorous until (2.3) we take the proof up from there. Choose the
quantities a, b ∈ N such that 2a < b and recall that t1 = blog2 nc − a. Set furthermore for brevity

` =
(
1− n−1/6

)
f (b)

(
(1− 2−a+2)2t1/n

)
and u =

(
1 + n−

1/6
)
f (b)

(
2t1/n

)
.

Then (2.3) states that, for t2 = blog2 nc − a+ b,

` ≤ n−1 |It2 | ≤ u,

and Lemma 2.3 yields, for Yn = Xn − blog2 nc+ a− b, that

Yn -

⌈
lnn+ ln

(
1

`
− 1

)
+ ln

(
`

e`− e+ 1

)
+ γ +G

⌉
and

Yn %

⌈
lnn+ ln

(
1

u
− 1

)
+ γ +G

⌉
.

The next lemma establishes that both `, u tend to 1 as a gets large, and moreover that the difference
ln (1/`− 1)− ln (1/u− 1) can be made arbitrarily small. Its proof can be found in Subsection 3.7.

Lemma 3.1. For `, u defined as above, where b > 2a

lim
a→∞

sup
n∈N
| ln `| = lim

a→∞
sup
n∈N
| lnu| = lim

a→∞
sup
n∈N

∣∣∣∣ln( `

e`− e+ 1

)∣∣∣∣ = 0.

Furthermore,

lim
a→∞

sup
n∈N
| ln(1− `)− ln(1− u)| = 0.

7



Thus, as n→∞,

ln(1− u) = ln
(
1− f (b)

(
2t1/n

))
+ o(1) = ln

(
g(b)

(
1− 2−a−{log2 n}

))
+ o(1).

Let ε > 0. Lemma 3.1 readily implies that there are a0, n0 ∈ N such that for all a > a0 and
n > n0,

Yn %
⌈
lnn+ ln

(
g(b)

(
1− 2−a−{log2 n}

))
+ γ +G− ε

⌉
and similarly also

Yn -
⌈
lnn+ ln

(
g(b)

(
1− 2−a−{log2 n}

))
+ γ +G+ ε

⌉
.

Lemma 2.4 guarantees that there is an a1 ≥ a0 such that for all a ≥ a1∣∣∣ln(g(b) (1− 2−a−{log2 n}
))
− a+ b− (c({log2 n}) + {log2 n})

∣∣∣ ≤ ε.
Thus for all a > a1 and n > n0

Xn % dlog2 n+ lnn+ c({log2 n}) + γ +G− 2εe,

as well as

Xn - dlog2 n+ lnn+ c({log2 n}) + γ +G+ 2εe.

Thus we are left with getting rid of the ε terms in the previous equations. The following lemma
accomplishes exactly that and therefore implies the claim of Lemma 1.1. Its proof can be found
in Subsection 3.7.

Lemma 3.2. Let h : N→ R+ and G ∼ Gum(γ). Then

∀ε > 0 : Xn - dh(n) +G+ εe =⇒ Xn - dh(n) +Ge.

The respective statement also holds for “%”.

3.2 Proof of Theorems 1.2 and 1.3
Proof of Theorem 1.2. Recall that {z} = z − bzc, z ∈ R. Let (ni)i∈N be a strictly increasing
subsequence of N such that {log2 ni} → x and {lnni} → y. Substituting k = blog2 nic+ blnnic+
1 + t for any t ∈ Z we get that

P
[⌈
G+ log2 ni + lnni + γ + c({log2 ni})

⌉
≥ k

]
= P

[⌈
G+ log2 ni + lnni + γ + c({log2 ni})

⌉
≥ blog2 nic+ blnnic+ 1 + t

]
= P

[⌈
G+ {log2 ni}+ {lnni}+ γ + c({log2 ni})

⌉
> t
]

= P
[
G+ {log2 ni}+ {lnni}+ γ + c({log2 ni}) > t

]
.

Thus using Lemma 1.1, Lemma 2.4 and Lemma 3.2 we get that, as i→∞,

sup
t∈Z

∣∣∣P [Xni ≥ blog2 nic+ blnnic+ 1 + t
]
− P

[
G+ x+ y + γ + c(x) > t

]∣∣∣ = o(1).

Using the distribution function of G ∼ Gum(γ) we get

P
[
Xni ≥ blog2 nic+ blnnic+ 1 + t

] i→∞−→ 1− exp
(
− exp (−t+ x+ y + c(x))

)
,

that is,

P
[
Xni ≤ blog2 nic+ blnnic+ t

] i→∞−→ P (dGum(−x− y − c(x)) ≤ t).

8



Next we prove Theorem 1.3.

Proof of Theorem 1.3. Lemma 2.5 states that
(
Xn − blog2 nc − blnnc

)k is uniformly integrable
and Theorem 1.2 established its convergence in distribution to

(
dGum(−x−y−c(x))

)k. Together
this implies

E
[(
Xn − blog2 nc − blnnc

)k]→ E
[(
dGum(−x− y − c(x))

)k]
.

3.3 Proof of Lemma 2.1
The number of informed nodes, |It|, fulfils a so-called self-bounding property, for reference see [2].
One striking consequence thereof is the following bound.

Lemma 3.3 ([5]). For any t ∈ N,

Var
[
|It+1| | It

]
≤ E

[
|It+1| | It

]
.

This bound on the variance and Chebychev’s inequality ensure that the number of informed nodes
is highly concentrated around its expectation as soon as enough nodes are informed. Moreover,
even stronger concentration results are possible, as self-bounding functions admit exponential
concentration inequalities, see e.g. [2]. Here, Chebychev is sufficient for our application.

Lemma 3.4. Let 0 < c ≤ 1, let t0 ∈ N and assume that |It0 | ≥ nc. For t ∈ N and ε > 0 let Ct
denote the event that ∣∣|It+1| − Et[|It+1|]

∣∣ ≤ (Et[|It+1|])1/2+ε.

Then

Pt0

⋂
t≥t0

Ct

 = 1−O
(
n−cε

)
.

Proof. From [7, Corollary 3.2] it is known that for any r > 0

P
[
Xn ≥ dlog2 ne+ lnn+ 2.188 + r

]
≤ 2e−r.

Thus it suffices (with lots of room to spare) to show

Pt0

 ⋃
t0≤t≤log2 n

Ct

 = O
(
n−3cε/2

)
. (3.1)

By using Chebychev’s inequality and Lemma 3.3,

Pt
[
Ct
]
= Pt

[∣∣|It+1| − Et[|It+1|]
∣∣ > Et[|It+1|]1/2+ε

]
≤ Var[|It+1|]

Et[|It+1|]1+2ε
≤ Et[|It+1|]−2ε.

Since Et[|It+1|] ≥ |It+1| ≥ |It0 | the claim follows from (3.1) and the union bound.

