
Maximizing Happiness in Graphs of Bounded
Clique-Width?

Ivan Bliznets[0000−0003−2291−2556] and Danil Sagunov[0000−0003−3327−9768]

St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of
Sciences, 27 Fontanka, St. Petersburg, Russia
{iabliznets,danilka.pro}@gmail.com

Abstract. Clique-width is one of the most important parameters that
describes structural complexity of a graph. Probably, only treewidth
is more studied graph width parameter. In this paper we study how
clique-width influences the complexity of the Maximum Happy Ver-
tices (MHV) and Maximum Happy Edges (MHE) problems. We an-
swer a question of Choudhari and Reddy ’18 about parameterization by
the distance to threshold graphs by showing that MHE is NP-complete
on threshold graphs. Hence, it is not even in XP when parameterized by
clique-width, since threshold graphs have clique-width at most two. As
a complement for this result we provide a nO(`·cw) algorithm for MHE,
where ` is the number of colors and cw is the clique-width of the input
graph. We also construct an FPT algorithm for MHV with running time
O∗((`+ 1)O(cw)), where ` is the number of colors in the input. Addition-
ally, we show O(`n2) algorithm for MHV on interval graphs.

1 Introduction

Clique-width is one of the most important parameters that describe structural
complexity of a graph. Probably, only treewidth is more studied graph width
parameter. We note that one can treat clique-width as some generalization of
treewidth as graphs of bounded treewidth have bounded clique-width. Hence, the
existence of an FPT algorithm parameterized by clique-width is a stronger result
than the existence of an FPT algorithm parameterized by treewidth. Complexity
of many problems were studied parameterized by the clique-width parameter, in-
cluding Max-Cut [12], Edge Dominating Set [12], Hamiltonian Path [11],
Graph k-Colorability [13, 18], computation of the Tutte polynomial [15],
Dominating Set [18, 19], computation of chromatic polynomial [25], and Tar-
get Set Selection [16]. In this paper, we continue the line of the research
and investigate computational and parameterized complexity of the Maximum
Happy Vertices and Maximum Happy Edges problems parameterized by
clique-width of the input graph.

? This research was supported by the Russian Science Foundation (project 16-11-
10123-Π)

ar
X

iv
:2

00
3.

04
60

5v
1

 [
cs

.D
S]

 1
0

M
ar

 2
02

0

2 I. Bliznets and D. Sagunov

Before defining Maximum Happy Vertices and Maximum Happy Edges,
we need to define what a happy vertex or a happy edge is.

Definition 1. Let G be a graph and let c : V (G) → [`] be a coloring of its
vertices. We say that an edge uv ∈ E(G) is happy with respect to c (or simply
happy, if c is clear from the context) if its endpoints share the same color, i.e.
c(u) = c(v). We say that a vertex v ∈ V (G) is happy with respect to c if all its
neighbours have the same color as v, i.e. c(v) = c(u) for each neighbour u of v
in G.

We now give the formal definition of both problems.

Maximum Happy Vertices (MHV)
Input: A graph G, a partial coloring of vertices p : S → [`] for

some S ⊆ V (G) and an integer k.
Question: Is there a coloring c : V (G)→ [`] extending partial color-

ing p such that the number of happy vertices with respect
to c is at least k?

Maximum Happy Edges (MHE)
Input: A graph G, a partial coloring of vertices p : S → [`] for

some S ⊆ V (G) and an integer k.
Question: Is there a coloring c : V (G)→ [`] extending partial color-

ing p such that the number of happy edges with respect
to c is at least k?

Maximum Happy Vertices and Maximum Happy Edges were introduced
by Zhang and Li in 2015 [29], motivated by their study of algorithmic aspects
of homophyly law in large networks. These problems recently attracted a lot of
attention from different lines of reseach. From the parameterized point of view,
the problems were studied in [1, 2, 3, 6, 26, 4, 5]. Works [29, 30, 28, 27] are
devoted to approximation algorithms for MHV and MHE. Finally, Lewis et
al. [21] study the problems from experimental perspective.

Before we state our results we mention some previously known results under
different parameterizations. Aravind et al. [3] constructed O∗(`tw) and O∗(2nd)
algorithms for both MHV and MHE, where tw is the treewidth of the input
graph and nd is the neighbourhood diversity of the input graph. Misra and
Reddy [26] constructed O∗(vcO(vc)) algorithms for both problems, where vc is
the vertex cover number of the input graph.

Our results: Below cw is the clique-width of the input graph, ` is the number
of colors in the input precoloring and n is the number of vertices in the input
graph. In the paper we prove the following results for the Maximum Happy
Edges problem:

– MHE admits an XP-algorithm with running time nO(`·cw), if a cw-expression
of the input graph is given;

– MHE does not admit an XP-algorithm parameterized by clique-width alone,
unless P = NP (by showing that MHE is NP-complete on threshold graphs).

Maximizing Happiness in Graphs of Bounded Clique-Width 3

Note that the question of the complexity of MHE on the class of threshold
graphs was asked explicitly by Choudhari and Reddy in [6].

For the Maximum Happy Vertices problem we establish the following
results:

– MHV admits an FPT algorithm with O∗((` + 1)O(cw)) running time, if a
cw-expression of the input graph is given (note that MHV parameterized
by clique-width alone is W[2]-hard [5]);

– Additionally, MHV is solvable on the class of interval graphs in time O(`n2).

Our work shows that clique-width is a parameter under which computational
complexity of problems MHV and MHE differ most significantly. On graphs
of bounded clique-width, MHV admits an FPT algorithm with running time
O∗((` + 1)O(cw)), while MHE is NP-complete on graphs of clique-width two
and does not admit even an XP-algorithm when parameterized by cw, however,
we show that there is an XP-algorithm for the extended parameter cw + `.
Note that when parameterized by treewidth, neighbourhood diversity or vertex
cover, the problems are known to have similar complexity. We believe that the
FPT algorithm for MHV parameterized by cw + ` is the most interesting result
of this paper.

After establishing existence of polynomial algorithms for problems on graphs
of bounded clique-width, it is natural to investigate complexity of problems on
minimal hereditary classes of unbounded clique-width. Unit interval graphs is
one of such graph classes [22]. We show that MHV is polynomially solvable
on the class of interval graphs, which is a wider graph class. So we think that
our result for interval graphs nicely complements our understanding of computa-
tional complexity of MHV parameterized by clique-width. We note that interval
graphs also separate MHV and MHE, as MHE is NP-complete on threshold
graphs, that are a subclass of interval graphs.

2 Preliminaries

Basic notation. We denote the set of positive integer numbers by N. For each
positive integer k, by [k] we denote the set of all positive integers not exceeding
k, {1, 2, . . . , k}. We use t for the disjoint union operator, i.e. AtB equals A∪B,
with an additional constraint that A and B are disjoint.

We use the traditional O-notation for asymptotical upper bounds. We ad-
ditionally use the O∗-notation that hides polynomial factors. We investigate
MHV and MHE mostly from the parameterized point of view. For a detailed
survey in parameterized algorithms we refer to the book of Cygan et al. [9].
Throughout the paper, we use standard graph notation and terminology, fol-
lowing the book of Diestel [10]. All graphs in our work are undirected simple
graphs.

Graph colorings. When dealing with instances of MHV or MHE, we use
a notion of colorings. A coloring of a graph G is a function that maps vertices
of the graph to the set of colors. If this function is partial, we call such coloring

4 I. Bliznets and D. Sagunov

partial. If not stated otherwise, we use ` for the number of distinct colors, and
assume that colors are integers in [`]. A partial coloring p is always given as
a part of the input for both problems, along with graph G. We also call p a
precoloring of the graph G, and use (G, p) to denote the graph along with the
precoloring. The goal of both problems is to extend this partial coloring to a
specific coloring c that maps each vertex to a color. We call c a full coloring (or
simply, a coloring) of G that extends p. We may also say that c is a coloring
of (G, p). For a full coloring c of a graph G by H(G, c) we denote the set of all
vertices in G that are happy with respect to c.

Clique-width. In order to define cliquewidth we follow definitions presented
by Lackner et al. in their work on Multicut parameterized by clique-width [20].

To define clique-width, we need to define k-expressions first. For any k ∈ N,
a k-expression Φ describes a graph GΦ, whose vertices are labeled with inte-
gers in [k]. k-expressions and its corresponding graphs are defined recursively.
Depending on its topmost operator, a k-expression Φ can be of four following
types.

1. Introducing a vertex. Φ = i(v), where i ∈ [k] is a label and v is a vertex. GΦ
is a graph consisting of a single vertex v with label i, i.e. V (GΦ) = {v}.

2. Disjoint union. Φ = Φ′⊕Φ′′, where Φ′ and Φ′′ are smaller subexpressions. GΦ
is a disjoint union of the graphs GΦ′ and GΦ′′ , i.e. V (GΦ) = V (GΦ′)tV (GΦ′′)
and E(GΦ) = E(GΦ′)tE(GΦ′′). The labels of the vertices remain the same.

3. Renaming labels. Φ = ρi→j(Φ
′). The structure of GΦ remains the same as

the structure of GΦ′ , but each vertex with label i receives label j.
4. Introducing edges. Φ = ηi,j(Φ

′). GΦ is obtained from GΦ′ by connecting each
vertex with label i with each vertex with label j.

Clique-width of a graph G is defined as the smallest value of k needed to
describe G with a k-expression and is denoted as cw(G), or simply cw.

There is still no known FPT-algorithm for finding a k-expression of a given
graph G. However, there is an FPT-algorithm that decides whether cw(G) > k
or outputs (23k+2−1)-expression of G. For more details on clique-width we refer
to [17].

3 Maximum Happy Edges

This section is dedicated to the Maximum Happy Edges problem parameter-
ized by clique-width. We start with showing that Maximum Happy Edges is
NP-complete on graphs of clique-width at most two.

In [6], Choudhari and Reddy proved that MHV is polynomially solvable
on the class of threshold graphs (that have clique-width at most two [23]) and
questioned the complexity of MHE on the same graph class. We answer their
question by showing that Maximum Happy Edges is NP-complete on thresh-
old graphs. To prove this, we require the following useful characterization of
threshold graphs.

Maximizing Happiness in Graphs of Bounded Clique-Width 5

Lemma 1 ([24]). Threshold graphs are graphs that can be partitioned in a
clique K = {u1, u2, . . . , uk} and an independent set I, such that N [ui] ⊆ N [ui+1]
holds for every i ∈ [k − 1].

We now prove the abovementioned hardness of MHE.

Theorem 1. Maximum Happy Edges is NP-complete on the class of thresh-
old graphs.

Proof. We reduce from SAT, that is a classical NP-complete problem. Let F be a
boolean formula on n variables in conjunctive normal form F = C1∧C2∧. . .∧Cm.
Ci is a clause being a disjunction of distinct literals, so it can be represented as
Ci = li,1 ∨ li,2 ∨ . . . ∨ li,ki , where each literal li,t is either a variable xj or its
negation xj for some j ∈ [n].

We show how to, given F , construct an instance (G, p, k) of Maximum
Happy Edges, such that F is satisfiable if and only if (G, p, k) is a yes-instance
of MHE. Moreover, G is a threshold graph and the construction can be done in
polynomial-time.

Let F be a boolean formula on n variables in CNF, consisting of m clauses.
We construct (G, p, k) as follows.

G will be a threshold graph. So it will consist of two parts: a clique K and
an independent set I. Firstly, we introduce the clique vertices in G. For each
clause Ci of F we introduce a new vertex ci in G. For each variable xj of F
we introduce m2 new vertices vj,1, vj,2, . . . , vj,m2 in G. We introduce all possible
edges between these m+ nm2 vertices in G so these vertices form the clique K
in the partition of G.