Lemma 3.5 establishes a connection between the expected value of |It+1| and our previously defined
function f , see below Equation 2.1. This has also been observed (though not so precise) in [20]
and we include a quick proof for completeness.

Lemma 3.5. Let t ∈ N and n ≥ 3. Then

f(|It|/n)n ≤ Et|It+1|] ≤ f(|It|/n)n+ 5.

9



Proof. Each uninformed node u ∈ Ut remains uninformed if all |It| informed nodes do not push to
u. Since all these events are independent, we obtain that the probability that u remains uninformed
is (1− 1/(n− 1))|It|. Thus by linearity of expectation

Et[|It+1|] = |It|+
(
n− |It|

)(
1−

(
1− 1

n− 1

)|It|)
= n−

(
n− |It|

)(
1− 1

n− 1

)|It|
.

For a lower bound we use 1− x ≤ e−x and get

Et[|It+1|] ≥ n−
(
n− |It|

)
e−|It|/(n−1) ≥ n−

(
n− |It|

)
e−|It|/n = f(|It|/n)n.

For an upper bound we use 1− x ≥ e−x−x2

for all x ≤ 1/2

Et[|It+1|] ≤ n−
(
n− |It|

)
e−|It|/(n−1)−|It|/(n−1)

2

≤ n−
(
n− |It|

)
e−|It|/n exp

(
− 2|It|
(n− 1)2

)
and again using 1− x ≤ e−x

Et[|It+1|] ≤ n−
(
n− |It|

)
e−|It|/n

(
1− 2|It|

(n− 1)2

)
≤ f(|It|/n)n+ 5.

Lemma 3.6 is an auxiliary result that we use in the proof of Lemma 2.1. It shows that f is concave
and has decreasing derivative on the interval [0, 1], the stated property is a direct consequence.

Lemma 3.6. Let 0 < x1 ≤ x2 < 1. Then |f(x2)− f(x1)| ≤ (2− x1)e−x1(x2 − x1).

Proof. It is f ′(x) = (2−x)e−x and f ′′(x) = (x−3)e−x; in particular, f ′ is monotonically decreasing
and takes only positive values on [x1, x2]. Furthermore

max
x∈[x1,x2]

f ′(x) = (2− x1)e−x1

and therefore, as a direct consequence of the mean value theorem, we have

|f(x2)− f(x1)| ≤ (x2 − x1) max
x∈[x1,x2]

f ′(x) = (2− x1)e−x1(x2 − x1).

We state a simple corollary for later reference.

Corollary 3.7. Let i ∈ N and r, s ∈ [0, 1/2]. Then f (i)(r + s) ≤ f (i)(r) + 2is.

Having these lemmas as ingredients we can prove the main result of this subsection. Lemma 3.5
shows that the expectation of |It+1| is given by f(|It|/n)n and Lemma 3.4 shows that |It+1| is
closely concentrated around its expectation in (nearly) all rounds. To then prove that |It+τ | is
close to f (τ)(|It|/)n for any τ ∈ N we need to make sure that the errors in the concentration and
the approximation of the expectation are not blown up by repeated applications of f . We will
show that f can indeed increase the error in each step by a factor that can be as large as

√
2, but

luckily this only happens when |It+τ | = o(n) and thus the accumulated error will remain small
(as |It| nearly doubles in this regime).

Proof of Lemma 2.1. Let 0 < ε < c/10, and assume, with foresight, that n ≥ n0, where n0 satisfies
the inequalities √

2 + 10n−ε0 <
√
2 + ε and nc0 ≥ 25.
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As T ≥ c log2 n and because of (2.1), that is, |It| = 2t for all t ≤ b0.49 log2 nc, we have |IT | ≥ nc.
Consequently we can apply Lemma 3.4 and thus get with probability 1−O(n−cε)∣∣|It+1| − Et[|It+1|]

∣∣ ≤ Et[|It+1|]1/2+ε, for all t ≥ T . (3.2)

For the rest of this proof we assume that (3.2) holds. Set

αT+t = f (t)(|IT |/n), t ∈ N0.

We will first argue that ∣∣|It| − αtn∣∣ ≤ α1/2+ε
t n1/2+2ε

√
2 + ε

t−T
=: dt. (3.3)

for all t ≥ T such that dt ≤ n1−ε. Note that this is obviously true for t = T . For the induction
step we argue that ∣∣|It+1| − αt+1n

∣∣ ≤ α1/2+ε
t+1 n1/2+2ε

√
2 + ε

t+1−T
= dt+1. (3.4)

To see this, we use Lemma 3.5, (3.2) and the fact that |It+1| ≤ 2|It| (in this order) to obtain the
bound ∣∣|It+1| − f(|It|/n)n

∣∣ ≤ ∣∣|It+1| − Et[|It+1|]
∣∣+ 5 ≤ (2|It|)1/2+ε + 5.

Then we apply Lemma 3.6 to estimate the difference of f(|It|/n) and αt+1 = f(αt), and infer
from (3.3), using ex ≤ 1 + 2x for all 0 ≤ x ≤ 1, that∣∣f(|It|/n)n− αt+1n

∣∣ ≤ ∣∣|It| − αtn∣∣(2−min{αt, |It|/n}
)
e−min{αt,|It|/n}

≤ dt
(
2− αt + dt/n

)
e−min{αt,|It|/n}

≤ dt
(
2− αt

)
e−αt+dt/n + d2t/n

≤ dt(2− αt)e−αt + 5d2t/n.

All in all we have argued that for all t such that dt ≤ n1−ε∣∣|It+1| − αt+1n
∣∣ ≤ ∣∣|It+1| − f(|It|/n)n

∣∣+ ∣∣f(|It|/n)n− αt+1n
∣∣

≤ (2|It|)1/2+ε + 5 + dt(2− αt)e−αt + 5d2t/n

≤ 2(αtn+ dt)
1/2+ε + 5 + dt(2− αt)e−αt + 5dtn

−ε.

Our assumptions on ε and n imply that d1/2+εt ≤ dtn−ε. Moreover, αTn ≥ nc ≥ 25, and thus∣∣|It+1| − αt+1n
∣∣ ≤ 3(αtn)

1/2+ε + dt(2− αt)e−αt + 7dtn
−ε

≤ dt(2− αt)e−αt + 10dtn
−ε.

(3.5)

To understand (3.5) consider the auxiliary function

H(x) =

√
f(x)

x
− f ′(x)√

2
=

√
1− (1− x)e−x

x
− (2− x)e−x√

2
.

As (1 − x)e−x = 1 − 2x + O(x2) as x → 0 we have that limx→0(1 − (1 − x)e−x)/x = 2 and thus
limx→0H(x) = 0. Furthermore is H an increasing function on the interval [0, 1] as,

H ′ =
1

2

(
2(1− x)e−x

x2

)−1/2
+

(3− x)e−x√
2

≥ 0 for x ≤ 1.

Therefore H(x) ≥ 0 for all 0 ≤ x ≤ 1 and consequently, using αt+1 > αt,(
αt+1

αt

)1/2+ε

≥
(
αt+1

αt

)1/2

≥ (2− αt)e−αt√
2

.

11



Since dt = α
1/2+ε
t n1/2+2ε

√
2 + ε

t−T , applying the previous bound to (3.5) implies (3.4) for all
n ≥ n0, that is, all n such that

√
2 + 10n−ε <

√
2 + ε. This completes the induction step and the

proof of (3.3) is completed.
Actually our arguments yield also the following statement, which is stronger than (3.3) when

there are “many” informed nodes. In particular, for all t′ ∈ N such that (2 − αt′)e−αt′ < 1 − ε
Equation (3.5) also yields for all n ≥ n0∣∣|IT+t′ | − αT+t′n

∣∣ ≤ dt′ ⇒
∣∣|IT+t′+1| − αT+t′+1n

∣∣ ≤ dt′ ,
meaning that the absolute error does not increase any more after round t′. (Actually the error
decreases by a factor of at least ε after that round, but we do not need this.) To complete the
proof we show that we can choose t′ such that dt′ ≤ n1−c/4 and (2 − αt′)e−αt′ < 1 − ε. To this
end, consider

T ′ = blog2 nc − 4− T
and applying Lemma 2.2 to αT ′ yields

αT+T ′ = f (T
′)(|IT |/n) ≥ f (blog2 nc−4−T )

(
2T /n

)
≥ 2−4

(
1− 2−8+1

)
and furthermore, a simple computation yields that αT+T ′+5 ≥ 3/4. Thus

(2− αT+T ′+5)e
−αT+T ′+5 ≤ (2− 3/4)e−3/4 < 1− ε

and we set t′ := T ′ + 5. Moreover,

dt′ ≤ n1/2+2ε
√
2 + ε

t′ ≤ (2 + ε)n1/2+2ε+(1−c) log2(2+ε)/2.

Note that log2(2 + ε) ≤ 1 + ε. Plugging this into the exponent yields that if ε < c/10 and n is
large enough then dt′ ≤ n1−c/4(≤ n1−ε), as claimed.

3.4 Proof of Lemma 2.2
We begin with showing the basic inequality

2x(1− x) ≤ f(x) ≤ 2x. (3.6)

To see this, note that e−x ≤ 1− x+ x2/2 for x ∈ [0, 1] and so

f(x) = 1− e−x(1− x) ≥ 1−
(
1− x+

x2

2

)
(1− x) ≥ x

(
2− 3

2
x

)
≥ 2x− 2x2,

which establishes the first inequality in (3.6). The other inequality follows directly from the simple
bound e−x ≥ 1− x.

Let us write z0 = 2t0/n and zi = f(zi−1) = f (i)(z0); we want to bound zt1−t0 , where t1 =
blog2 nc − a and t0 ≤ b0.49 log2 nc. Clearly zi ≤ 2iz0, which shows the upper bound in Lemma
2.2. Using (3.6) we obtain by induction

zi ≥ 2iz0 ·
i−1∏
j=0

(1− 2jz0), i ∈ N.

Further, using the bound 1− x ≥ e−x−x2/2(1−x), valid for any x ∈ [0, 1) we obtain

zi ≥ 2iz0 · exp

−z0 ∑
0≤j<i

2j − z20
∑

0≤j<i

4j

2(1− 2jz0)


Note that our assumptions guarantee that 2t1−t0z0 = 2−a < 0.1, and so for any 1 ≤ i ≤ t1 − t0

zi ≥ 2iz0 · exp
{
−2iz0 − (2iz0)

2
}
≥ 2iz0 · (1− 2−a − 2−2a).

Finally note that 1 − y − y2 ≥ 1 − 2y for any y ∈ [0, 1], and so the last term is bounded by
2iz0 · (1− 2−2a+1), which coincides with the lower bound claimed in Lemma 2.2.
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Corollary 3.8. For all x ∈ [0, 1] and i ∈ N

2ix
(
1− 2ix− 22ix2

)
≤ f (i)(x) ≤ 2ix.

3.5 Proof of Lemma 2.3
A main tool in the fortcoming proof is the following result, which states that a sum of normalized
independent geometric random variables converges to a Gumbel distributed random variable.

Theorem 3.9 ([8]). Let T1, . . . , Tn−1 be independent random variables such that Ti ∼ Geo((n −
i)/(n− 1)) for 1 ≤ i < n. Then, in distribution

n−1
∑

1≤i<n

(
Ti − E[Ti]

)
→ Gum(γ).

Unfortunately we can not apply directly Theorem 3.9 to our setting, as we will have to deal with a
sum of independent geometric random variables that are not normalized with the ‘correct’ factor
n−1. However, the next well-known statement assures that if the error is small enough we will
still converge to the same limiting distribution

Theorem 3.10 (Slutsky’s Theorem, see, e.g., [23, p. 19]). Let (Xn)n∈N, (Yn)n∈N and (Zn)n∈N
be sequences of real-valued random variables. Suppose that Xn → X in distribution and that there
are constants a, b ∈ R such that Yn → a and Zn → b in probability. Then YnXn + Zn → aX + b
in distribution.

We now show a more general version of Theorem 3.9 that is applicable to our setting.

Lemma 3.11. Let T1, . . . , Tn−1 be independent random variables such that Ti ∼ Geo((n− i)/(n−
1)) for 1 ≤ i < n. Let furthermore ε > 0 and s : N → [1, n] be a function such that s(n − i) ≥(
1− o(1)

)
(n− c · i) for any positive integer i < εn. Then, in distribution

∑
(1−ε)n≤i<n

Ti − E[Ti]
s(i)

→ Gum(γ).

Proof. Let Di = Ti − E[Ti] be the centralised version of Ti. Then

∑
(1−ε)n≤i<n

Di

s(i)
=
∑

1≤i<n

Di

n
−

∑
1≤i<(1−ε)n

Di

n
+

 ∑
(1−ε)n≤i<n

Di

s(i)
−

∑
(1−ε)n≤i<n

Di

n

 .

A direct applicaition of Theorem 3.9 guarantees that the first sum converges to Gum(γ) in distri-
bution. To complete the proof it is sufficient to argue that in probability∑

1≤i<(1−ε)n

Di

n
→ 0 and

∑
(1−ε)n≤i<n

(
Di

s(i)
− Di

n

)
→ 0, (3.7)

from which the claim in the lemma follows immediately from Theorem 3.10. Since the Di’s are
centralised

E

 ∑
1≤i<(1−ε)n

Di

n

 = 0,

and using that Var[Ti] =
(
(n− 1)(i− 1)

)
/(n− i)2 for all i < n

Var

 ∑
1≤i<(1−ε)n

Di

n

 =
∑

1≤i<(1−ε)n

Var[Ti]
n2

=
∑

1≤i<(1−ε)n

1

n2
(n− 1)(i− 1)

(n− i)2
≤

∑
1≤i<(1−ε)n

1

(εn)2
= o(1).
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Thus Chebychev’s inequality directly implies that∑
1≤i<(1−ε)n

Di

n
→ 0 in probability.