Before we proceed, let us give an intuition of the further construction. Each
color we use in p corresponds to a literal in F , i.e. to an element in L =
{x1, x2, . . . , xn, x1, x2, . . . , xn}. Thus, we use 2n colors in p. For convenience,
we use corresponding literals to denote colors instead of the numbers in [2n].
We want each clause vertex ci to be colored with a color corresponding to one
of its literals, i.e. one of the colors li,1, li,2, . . . , li,ki in any optimal coloring. Sim-
ilarly, we want each variable vertex vj,t corresponding to the variable xj to be
colored with one of the colors corresponding to the literals of xj , i.e. either xj
or xj . For each vertex u ∈ K, we denote the set of required colors as L(u), i.e.
L(ci) = Ci = {li,1, li,2, . . . , li,ki} for clause vertices, and L(vj,t) = {xj , xj} for
variable vertices. The purpose of the remaining independent set of G is exactly
to ensure that the vertices of the clique are colored with the required colors.

Our graph is a threshold graph. It means that it is possible to find an order
u1, u2, . . . , u|K| of the vertices in K such that N [ui] ⊆ N [ui+1] for each i ∈ [|K|−
1], i.e. satisfy the condition of Lemma 1. The order we obtain is the following:
ui = ci for every i ∈ [m], and um+jm2+t = vj+1,t for each j ∈ {0, 1, . . . , n − 1}
and each t ∈ [m2]. The condition of Lemma 1 is satisfied as we step by step add
vertices to I. The ith step will correspond to the vertex ui ∈ K. At this step
we introduce all neighbours of ui in I and their colors in the precoloring p. For
convenience we denote N(ui) ∩ I by Pi.

6 I. Bliznets and D. Sagunov

the set Pi−1, i.e. the vertices colored on previous steps
color l1 color lt

ui

· · · · · ·· · · · · ·

u1, u2, . . . , ui−1

Fig. 1. Step i. That is addition of the vertex ui and construction of the set Pi. Let
L(ui) = {l1, l2, . . . lt}. Vertex ui is connected to all vertices in Pi−1. Moreover, for
each j ∈ {1, 2, . . . t} we introduce i(m + nm2) − |Np(Pi−1, lj)| vertices precolored in
color lj and connect them to ui. Recall that all bottom vertices, i.e. uq for q ∈ [i], are
also pairwise connected (this is not shown in the figure as well as edges from Pi−1 to
u1, u2, . . . , ui−1).

At first, we construct P1 in the following way. For each l ∈ L(u1), add exactly
m + nm2 vertices to P1 and color them with the color l. No more vertices are
added to P1, so |P1| = |L(u1)| · (m+ nm2). Then, for each i ∈ [2,m+ nm2], we
construct Pi by adding new vertices to Pi−1 and precoloring them. By doing so
we satisfy condition N [ui] ⊆ N [ui+1] for each i ∈ [m+ nm2 − 1]. The process of
this construction is described below and illustrated in Fig. 1.

Let Np(Pi, l) be the number of vertices in Pi that are precolored with the
color l, i.e. Np(Pi, l) = |{u ∈ Pi | p(u) = l}| . For each i we require that the
vertices in Pi are precolored mostly with required colors for ui, that is, colors in
the set L(ui). Formally, for every l ∈ L, we require

Np(Pi, l) = i(m+ nm2), if l ∈ L(ui),
Np(Pi, l) ≤ (i− 1) · (m+ nm2), if l /∈ L(ui).

(*)

Note that P1 satisfies (*).
Now let Pi−1 be constructed and satisfy (*). We construct Pi that also satis-

fies the constraint. We start with Pi = Pi−1. Then for each l ∈ L(ui) we introduce
i(m + nm2) − Np(Pi−1, l) new vertices precolored with color l to Pi. For every
l ∈ L(ui), Np(Pi, l) = Np(Pi−1, l) + i(m+nm2)−Np(Pi−1, l) = i(m+nm2). On
the other hand, for every l /∈ L(ui), Np(Pi, l) = Np(Pi−1, l) ≤ (i−1) ·(m+nm2).
Hence, Pi also satisfies (*).

The construction of G is finished. Let us remark again that K forms a clique
in G and I = Pm+nm2 forms an independent set in G. We constructed graph
in a way that N [ui] ⊆ N [ui+1] (as Pi ⊆ Pi+1) for each i ∈ [m + nm2 − 1]
where K = {u1, u2, . . . , um+nm2}. Thus, by Lemma 1, G is a threshold graph.
Moreover, construction of G is done in polynomial time.

We finally set the number of required happy edges

k =
(
m+ nm2

)
·
(
m+ nm2 + 1

2

)
+ n ·

(
m2

2

)
+m3

Maximizing Happiness in Graphs of Bounded Clique-Width 7

and argue that F is satisfiable if and only if (G, p, k) is a yes-instance of MHE.
Let F be satisfiable, that is, F has a satisfying assignment σ : xj 7→ {0, 1}.

We construct coloring c of G extending p that yields at least k happy edges as
follows.

For each j ∈ [n] and t ∈ [m2], set the color of the vertex vj,t corresponding
to the variable xj with the color corresponding to the literal of xj that evaluates
to 1 with respect to σ, i.e. c(vj,t) = xj , if σ(xj) = 1, or c(vj,t) = xj , if σ(xj) = 0.

For each i ∈ [m], there is at least one variable satisfying clause Ci. In other
words, there exists j ∈ [n], such that either xj ∈ Ci and σ(xj) = 1, or xj ∈ Ci
and σ(xj) = 0. Choose any such j and color the corresponding clause vertex ci
with the color corresponding to the literal of xj that evaluates to true. That is,
c(ci) = xj if σ(xj) = 1, or c(ci) = xj if σ(xj) = 0. There is no any uncolored
vertex left, so the construction of c is finished.

Claim 1. There are at least k happy edges in G with respect to c.

Proof of the claim. Consider edges between K and I in G. Observe that for each
ui ∈ K, c(ui) ∈ L(ui), that is, each variable vertex is colored with the color cor-
responding to one of its literals, and each clause vertex is colored with the color
corresponding to one of the literals it contains. Each ui ∈ K is incident to exactly
Np(Pi, c(ui)) happy edges that has the other endpoint in I. By construction of
G, any Pi satisfies (*) and c(ui) ∈ L(ui), hence there are exactly i(m + nm2)
happy edges between ui and I in G with respect to c.