It remains to treat the second term in (3.7). We compute the variance as before

Var

 ∑
(1−ε)n≤i<n

Di

s(i)
− Di

n

 =
∑

(1−ε)n≤i<n

( 1

s(i)
− 1

n

)2 (n− 1)(i− 1)

(n− i)2
≤

∑
1≤i≤εn

( 1

s(n− i)
− 1

n

)2n2
i2
.

However, this is also o(1), as s(n− i) ≥
(
1− o(1)

)
(n− c · i) for all integers i ≤ εn by assumption,

and therefore

0 ≤ 1

s(i)
− 1

n
≤ 1

(1 + o(1))(n− c · i)
− 1

n
= (1 + o(1))

c · i+ o(n)

n2
, i ≤ εn.

In summary we have shown that

Var

 ∑
(1−ε)n≤i<n

(
Di

s(i)
− Di

n

) = o(1) and clearly E

 ∑
(1−ε)n≤i<n

(
Di

s(i)
− Di

n

) = 0.

Thus Chebychev’s inequality implies also the second statement in (3.7) and the proof is complete.

A further ingredient that we shall exploit is the following fact. If a sequence of random variables
Xn → X in distribution with distribution functions Fn → F and if F is continuous everywhere,
then the convergence of Fn to F is even uniform.

Theorem 3.12 (Polya’s Theorem, [21, Theorem 1]). For each n ∈ N let Xn be a real-valued
random variable with distribution function Fn. Assume that Xn → X in distribution. If X has
continuous distribution function F , then

lim
n→∞

sup
x∈R
|Fn(x)− F (x)| = 0.

We need one more auxiliary lemma that gives an upper bound on the informed nodes when
going one round backwards in order to later convert the number of Coupons into the number
of rounds that are needed to finish the protocol. Appropriately, Lemma 3.4 assures that in all
rounds the number of informed nodes is tightly concentrated around its expectation, which in turn
is described by f , thus applying f−1 will give a good bound.

Lemma 3.13. Let t0 ∈ N and 0 < ε < 1/6. Let Ct be the event that
∣∣|It+1| − Et[|It+1|]

∣∣ ≤
(Et[|It+1|])1/2+ε, as given in Lemma 3.4. Then for n large enough the event

⋂
t≥t0 Ct implies for

all t ≥ t0
|It| ≥

(
1− n−1/3

)
· e ·

(
|It+1| − (1− 1/e)n

)
.

Proof. Lemma 3.5 and Ct together give that

|It+1| ≤ Et[|It+1|]|+ (Et[|It+1|])1/2+ε = f(|It|/n)n+ o
(
n2/3

)
.

Using the definition of f(x) = 1− (1− x)e−x and that |It| ≤ n for all t we get that

|It+1| ≤ n− e−|It|/n(n− |It|) + o
(
n2/3

)
≤ (1− 1/e)n+ |It|/e+ o

(
n2/3

)
.

Rearranging yields the claimed statement.
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Let us briefly outline the proof of Lemma 2.3. We have already shown bounds for the number
of informed nodes after blog2 nc − a + b rounds in (2.3). Starting from these bounds we will use
the Coupon Collector Problem to compute the number of pushes that are needed to inform all
remaining uninformed nodes. This will yield sums of independent geometric random variables
(one summand for each uninformed node). Using Lemma 3.13 we will translate these numbers of
pushes into numbers of rounds, which results in an almost correctly normalised sum of geometric
random variables that Lemma 3.11 assures to converge to a Gumbel distribution. We will end up
with upper and lower bounds to the distribution function of push.

Proof of Lemma 2.3. In this proof we will establish a connection between the Coupon Collector
Problem and the behavior of push. Let v ∈ V be the node that was initially informed. Instead
of every informed node choosing one of its neighbours uniformly at random, we now assume that
it samples one node in V \ {v} uniformly at random. This defines an equivalent model, as for all
u ∈ V the probability to choose any specific node in V \{u, v} does not change (it equals 1/(n−1)
in both models) and choosing u or v makes no difference for the distribution of the set of informed
nodes. Thus push is the same as drawing coupons out of a pool of n − 1 different coupons, but
doing so in batches with size being the number of distinct coupons already collected plus one,
the ‘plus one’ representing the initially informed node v. It is widely known and easy to see that
assuming 1 ≤ i ≤ n− 1 coupons (including v) have already been collected, then

Ti ∼ Geo
(
n− i
n− 1

)
, 1 ≤ i ≤ n− 1. (3.8)

describes the number of coupons one needs to draw in order to draw the next, (i+1)st new, distinct
coupon. Thus in order to collect all n coupons one needs to draw

∑n−1
i=1 Ti coupons, where the

summands are independent random variables. However, we are not particularly interested in
the total number of coupons drawn, but in the number of batches needed. If a batch has size
s ≤ n − 1, then this batch is worth s coupons, or vice versa, each coupon drawn in this batch is
worth 1/s batches. Thus we need to estimate the size of the batch that contained all coupons that
were needed to draw the (i+ 1)st distinct coupon, or if these coupons were contained in multiple
batches, then we bound all those involved – we call these batches the batches that are linked
to i+ 1. Let Li be the smallest and Ui the largest size of a batch linked to the (i+ 1)st coupon.
Then certainly Ui ≤ i, as at the time that the (i + 1)st distinct coupon gets collected there are
obviously at most i distinct collected coupons. Using our assumption ` · n ≤ |Iblog2 nc−a+b| ≤ u · n
we thus obtain 

n−1∑
i=bunc

Ti
Ui

 ≤ Xn −
(
blog2 nc − a+ b

)
≤


n−1∑
i=d`ne

Ti
Li

. (3.9)

Abbreviating Yn = Xn − (blog2 nc − a+ b) and recalling that Ui ≤ i yields

Yn ≥


n−1∑

i=bunc

Ti
Ui

 =


n−1∑

i=bunc

Ti
i

.
As the Ti are independent and geometrically distributed, we can apply Lemma 3.11 and for
G ∼ Gum(γ) we obtain with Theorem 3.12

sup
k∈Z

∣∣∣∣∣∣P
[ n−1∑
i=bunc

Ti − E[Ti]
i

≥ k
]
− P [G ≥ k]

∣∣∣∣∣∣ = o(1)

and therefore
n−1∑

i=bunc

Ti
i

 =


n−1∑

i=bunc

E[Ti]
i

+

n−1∑
i=bunc

Ti − E[Ti]
i

 %


n−1∑

i=bunc

1

i(1− i/n)
+G

.
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The partial fraction decomposition
(
i(1− i/n)

)−1
= (n− i)−1 + i−1 allows us to simplify

n−1∑
i=bunc

1

i(1− i/n)
+G

 =


n−1∑

i=bunc

1

n− i
+

n−1∑
i=bunc

1

i
+G

 =


n−bunc∑
i=1

1

i
+

n−1∑
i=bunc

1

i
+G

.
Expressing these partial harmonic sums using the asymptotic expansion for the nth harmonic
number ∑

1≤k≤n

k−1 = Hn = lnn+ γ +O(1/n) (3.10)

we get, using Lemma 3.2,

Yn % dln(n− un) + γ + lnn+ γ − ln(un)− γ +G+O(1/n)e

=

⌈
lnn+ ln

(
n(1− u)
un

)
+ γ +G+O(1/n)

⌉
% dlnn+ ln(1/u− 1) + γ +Ge.