In total, there are exactly

m+nm2∑
i=1

i(m+ nm2) = (m+ nm2) ·
m+nm2∑
i=1

i = (m+ nm2) ·
(
m+ nm2 + 1

2

)
happy edges between K and I with respect to c.

For each j ∈ [n], variable vertices {vj,1, vj,2, . . . , vj,m2} share the same color,

and form a clique in G. Thus, for each j ∈ [n], there are
(
m2

2

)
happy edges

between vertices of type vj,t. In total over all variable vertices, there are n ·
(
m2

2

)
such happy edges with respect to c.

Consider now edges between clause vertices and variable vertices. For each
i ∈ [m], clause vertex ci is colored with the color corresponding to a literal that
evaluates to 1 with respect to σ. This literal corresponds to some variable, say
xj . All variable vertices corresponding to xj are also colored with the literal of
xj that evaluates to 1 with respect to σ. Hence, for each t ∈ [m2], c(vj,t) = c(ci).
On the other hand, c(vj′,t) 6= c(ci) for any j′ 6= j, since c(vj′,t) corresponds to
a literal of the variable xj′ . Thus, there are exactly m2 happy edges between
ci and the variable vertices vj,t in G with respect to c. In total over all clause
vertices, there are exactly m3 such happy edges.

Considered types of edges are distinct and cover all edges of G. The number
of happy edges among them sums up to k. �

Hence, we showed that if F is satisfiable, then (G, p, k) is a yes-instance of
MHE. We now give a proof in the other direction.

8 I. Bliznets and D. Sagunov

Let c be a coloring of G extending p such that at least k edges of G are
happy with respect to c. We assume that c is optimal, i.e. it yields the maximum
number of happy edges in G. We make the following claims and then show how
to construct a satisfying assignment σ of F .

Claim 2. In any optimal coloring c of G extending p, c(ui) ∈ L(ui) for every
ui ∈ K.

Proof of the claim. Suppose that c is an optimal coloring of G, but c(ui) /∈ L(ui)
for some ui ∈ K. There are exactly Np(Pi, c(ui)) happy edges between ui and I.
On the other hand, |K| = m+nm2, hence ui is adjacent to at most m+nm2−1
vertices of color c(ui) in K.

By (*), Np(Pi, c(ui)) ≤ (i − 1) · (m + nm2), hence ui is incident to at most
|K| − 1 + Np(Pi, c(ui)) ≤ i(m + nm2) − 1 happy edges. But if one picks any
color l ∈ L(ui) and puts c(ui) = l, ui becomes adjacent to at least Np(Pi, l) =
i(m+nm2) happy edges, and the total number of happy edges in G with respect
to c increases. This contradicts the optimality of c. �

Claim 3. In any optimal coloring c of G extending p, all variable vertices corre-
sponding to the same variable are colored with the same color. Formally, c(vj,t1) =
c(vj,t2) for every j ∈ [n] and t1, t2 ∈ [m2].

Proof of the claim. Suppose that c is an optimal coloring extending p, but c(vj,t1) 6=
c(vj,t2) for some j ∈ [n], t1, t2 ∈ [m2]. By Claim 2, c(vj,t1) and c(vj,t2) are distinct
literals of variable xj , and vj,t1 = um+(j−1)m2+t1 and vj,t2 = um+(j−1)m2+t2 are
incident to exactly (m+ (j − 1) ·m2 + t1) · (m+ nm2) and (m+ (j − 1) ·m2 +
t2) · (m+ nm2) happy edges going in I respectively according to (*).

Let h1 and h2 be the number of vertices in K that are colored with colors
c(vj,t1) and c(vj,t2), respectively. Thus, vj,t1 and vj,t2 are incident to exactly
h1−1 and h2−1 happy edges in G[K], respectively. Note that the edge between
vj,t1 and vj,t2 is not happy.

Without loss of generality, h1 ≥ h2. Change the color of vj,t2 in c to c(vj,t1).
Since c(vj,t2) is still a literal of xj , hence c(vj,t2) ∈ L(vj,t2), the number of happy
edges connecting vj,t2 and I does not change, even though the set of such happy
edges becomes different. Consider edges in G[K]. vj,t2 is now adjacent to h1
neighbours of the same color, as the edge between vj,t1 and vj,t2 also becomes
happy. Since h1 > h2− 1, we have increased the total number of happy edges in
G with respect to c. This contradicts the optimality of c. �

We now use the above claims to construct σ from an optimal coloring c
yielding at least k happy edges. By Claim 2, there are exactly (m+ nm2) · (1 +

2 + . . .+ (m+ nm2)) = (m+ nm2) ·
(
m+nm2+1

2

)
happy edges between K and I

with respect to c. By Claim 3, there are exactly n ·
(
m2

2

)
happy edges between

all variable vertices. There are exactly m clause vertices in G, hence there are
at most

(
m
2

)
happy edges between all clause vertices. The only edges left are the

edges between clause and variable vertices, hence there are at least

k − (m+ nm2) ·
(
m+ nm2 + 1

2

)
− n ·

(
m2

2

)
−
(
m

2

)
= m3 −

(
m

2

)

Maximizing Happiness in Graphs of Bounded Clique-Width 9

happy edges between clause and variable vertices.
Construct σ according to the colors of variable vertices, so that the literal

corresponding to c(vj,t) evaluates to 1 with respect to σ. Formally, for each
j ∈ [n], σ(xj) = 1 if c(vj,1) = xj , and σ(xj) = 0 if c(vj,1) = xj . We now argue
that each clause Ci ∈ F contains a literal that evaluates to 1 with respect to σ,
and that this literal is c(ci).