We now look at the upper bound in (3.9). For all b`nc ≤ i ≤ n − 1 we specify an appropriate
bound for Li. To obtain it, assume that t is the round in which the ith vertex was informed.
Then all batches that are linked to the (i + 1)st coupon have size at least |It|, i.e. Li ≥ |It|, as
the (i + 1)st distinct coupon is drawn after the ith distinct coupon, i.e., it cannot be drawn in
any round t′ < t. However, we do not know |It|, but we certainly can say that |It+1| ≥ i. So,
Lemma 3.13, guarantees that whp

|It| ≥
(
1− n−1/3

)
· e ·

(
i− (1− 1/e)n

)
for all i ∈ {b`nc, . . . , n− 1}.

(Note that t = t(i) in that statement.) In particular, whp

Li ≥ |It| ≥
(
1− n−1/3

)
· (n− e · (n− i)) for all i ∈ {b`nc, . . . , n− 1}.

Let C be the event that Lemma 3.13 conditions on, that is that |It| (for all t ∈ N) is closely
concentrated around its expectation. Let k ∈ N and

B =




n−1∑
i=d`ne

Ti
Li

 ≥ k
 .

Then P (B) = P (C ∩B) + o(1) and as

{C ∩B ≥ k} ⇒




n−1∑
i=d`ne

Ti
(1− n−1/3)(n− e · (n− i))

 ≥ k


we get, recalling Yn = Xn − (blog2 nc − a+ b), that

Yn ≤


n−1∑
i=d`ne

Ti
Li

 -


n−1∑
i=d`ne

Ti
(1− n−1/3)(n− e · (n− i))

.
Again applying Lemma 3.11 and Theorem 3.12, for G ∼ Gum(γ) and c = e, we obtain

Yn -


n−1∑
i=d`ne

E[Ti]
(1− n−1/3)(n− e · (n− i))

+

n−1∑
i=d`ne

Ti − E[Ti]
(1− n−1/3)(n− e · (n− i))


-

(1 +O(n−1/3)
) n−1∑
i=d`ne

1

(n− e · (n− i))(1− i/n)
+G

.
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Let c = 1− 1/e. Using that
(
(n− e · (n− i))(1− i/n)

)−1
= (n− i)−1 + (i− cn)−1 gives

Yn -

(1 +O(n−1/3)
) n−1∑

i=d`ne

1

n− i
+

n−1∑
i=d`ne

1

i− cn

+G

.
Using index shifts, the asymptotic expansion for the harmonic number (3.10) and Lemma 3.2
yields

Yn -

(1 +O(n−1/3)
)n−d`ne∑

i=1

1

i
+

n−1−bcnc∑
i=d`ne−bcnc

1

i

+G+ o(1)


-

⌈
lnn+ ln(1/`− 1)− ln(1/`) + γ + ln

(
1− c
`− c

)
+G

⌉
.

3.6 Proof of Lemma 2.4
In this subsection we investigate the double limit

lim
a→∞,a∈N

lim
b→∞,b∈N

−a+ b+ ln
(
g(b)(1− 2−a−x)

)
− x

where g(x) = xex−1. We will show that this limit exists and defines a continuous function c(x). It
being periodic with period 1 is an immediate consequence of substituting a→ a+ 1 in the limit.
A similar proof would also yield that c is continuously differentiable, but we only need continuity
in the proof of our main theorem.

Before we actually prove Lemma 2.4 let us state two auxiliary statements first. In Defini-
tion 3.14, we quantify “exponentially fast convergence” and in Lemma 3.15 we state some simple
properties.

Definition 3.14 (Exponentially fast convergence). Let (an)n∈N be a real-valued sequence and let
c ∈ (0, 1). If there is an n0 ∈ N such that for all n ≥ n0 we have |an+1| < c|an|, then we say that
an converges exponentially fast to zero at rate c with start number n0.

Lemma 3.15. a) Let c ∈ (0, 1) and let (an)n∈N be a real-valued sequence that converges expo-
nentially fast to zero at rate c. Then

∑
n≥1 an converges absolutely.

b) Let c ∈ (0, 1), n0 ∈ N and let (hn)n∈N denote a sequence of functions with hn : [0, 1] → R
such that for any x ∈ [0, 1] the sequence (hn(x))n∈N converges exponentially fast to zero at
rate c with start number at most n0. Define h : [0, 1]→ R by h(x) :=

∑
n≥1 hn(x). Then the

sequence of functions (
∑n
j=1 hj)n∈N converges uniformly to h, i.e.

lim
n→∞

sup
x∈[0,1]

∣∣∣∣∣∣h(x)−
n∑
j=1

hj(x)

∣∣∣∣∣∣ = 0.

Proof. a) is elementary. We prove b). Let ε > 0. We show that there is an n1 ∈ N such that for
all n ≥ n1 and for all x ∈ [0, 1] it holds

∣∣∣∑n
j=1 hj(x)− h(x)

∣∣∣ < ε. For n ≥ n0 it is∣∣∣∣∣∣
n∑
j=1

hj(x)− h(x)

∣∣∣∣∣∣ =
∣∣∣∣ ∞∑
j=n+1

hn(x)

∣∣∣∣ ≤ ∞∑
j=n+1

|hn(x)| ≤ |an0
|
∞∑

j=n+1

cj = |an0
| c
n+1

1− c

which implies that an n1 as required exists.
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Proof of Lemma 2.4. We show first, that for a fixed and any x ∈ [0, 1] the limit

lim
b→∞,b∈N

b+ ln
(
g(b)

(
1− 2−a−x

))
exists and the convergence is uniform. Inductively we get

b+ ln
(
g(b)

(
1− 2−a−x

))
= b+ ln

(
g(b−1)

(
1− 2−a−x

))
+ g(b−1)

(
1− 2−a−x

)
− 1

= 1 + ln
(
1− 2−a−x

)
− 2−a−x +

b−1∑
j=1

g(j)
(
1− 2−a−x

)
(3.11)

which, according to Lemma 3.15 a), converges for b → ∞ because g(j) (1− 2−a−x) converges
exponentially fast to zero at rate at most exp(−2−a−1) < 1 and start number 1 for j → ∞ in
the sense of Definition 3.14. For x ∈ [0, 1], according to Lemma 3.15 b), the convergence is even
uniform with respect to x. By the Uniform Limit Theorem we thus showed that

γa(x) = −a+
∑
j≥1

g(j)(1− 2−a−x) is continuous for a ∈ N. (3.12)

To complete the proof we show that the sequence of continuous functions (γa)a∈N converges
uniformly. But first we make an observation. Let a′ > a ∈ N and x ∈ [0, 1], then, using
g(x) = 1− f(1− x),

γa′(x) = −a′ +
∑
j≥1

g(j)(1− 2−a
′−x) = −a′ +

a′−a∑
j=1

g(j)
(
1− 2−a

′−x)+ ∞∑
j≥1

g(j)
(
g(a
′−a)(1− 2−a

′−x))

= −a−
a′−a∑
j=1

f (j)
(
2−a

′−x)+∑
j≥1

g(j)
(
1− f (a

′−a)(2−a′−x)) .
Furthermore, we can bound the repeated application of f using Corollary 3.8 and therefore

0 ≤
a′−a∑
j=1

f (j)
(
2−a

′−x) ≤ 2−a−x+1 and 2−a−x
(
1− 2−a−x − 2−2a−2x

)
≤ f (a

′−a)(2−a′−x) ≤ 2−a−x.

Thus there is x′ ∈ [0, 1] such that |x− x′| ≤ 2−a and γa′(x) = γa(x
′) +O

(
2−a

)
.

With this at hand we show uniform convergence of (γa)a∈N. In particular, for any 0 < ε < 1/8
we will show that there is some N ∈ N such that supx∈[0,1] |γa(x)− γa′(x)| ≤ ε for all a′ > a > N .
To achieve this we use our previous observation and obtain that

sup
x∈[0,1]

|γa(x)− γa′(x)| ≤ sup
x∈[0,1],|x−x′|≤2−a

|γa(x)− γa(x′)|+O
(
2−a

)
= sup
x∈[0,1],|x−x′|≤2−a

∣∣∣∣∣∣
∑
j≥1

(
g(j)
(
1− 2−a−x

′)
− g(j)

(
1− 2−a−x

))∣∣∣∣∣∣+O
(
2−a

)
.

We bound this sum by splitting it into three parts. There is M1 ∈ N such that for any a > M1

there is N1 ∈ N (N1 depending on a and ε) such that

ε ≤ f (N1)
(
2−a−1

)
≤ f (N1+1)

(
2−a

)
≤ 8ε. (3.13)

That is, N1 is the number of iterations such that f (N1)
(
2−a

)
≈ ε, in particular N1 ≤ a, as

f (a)
(
2−a−1

)
≥ 1/8 by Corollary 3.8 and the fact that f is increasing. Furthermore, using again

18



that g(j) (1− 2−a−x) converges exponentially fast to zero with rate at most exp(−2−a−1) < 1 for
j →∞, there is c ∈ N depending only on ε such that for N2 := N1 + c

0 ≤ sup
x∈[0,1]

∑
j≥N2

g(j)
(
1− 2−a−x

)
≤ ε for all a > M1. (3.14)

Then, abbreviating h(j) = g(j)
(
1− 2−a−x

′)− g(j)(1− 2−a−x
)
, we can write

∞∑
j=1

(
g(j)
(
1− 2−a−x

′)
− g(j)

(
1− 2−a−x

))
=

N1∑
j=1

h(j) +

N2∑
j=N1+1

h(j) +
∑
j>N2

h(j). (3.15)

In the rest of the proof estimate these sums individually, starting with the first one. Again using
(3.11) and f(x) = 1− g(1− x) we have as a→∞

N1∑
j=1

g(j)
(
1− 2−a−x

′)
− g(j)

(
1− 2−a−x

)
= ln g(N1)

(
1− 2−a−x

′)
− ln g(N1)

(
1− 2−a−x

)
+O(2−a)

= ln
(
1− f (N1)

(
2−a−x

′))
− ln

(
1− f (N1)

(
2−a−x

))
+O(2−a).

By our choice of N1, see (3.13), and the elementary inequalities z/(1 + z) ≤ ln(1 + z) ≤ z for all
z > −1 this yields the upper bound

sup
x∈[0,1]

∣∣∣∣∣∣
N1∑
j=1

h(j)

∣∣∣∣∣∣ ≤ ε+ 8ε

1 + 8ε
+O(2−a) for all a > M1. (3.16)

We continue with the second sum in (3.15). Corollary 3.7 yields∣∣∣∣∣∣
N2∑

j=N1+1

h(j)

∣∣∣∣∣∣ =
∣∣∣∣∣∣

N2∑
j=N1+1

(
f (j)

(
2−a−x

)
− f (j)

(
2−a−x

′))∣∣∣∣∣∣ ≤
(
2−a−x − 2−a−x

′
) N2∑
j=N1+1

2j .

Thus, as N1 ≤ a and N2 = N1 + c, where c depends on ε only, and our assumption |x− x′| ≤ 2−a

there is M2 ≥M1 such that∣∣∣∣∣∣
N2∑

j=N1+1

h(j)

∣∣∣∣∣∣ ≤
(
22
−a
− 1
)
· 2−a ·

N2∑
j=N1+1

2j ≤
(
22
−a
− 1
)
· 2c+1 ≤ ε for all a > M2. (3.17)

In summary, (3.15) gives

sup
x∈[0,1]

∣∣γa(x)− γa′(x)∣∣ ≤ sup
x∈[0,1],|x−x′|≤2−a

∣∣∣∣∣∣
N1∑
j=1

h(j) +

N2∑
j=N1+1

h(j) +
∑
j>N2

h(j)

∣∣∣∣∣∣+O
(
2−a

)
.

and for a > M2 > M1, applying (3.16), (3.17) and (3.14) yields the uniform convergence of
(γa)a∈N.

3.7 Other Proofs
In this subsection we complete the rigorous treatment of our main theorems and give the last two
remaining proofs. First we prove Lemma 2.5, which states that Xn−blog2 nc−blnnc is uniformly
integrable.
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Proof of Lemma 2.5. Doerr and Künnemann show in [7, Cor. 3.2 and Thm. 4.1] that for all r ∈ N

P
[
Xn ≥ blog2 nc+ lnn+ 2.188 + r

]
≤ 2e−r and

P
[
Xn ≤ r

]
≤ P

[
blog2 nc − 1 +

Cn(dn/2e)
n

≤ r
]
,

where Cn(dn/2e) is the number of rounds a coupon collector needs to draw the last n/2 out of
n coupons. These two bounds together with common deviation bounds for the coupon collector
problem imply, see e.g. [8], that

P [Yn /∈ blog2 nc+ blnnc ± (r + 5)] ≤ 4e−r.