Suppose that it is not true, and there is a clause Ci so that c(ci) is a literal
that evaluates to 0 with respect to σ. By construction of σ, there are no happy
edges between ci and the variable vertices. ci corresponds to a literal evaluating
to 0, but all colors of variable vertices are literals that evaluates to 1 with respect
to σ. Moreover, any other clause vertex ci′ is adjacent to either 0 or m2 variable
vertices of color c(ci′). For each literal, there are either 0 or m2 variable vertices
colored correspondingly to this literal.

There are exactlym−1 clause vertices apart from ci, hence at most (m−1)·m2

edges between clause vertices and variable vertices are happy with respect to c.
But (m− 1) ·m2 = m3 −m2 < m3 −

(
m
2

)
for any m > 0, a contradiction. Thus,

each clause Ci contains a literal that evaluates to 1 with respect to σ, i.e. σ is a
satisfying assignment of F . We proved that if (G, p, k) is a yes-instance of MHE,
then F is satisfiable. The proof is complete. �

Corollary 1. There is no XP-algorithm for Maximum Happy Edges param-
eterized by clique-width, unless P = NP.

Proof. Suppose there is an XP-algorithm for Maximum Happy Edges param-
eterized by clique-width, i.e. there is an algorithm with running time nf(cw) for
some function f for MHE. Threshold graphs are a subclass of cographs [23], that
is, graphs of clique-width at most two [8]. Hence, MHE on threshold graphs can
be solved in nf(2) = nO(1). Then, by Theorem 1, problem that is solvable in
polynomial time is NP-hard, hence P = NP. �

We have shown that MHE parameterized by clique-width alone is hard. Fol-
lowing known results on the existence ofO∗(`O(pw)) andO∗(`O(tw)) running time
algorithms for both MHV and MHE parameterized by pathwidth or treewidth
combined with the number of colors ` [1, 26, 2], it is reasonable to ask the com-
plexity of MHE parameterized by cw+`. We now show that MHE parameterized
by cw + ` admits an XP-algorithm.

Theorem 2. There is an algorithm for Maximum Happy Edges with nO(`·cw)

running time, if a cw-expression of G is given.

Proof. The algorithm is by standard dynamic programming on a given w-expression
Ψ of G. We assume that Ψ is a nice w-expression of G, i.e. no edge is introduced
twice in Ψ . For each subexpression Φ of Ψ ,

OPT (Φ, n1,1, n1,2, . . . , n1,`, n2,1, n2,2, . . . , nw,`−1, nw,`)

denotes the maximum number of happy edges that can be obtained in GΦ si-
multaneously with respect to a coloring such that the number of vertices with a

10 I. Bliznets and D. Sagunov

label i in GΦ that are colored with a color a in GΦ is exactly ni,a. Formally,

OPT (Φ, n1,1, . . . , nw,`) = max

{
|E(GΦ, c)|

∣∣∣∣ c : V (GΦ)→ [`],
∀i ∈ [w], a ∈ [`] : |c−1(a) ∩ Vi(Φ)| = ni,a

}
,

where E(GΦ, c) is the set of edges that are happy in GΦ with respect to c. If
there are no colorings corresponding to a cell OPT (Φ, n1,1, . . . , nw,`), we put its
value equal to −∞.

The algorithm computes the values of OPT in a bottom-up approach, start-
ing from the simplest subexpressions of Ψ up to Ψ itself. Thus, when the algo-
rithm starts computing the values of OPT (Φ, ·) for a subexpression Φ of Ψ , it has
all values of OPT computed for each subexpression of Φ. There are four possible
cases of computing values of OPT (Φ, ·) depending on the topmost operator in
Φ.

1. Φ = i(v). Since GΦ contains a single vertex with label i and no edges, it is
enough to iterate over all possible colors of this vertex. If v is not precolored,
for each color a ∈ [`] put OPT (Φ, 0, . . . , 0, ni,a = 1, 0, . . . , 0) = 0. Otherwise,
the color of v can only be p(v), so do this only for a = p(v). Thus, exactly `
values (or exactly one value) of OPT (Φ, ·) are put equal to 0, and all other
values should equal −∞ by the definition of OPT .

2. Φ = Φ′ ⊕ Φ′′. Consider a cell OPT (Φ, n1,1, . . . , nw,`). Any coloring c corre-
sponding to this cell is split uniquely in the two colorings c′ = c|V (GΦ′)

and
c′′ = c|V (GΦ′′)

of GΦ′ and GΦ′′ respectively. In its order, these colorings cor-
respond to cells OPT (Φ′, n′1,1, . . . , n

′
w,`) and OPT (Φ′′, n′′1,1, . . . , n

′′
w,`), where

n′i,a and n′′i,a are unique for each choice of i ∈ [w], a ∈ [`]. As GΦ is the dis-
joint union of GΦ′ and GΦ′′ , the number of happy edges in GΦ with respect
to c can be found as a sum of happy edges with respect to c′ and c′′ in the
corresponding graphs. Hence,

OPT (Φ, n1,1, . . . , nw,`) =

max
n′i,a+n

′′
i,a=ni,a

{
OPT (Φ′, n′1,1, . . . , n

′
w,`) +OPT (Φ′′, n′′1,1, . . . , n

′′
w,`)

}
. (1)

3. Φ = ρi→jΦ
′. Consider again a coloring c corresponding to a cellOPT (Φ, n1,1, . . . , nw,`).

Note that Φ contains no vertices with label i, so ni,a = 0 for each a ∈ [`].
Moreover, c is a coloring of GΦ′ , thus it corresponds to the unique cell
OPT (Φ, n′1,1, . . . , n

′
w,`), where n′i,a + n′j,a = nj,a for each a ∈ [`] and n′k,a =

nk,a for each choice of label k distinct from i and j, and for each color a ∈ [`].
The number of happy edges in GΦ with respect to c is the same as that in
GΦ′ . Hence,

OPT (Φ, n1,1, . . . , nw,`) =
−∞, if ∃a ∈ [`] : ni,a 6= 0,

max

{
OPT (Φ′, n′1,1, . . . , n

′
w,`)

∣∣∣∣ ∀a ∈ [`] : n′i,a + n′j,a = nj,a
∀k ∈ [w] \ {i, j}, a ∈ [`] : n′k,a = nk,a

}
.