Using this inequality we get that for any N ∈ N

E
[
|Yn|k

∣∣∣ 1[|Yn|k > N
]]
≤
∑
t≥ k√

N

(t+ 5)k4e−t,

which implies the claim.

We close the section with the proof of Lemmas 3.1 and 3.2.

Proof of Lemma 3.1. First we observe that the (1 − n−1/6) error term in the definition of `, u is
negligible as is factors out as a small additional term. Thus it suffices to consider ` = f (b)(L)
and u = f (b)(U) where L =

(
1− 2−a+2

)
2−a−x and U = 2−a−x for some x ∈ (0, 1]. We assume

that a ≥ 3.
We start by showing an analogue to Corollary 3.7 but concerning g. For all r ≥ s ∈ [0, 1],

using 1− x ≤ e−x,

g(r − s) = (r − s)er−s−1 ≥ rer−s−1 − ser−1 ≥ g(r)− s(1 + r)er−1

and consequently

g(i)(r − s) ≥ g(i)(r)− s
(
(1 + r)er−1

)i for all r ≥ s ∈ [0, 1) and i ∈ N. (3.18)

This completes our preparations. In order to show that (1 − `)/(1 − u) → 1 as a → ∞ we argue
that ` and u are very close together and approach 1 as a (and b > 2a) gets big. We start by
bounding the distance between ` and u. Applying Corollary 3.7 to U = L+2−2a−x+2 we get that

f (a) (U) = f (a)
(
L+ 2−2a−x+2

)
≤ f (a) (L) + 2−a−x+2 (3.19)

and Corollary 3.8 bounds f (a−1)(U) from below with 2−x−1
(
1− 2−x−1 − 2−2x−2

)
≥ 1/8, thus

f (a+2)(U) ≥ 1/2, and therefore we get using the monotonicity of f

1

2
≤ f (a+2)(U) ≤ f (a+3) (L) ≤ f (a+3) (U)

(3.19)
≤ f (a+3) (L) + 2−a−x+5. (3.20)

We switch our focus to g. Observe that z := 3e−1/2/2 < 1 and, using (3.18),

g(b−a−3)
(
1− f (a+3) (L)− 2−a−x+5

)
≥ g(b−a−3)

(
1− f (a+3) (L)

)
− 2−a−x+5 · zb−a−3.

This implies, using (3.20) and the previous equation, that

g(b−a−3)
(
1− f (a+3) (U)

)
≥ g(b−a−3)

(
1− f (a+3) (L)

)
− 2−a−x+5 · zb−a−3,

and therefore, as 1− f (b)(L) ≥ 1− f (b)(U) = g(b−a−3)
(
1− f (a+3) (U)

)
,

|u− `| = |f (b)(U)− f (b)(L)| ≤ 2−a−x+5zb−a−3 → 0 as a→∞, b− a→∞. (3.21)
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Next we show that u, ` approach 1. Using g(x) = 1 − f(1 − x), (3.20), g being increasing and
g(x) ≤ xe−1/2 for all x ≤ 1/2 (in that order), we get

g(b)(1− L) = g(b−a−3)
(
1− f (a+3) (L)

)
≤ g(b−a−3)

(
1

2

)
≤ 1

2
e−(b−a−3)/2, b > a+ 3.

Moreover, using that f(x) ≤ 2x and g(x) ≥ x/e,

g(b)(1− U) = g(b−a)
(
1− f (a) (U)

)
≥
(
1− 2−x

)
e−(b−a).

Thus, these two bounds together give

1− 1

2
e−(b−a−3)/2 ≤ f (b) (L) ≤ f (b) (U) ≤ 1−

(
1− 2−x

)
e−(b−a) for all b > a+ 3. (3.22)

We just showed that u, ` → 1 as a (and b) tends to infinity. This yields that lnu, ln ` and
ln
(
`/(e` − e + 1)

)
tend to 0, leaving us with the term ln

(
(1 − `)/(1 − u)

)
. The fact U ≤ f(L)

(and so f (b−2)(U) ≤ f (b−1)(L)) implies that

1− `
1− u

=
g(b)
(
1− L

)
g(b)
(
1− U

) =
exp

(
g(b−1)(1− L)− 1

)
· exp

(
g(b−2)(1− L)− 1

)
exp

(
g(b−1)(1− U)− 1

)
· exp

(
g(b−2)(1− U)− 1

) · g(b−2)(1− L)
g(b−2)

(
1− U

)
≤

exp
(
g(b−2)(1− L)− 1

)
exp

(
g(b−1)(1− U)− 1

) · g(b−2)(1− L)
g(b−2)

(
1− U

) .
Applying the same estimate to the latter fraction inductively we get for any c ∈ N

1− `
1− u

≤
exp

(
g(c)(1− L)− 1

)
exp

(
g(b−1)(1− U)− 1

) · g(c)(1− L)
g(c)
(
1− U

) ≤ exp
(
g(c)(1− L)

)
·
g(c)
(
1− L

)
g(c)
(
1− U

) .
Set c = da(1 + ln 2)e. Using (3.21) and (3.22), where we set b = c, we obtain (for large enough a)
that

∣∣g(c)(1− L)− g(c)(1− U)
∣∣ ≤ 2−a−x+5zc−a−3 as well as f (c)

(
U
)
≤ 1−

(
1− 2−x

)
e−(c−a) and

f (c)(L) ≥ 1− e−(c−a−3)/2/2. Thus

1− `
1− u

≤ exp
(
1− f (c)(L)

)(
1 +

2−a−x+5zc−a−3

1− f (c)
(
U
) )

≤ exp

(
1

2
e−(c−a−3)/2

)(
1 +

2−a−x+5zc−a−3

(1− 2−x)e−c+a

)
.

Using ex ≤ 1 + 2x, x ∈ [0, 1] this yields the bounds

1 ≤ 1− `
1− u

≤
(
1 +
√
2
−a+4

)(
1 +

2−x+5e

1− 2−x
· za ln 2−2

)
for all a ∈ N.

Therefore, as 0 < z < 1 we obtain 1−`
1−u → 1, and consequently ln

(
(1− `)/(1−u)

)
→ 0, as a→∞.

Lemma 3.2 states that disturbing a Gumbel distributed random variable by a small amount
does not significantly alter its distribution.

Proof of Lemma 3.2. Observe that
⌈
h(n) +G± ε

⌉
6=
⌈
h(n) +G

⌉
is equivalent to

G ∈
[
j − h(n)− ε, j − h(n) + ε

]
for some j ≥ 1.

But as G is absolutely continuous, for any δ > 0 we can choose ε small enough such that

P

G ∈ ⋃
j≥1

[
j − h(n)− ε, j − h(n) + ε

] ≤ δ.

21



References
[1] K. P. Birman, M. Hayden, O. Ozkasap, Z. Xiao, M. Budiu, and Y. Minsky. Bimodal multicast.

ACM Transactions on Computer Systems (TOCS), 17(2):41–88, 1999.

[2] S. Boucheron, G. Lugosi, and P. Massart. Concentration inequalities: A nonasymptotic theory
of independence. Oxford University Press, 2013.

[3] F. Chierichetti, S. Lattanzi, and A. Panconesi. Almost tight bounds for rumour spreading with
conductance. In Proceedings of the forty-second ACM symposium on Theory of computing,
pages 399–408. ACM, 2010.

[4] F. Chierichetti, S. Lattanzi, and A. Panconesi. Rumour spreading and graph conductance. In
Proceedings of the twenty-first annual ACM-SIAM symposium on Discrete Algorithms, pages
1657–1663. SIAM, 2010.

[5] R. Daknama, K. Panagiotou, and S. Reisser. Robustness of Randomized Rumour Spreading.
In 27th Annual European Symposium on Algorithms (ESA 2019), volume 144 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 36:1–36:15, Dagstuhl, Germany,
2019. Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

[6] A. Demers, D. Greene, C. Hauser, W. Irish, J. Larson, S. Shenker, H. Sturgis, D. Swinehart,
and D. Terry. Epidemic algorithms for replicated database maintenance. In Proceedings of
the sixth annual ACM Symposium on Principles of distributed computing, pages 1–12. ACM,
1987.

[7] B. Doerr and M. Künnemann. Tight analysis of randomized rumor spreading in complete
graphs. In 2014 Proceedings of the Eleventh Workshop on Analytic Algorithmics and Combi-
natorics (ANALCO), pages 82–91. SIAM, 2014.

[8] P. Erdős and A. Rényi. On a classical problem of probability theory. Magyar Tud. Akad.
Mat. Kutató Int. Közl. 6, pages 215–220, 1961.

[9] U. Feige, D. Peleg, P. Raghavan, and E. Upfal. Randomized broadcast in networks. Random
Structures & Algorithms, 1(4):447–460, 1990.

[10] N. Fountoulakis, A. Huber, and K. Panagiotou. Reliable Broadcasting in Random Networks
and the Effect of Density. In INFOCOM 2010. 29th IEEE International Conference on
Computer Communications, Joint Conference of the IEEE Computer and Communications
Societies, 15-19 March 2010, San Diego, CA, USA, pages 2552–2560, 2010.

[11] N. Fountoulakis and K. Panagiotou. Rumor spreading on random regular graphs and ex-
panders. Approximation, Randomization, and Combinatorial Optimization. Algorithms and
Techniques, pages 560–573, 2010.

[12] A. M. Frieze and G. R. Grimmett. The shortest-path problem for graphs with random arc-
lengths. Discrete Applied Mathematics, 10(1):57–77, 1985.

[13] G. Giakkoupis. Tight bounds for rumor spreading in graphs of a given conductance. In 28th
International Symposium on Theoretical Aspects of Computer Science, STACS 2011, March
10-12, 2011, Dortmund, Germany, pages 57–68, 2011.

[14] G. Giakkoupis. Tight Bounds for Rumor Spreading with Vertex Expansion. In Proceedings
of the Twenty-Fifth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2014,
Portland, Oregon, USA, January 5-7, 2014, pages 801–815, 2014.

[15] G. Giakkoupis and T. Sauerwald. Rumor spreading and vertex expansion. In Proceedings
of the Twenty-Third Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2012,
Kyoto, Japan, January 17-19, 2012, pages 1623–1641, 2012.

22



[16] G. H. Hardy, E. M. Wright, et al. An introduction to the theory of numbers. Oxford University
Press, 1979.

[17] D. Mosk-Aoyama and D. Shah. Fast Distributed Algorithms for Computing Separable Func-
tions. IEEE Trans. Information Theory, 54(7):2997–3007, 2008.

[18] K. Panagiotou, X. Pérez-Giménez, T. Sauerwald, and H. Sun. Randomized Rumour Spread-
ing: The Effect of the Network Topology. Combinatorics, Probability & Computing, 24(2):457–
479, 2015.

[19] C. Patsonakis and M. Roussopoulos. Revisiting Asynchronous Rumor Spreading in the
Blockchain Era. In 2019 IEEE 25th International Conference on Parallel and Distributed
Systems (ICPADS), pages 284–293, Dec 2019.

[20] B. Pittel. On Spreading a Rumor. SIAM J. Appl. Math., 47(1):213–223, 1987.

[21] G. Pólya. Über den zentralen Grenzwertsatz der Wahrscheinlichkeitsrechnung und das Mo-
mentenproblem. Mathematische Zeitschrift, 8(3):171–181, 1920.

[22] T. Sauerwald and A. Stauffer. Rumor Spreading and Vertex Expansion on Regular Graphs.
In Proceedings of the Twenty-Second Annual ACM-SIAM Symposium on Discrete Algorithms,
SODA 2011, San Francisco, California, USA, January 23-25, 2011, pages 462–475, 2011.

[23] R. Serfling. Approximation Theorems of Mathematical Statistics. Wiley Series in Probability
and Statistics. Wiley, 2009.

A Existence of Subsequence
Let x, y ∈ [0, 1]. In this section we show that there is an unbounded sequence of natural numbers
(ni)i∈N such that log2 ni − blog2 nic → x and lnni − blnnic → y as i → ∞. To this end, set
z = y − x ln 2. According to a Theorem of Kronecker, see e.g. [16, Thm. 440], for all i ∈ N, there
are pi, qi ∈ N such that ∣∣qi ln 2− pi − z∣∣ ≤ i−1. (A.1)

Actually even more is true: there are infinitely many pi, qi ∈ N that solve (A.1). To see this,
assume that there are only finitely many, then there is k, ` ∈ N such that k ln 2 = `+ z, otherwise
there would be some i ∈ N where (A.1) has no solution. However, according to a Theorem of
Hurwitz, see e.g. [16, Thm. 193], there are infinitely many rj , sj ∈ N such that∣∣rj ln 2− sj∣∣ ≤ r−2j .

But then ∣∣rj ln 2− sj∣∣ = ∣∣(rj + k) ln 2− (sj + `)− z
∣∣ ≤ r−2j ,

a contradiction, thus there are infinitely many solutions to (A.1). We continue with that equation,
which we can restate, as i→∞,

qi ln 2 + x ln 2 = pi + y +O
(
i−1
)
.

Taking the exponential on both sides thus yields, as i→∞,

2qi+x = epi+y+O(i−1).

Set ni = b2qi+xc for all i ∈ N, where we choose qi such that qi ≥ i from the infinitely many
solutions to (A.1). Then ni ∈ N for all i ∈ N and

log2 ni − blog2 nic = x+O
(
2−i
)

as well as lnni − blnnic = y +O
(
i−1
)
.

Thus the subsequence of natural numbers that is induced by log2 ni − blog2 nic → x and lnni −
blnnic → y is non-empty and unbounded.
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