(2)

Maximizing Happiness in Graphs of Bounded Clique-Width 11

4. Φ = ηi,jΦ
′. This is the only case where edges are introduced. Any coloring c of

GΦ is a coloring of G′Φ. Moreover, if c corresponds to OPT (Φ, n1,1, . . . , nw,`)
then, clearly, c corresponds to OPT (Φ′, n1,1, . . . , nw,`) as well. Thus, one
shall only compute the number of newly-introduced edges that are happy
with respect to c. As Ψ is a nice w-expression, each edge between vertices
with label i and vertices with label j is newly-introduced. Each of such
happy edge should connect a vertex with the label i and a vertex with the
label j that are colored with the same color a for some a. The number
of such edges for a fixed a is ni,a · nj,a. Hence, OPT (Φ, n1,1, . . . , nw,`) =

OPT (Φ′, n1,1, . . . , nw,`) +
∑`
a=1 ni,a · nj,a.

The description of all possible cases for Φ and corresponding recurrence re-
lations is finished. Note that there are at most |Ψ | · n`·w cells in the OPT table,
and each of them is computed in O(n`·w) time (computation in the case of dis-
joint union and the case of relabelling takes the most time) by the algorithm.
Thus, the whole computation of OPT takes O(|Ψ | ·n2`·w) running time. Clearly,
the maximum number of happy edges that can be obtained in G simultaneously
equals maxn1,1,...,nw,` OPT (Ψ, n1,1, . . . , nw,`), which is found in O(n`·w) time.
This finishes the proof. �

Corollary 2. Maximum Happy Edges parameterized by cw + ` admits an
XP-algorithm.

The fixed-parameter tractability of MHE with respect to cw +` remains un-
known though. We note that Theorem 2 does not imply that no FPT-algorithm
exists for MHE parameterized by cw + ` under P 6= NP. But it at least implies
that no algorithm with running time O∗(poly(`)f(cw)) exists for MHE, unless
P = NP. We leave the FPT-membership of MHE parameterized by cw + ` as
an open question.

4 Maximum Happy Vertices

We start this section by answering the complexity of Maximum Happy Ver-
tices parameterized by cw + `. We note that MHV is W[2]-hard when param-
eterized by the clique-width of the input graph alone [5]. In contrast to this,
we show that MHV is in FPT if the clique-width parameter is extended by the
number of colors `.

Theorem 3. Maximum Happy Vertices can be solved in (`+ 1)O(w) · nO(1)

running time, if a w-expression of G is given.

Proof. Given a w-expression Ψ ofG, we solve (G, p, k) with the following dynamic
programming.

OPT (Φ, col1, col2, . . . , colw, out1, out2, . . . , outw),

where coli, outi ∈ [`] ∪ {0}, and Φ is a subexpression of Ψ . For convenience, we
may also refer to this value as OPT (Φ, col, out), where col = (col1, col2, . . . , colw)

12 I. Bliznets and D. Sagunov

and out = (out1, out2, . . . , outw), col, out ∈ ([`] ∪ {0})w. Let GΦ be a graph
expressed by Φ, and V (GΦ) = V1tV2t . . .tVk, where Vi is the set of all vertices
in GΦ with label i in Φ. Then OPT (Φ, col, out) denotes the number of special (to
be formally defined below) happy vertices in V (GΦ) maximized over all colorings
c of (G, p) such that

1. c is a full coloring of G extending p;
2. For each i,

– if coli = 0, then either Vi is empty or |c(Vi)| ≥ 2; (here and below,
c(S) =

⋃
v∈S{c(v)} for any S ⊆ V (G))

– otherwise, c(Vi) = {coli};
3. For each i,

– if outi 6= 0, then c(NG(Vi) \NGΦ(Vi)) = {outi}.

We denote the set of all colorings that satisfy the conditions above by C(Φ, col, out).
To explain the purpose of the out values, we suggest the following useful obser-
vation.

Observation 1 For each subexpression Φ of Ψ , each i ∈ [w] and each v ∈ Vi,

NG(v) \NGΦ(v) = NG(Vi) \NGΦ(Vi).

In other words, vertices with the same label have the same set of neighbours apart
from neighbours in GΦ.

With this observation, it is easy to see that, if specified, outi 6= 0 denotes the
color of the neighbours of the vertices with label i, apart from their neighbours
in GΦ. In OPT (Φ, col, out) all happy vertices are counted, except for vertices
in Vi such that outi = 0 and NG(Vi) 6= NGΦ(Vi) (that is, vertices with label i
having at least one neighbour outside GΦ). That is,

OPT (Φ, col, out) = max
c∈C(Φ,col,out)

∣∣∣∣∣H(G, c) ∩
w⋃
i=1

Vi(Φ, outi)

∣∣∣∣∣ ,
where Vi(Φ, outi) = Vi if [outi 6= 0 or NG(Vi) = NGΦ(Vi)], and Vi(Φ, outi) = ∅
otherwise. We recall that by H(G, c) we denote the set of all vertices in G that

are happy with respect to c. For compactness, denote V(Φ, out) =
w⋃
i=1

Vi(Φ, outi).

Note that the conditions impose that if Vi is empty, then coli = 0; and if
NG(Vi) = NGΦ(Vi), then outi = 0. Therefore, for some values of Φ, col and
out, there may be no corresponding colorings c of (G, p), i.e. C(Φ, col, out) = ∅.
For such cases, we put OPT (Φ, col, out) = −∞. Technically, −∞ is a special
value with a property that x + (−∞) = (−∞) + x = −∞ and max{x,−∞} =
max{−∞, x} = x for all possible values of x.

To avoid trivial cases when C(Φ, col, out) = ∅, we introduce the notion of
good triples. It has a property that if a triple (Φ, col, out) is not a good triple,
then C(Φ, col, out) = ∅. This does not work in the other direction though, and
C(Φ, col, out) = ∅ may hold for a good triple (Φ, col, out).

Maximizing Happiness in Graphs of Bounded Clique-Width 13

Definition 2. We say that a triple (Φ, col, out) is a good triple, if it satisfies the
following conditions:

1. For each i ∈ [w], if Vi = ∅, then coli = 0;
2. For each i ∈ [w], if NG(Vi) \NGΦ(Vi) = ∅, then outi = 0;
3. For each i, j ∈ [w] such that i 6= j, outi 6= 0, Vj 6= ∅, if Vj ⊆ NG(Vi)\NGΦ(Vi),

then colj = outi.
4. For each i, j ∈ [w], such that outi 6= 0 and outj 6= 0, if (NG(Vi) \NGΦ(Vi))∩

(NG(Vj) \NGΦ(Vj)) 6= ∅, then outi = outj .

The first two conditions for a good triple were discussed slightly above. If
(Φ, col, out) does not satisfy these two conditions, then C(Φ, col, out) = ∅. The
third condition of a good triple handles the case when vertices with label j are
neighbours of the vertices with label i in G, but not in GΦ yet. If the color of the
outer neighbourhood of the vertices with label i is specified, i.e. outi 6= 0, then
all vertices with label j in GΦ should share the same color outi, i.e. colj = outi.
Obviously, if a triple does not satisfy this condition, there is no colorings cor-
responding to that triple. The fourth condition ensures that for any two labels
sharing an outer neighbour, if the colors of outer neighbours are fixed for both
labels, these fixed colors should be the same. So we have:

Claim 4. Any triple (Φ, col, out) with C(Φ, col, out) 6= ∅ is a good triple.

From now on, we work just with good triples. That is, we do not necessarily
exclude all triples (Φ, col, out) with C(Φ, col, out) = ∅, but just some of them.
More importantly, we do not exclude any triple with C(Φ, col, out) 6= ∅ from our
consideration.

We also note that for each fixed subexpression Φ and each coloring c of (G, p),
there is at least one correct choice of the corresponding values of col and out, so
that c ∈ C(Φ, col, out).

Obviously, the maximum number of happy vertices that can be obtained in
(G, p) can be found as a maximum value of OPT (Ψ, col, out) over all possible val-
ues of col and out. We now show how we calculate the value of OPT (Φ, col, out)
for each possible choice of the subexpression Φ of Ψ , col and out. We do that
in a bottom-up manner, starting with the smallest subexpressions of Φ. In fact,
when we are to calculate the values of OPT for a subexpression Φ, we have all
values of OPT for all proper subexpressions of Φ calculated. Now fix Φ, col and
out, for which (Φ, col, out) is a good triple, and consider the last operator in Φ.
Note that if (Φ, col, out) is not a good triple, then OPT (Φ, col, out) just equals
−∞.

1. Φ = i(v). Then GΦ is a subgraph of G consisting of a single vertex v. Take
any c ∈ C(Φ, col, out). Note that coli 6= 0, as Vi = {v} and |c(Vi)| = 1, so
c(v) = coli. If v is a precolored vertex in (G, p), then c(v) should equal p(v).
Hence, if v is precolored and coli 6= p(v), then C(Φ, col, out) = ∅, and we put
OPT (Φ, col, out) = −∞.
For each j 6= i, Vj = ∅, so colj = outj = 0 for all such j. Since NGΦ(v) = ∅,
c(NG(v)) = c(NG(Vi) \ NGΦ(Vi)). Thus, if outi = 0, then either NG(v) is

14 I. Bliznets and D. Sagunov

empty and v is isolated and happy; or v should not be counted inOPT (Φ, col, out),
even if it is happy. If outi 6= 0, v is not isolated in G and all its neigh-
bours are colored with the color outi by c, hence v is happy if and only if
coli = outi. We get that OPT (Φ, col, out) = 1 if [NG(v) = ∅ or coli = outi],
and OPT (Φ, col, out) = 0 otherwise.

2. Φ = Φ′⊕Φ′′. Let V (GΦ′) = V ′1tV ′2t. . .tV ′w and V (GΦ′′) = V ′′1 tV ′′2 t. . .tV ′′w
in the same way as for V (GΦ). In particular, Vi = V ′i t V ′′i for each i.

Also, similarly to Observation 1, NG(Vi) \NGΦ(Vi) = NG(V ′i) \NGΦ′ (V
′
i) if

V ′i is not empty and NG(Vi) \NGΦ(Vi) = NG(V ′′i) \NGΦ′′ (V
′′
i) if V ′′i is not

empty for each i.

Take any coloring c ∈ C(Φ, col, out). Let out′i = outi if V ′i is not empty and
out′i = 0 otherwise. Define out′′ analogously. Then c ∈ C(Φ′, col′, out′) and
c ∈ C(Φ′′, col′′, out′′) for some choice of the values of col′ and col′′. Consider
a label i. If coli 6= 0, then col′i = col′′i = coli (with an exception that if V ′i or
V ′′i is empty, col′i or col′′i should equal 0 respectively). It is left to consider
coli = 0. If Vi is empty, then both V ′i and V ′′i are empty, so col′i = col′′i = 0
as well. In the other case, |c(Vi)| ≥ 2. Then it is either c(V ′i) = {col′i} and
c(V ′′i) = {col′′i } and col′i 6= col′′i , or at least one of c(V ′i) and c(V ′′i) has size
at least two. That is, V ′i 6= ∅ and col′i = 0, or V ′′i 6= ∅ and col′′i = 0. Denote
by Pi(coli) the set of all such appropriate pairs (col′i, col

′′
i) for coli. That is,

(col′i, col
′′
i) ∈ Pi(coli) if and only if (col′i, col

′′
i) satisfies

(a) If V ′i = ∅, then col′i = 0;

(b) If V ′′i = ∅, then col′′i = 0;

(c) If coli 6= 0, then

i. col′i = coli if V ′i 6= ∅; and
ii. col′′i = coli if V ′′i 6= ∅;

(d) If coli = 0, then either

i. V ′i 6= ∅ and V ′′i 6= ∅ and col′i 6= col′′i ; or
ii. V ′i 6= ∅ and col′i = 0; or

iii. V ′′i 6= ∅ and col′′i = 0.

We formulate the discussion above in the following claim.

Claim 5. Let P (col) = {(col′, col′′) | ∀i ∈ [w] : (col′i, col
′′
i) ∈ Pi(coli)}. Let

out′i = outi if V ′i 6= ∅, and out′i = 0 otherwise. Define out′′i in the same way
for V ′′i . Then

C(Φ, col, out) =
⋃

(col′,col′′)∈P (col)

C(Φ′, col′, out′) ∩ C(Φ′′, col′′, out′′).

We shall now formulate the main lemma for this case.

Lemma 2. Let out′i = outi if V ′i 6= ∅, and out′i = 0 otherwise. Define out′′i
in the same way for V ′′i . Then

OPT (Φ, col, out) = max
(col′,col′′)∈P (col)

{OPT (Φ′, col′, out′) +OPT (Φ′′, col′′, out′′)} .

Maximizing Happiness in Graphs of Bounded Clique-Width 15

Note that this lemma does not immediately follow from the definition of
P (col). The maximum number of happy verticesOPT (Φ′, col′, out′) in V (GΦ′)
is achieved with some coloring c′ ∈ C(Φ′, col′, out′), and the maximum num-
ber of happy vertices in V (GΦ′′) is achieved with some coloring c′′ ∈ C(Φ′′, col′′, out′′).
But in general, c′ and c′′ are different colorings of (G, p). Therefore, we need
a mechanism to combine two different colorings that agree with (Φ, col, out)
in one coloring that preserves all happy vertices in both V(Φ′, out′) and
V(Φ′′, out′′). We proceed with the following claim, which implies Lemma 2.

Claim 6. Let out′i = outi if V ′i 6= ∅, and out′i = 0 otherwise. Define out′′i in
the same way for V ′′i . Let (col′, col′′) ∈ P (col), and let c′ ∈ C(Φ′, col′, out′),
c′′ ∈ C(Φ′′, col′′, out′′). Let c be a coloring of (G, p) defined as

c(v) =

{
c′′(v), if v ∈ V (GΦ′′) ∪NG(V(Φ′′, out′′));
c′(v), otherwise.

Then (i) c ∈ C(Φ′, col′, out′) ∩ C(Φ′′, col′′, out′′), (ii) c ∈ C(Φ, col, out), (iii)
H(G, c) ⊇ (H(G, c′) ∩ V(Φ′, out′)) and H(G, c) ⊇ (H(G, c′′) ∩ V(Φ′′, out′′)).

Proof of the claim. (i) We first show that c is contained in both C(Φ′, col′, out′)
and C(Φ′′, col′′, out′′). Consider C(Φ′′, col′′, out′′). c preserves all colors of the
vertices of GΦ′′ in c′′, so the restrictions imposed by col′′ are satisfied in
c. Moreover, for each i ∈ [w] with out′′i 6= 0, c also preserves the colors of
the outer neighbours of vertices with label i. Thus, the restrictions imposed
by out′′ are satisfied in c as well, and c ∈ C(Φ′′, col′′, out′′). Now consider
C(Φ′, col′, out′), and suppose that c /∈ C(Φ′, col′, out′). Then, by definition of
C, there is a vertex v so that c(v) does not satisfy the restrictions imposed
by col′ and out′. Note that this may only happen if c(v) = c′′(v).
If the unsatisfied restrictions are imposed by col′, then v ∈ V ′i for some i,
col′i 6= 0 and c′′(v) 6= col′i. Since c(v) = c′′(v), v ∈ V (GΦ′′)∪NG(V(Φ′′, out′′)).
As V (GΦ′) and V (GΦ′′) are disjoint, v ∈ NG(V(Φ′′, out′′)). That is, v is a
neighbour of a vertex u ∈ Vj(Φ′′, out′′) for some j. Hence, by definition of
Vj , out′′j 6= 0, and c′′(v) = out′′j . Here we have v ∈ NG(V ′′j)\NGΦ′′ (V

′′
j). Note

that the edge between u and v is outside of GΦ, so Vi ⊆ NG(Vj) \NGΦ(Vj).
Since out′′j = outj , outj 6= 0, and as (Φ, col, out) is a good triple, coli = outj
by the third condition in the definition of good triples. Then c′′(v) = coli, a
contradiction.
If the unsatisfied restrictions are imposed by out′, then v ∈ NG(V ′i)\NGΦ′ (V

′
i)

for some i, out′i 6= 0 and c′′(v) 6= out′i. If v ∈ V ′′j for some j, then col′′j =
colj = outi = out′i by the third condition of a good triple, and we obtain a
contradiction like in the previous case. Thus, v /∈ V (GΦ′′), so v ∈ NG(V ′′j) \
NGΦ′′ (V

′′
j) for some j, and c′′(v) = out′′j . SinceNG(V ′i)\NGΦ′ (V

′
i) = NG(Vi)\

NGΦ(Vi) and NG(V ′′j) \ NGΦ′′ (V
′′
j) = NG(Vj) \ NGΦ(Vj), and (Φ, col, out)

is a good triple, by the fourth condition of a good triple, outi = outj .
Hence, out′i = out′′j = c′′(v), a contradiction. We finally obtain that c ∈
C(Φ′, col′, out′) ∩ C(Φ′′, col′′, out′′).
(ii) Straightforwardly follows from Claim 5 and (i).

16 I. Bliznets and D. Sagunov

(iii) By definition of c, all vertices in V (GΦ′′) that are happy (and counted
in OPT (Φ′′, col′′, out′′)) with respect to c′′ in G, are happy with respect to
c as well. Thus, H(G, c) ⊇ H(G, c′′) ∩ V(Φ′′, out′′). It is left to show that
c(v) = c′(v) for each v ∈ NG[H(G, c′) ∩ V(Φ′, col′)]. That is, c preserves
colors of all happy vertices in V(Φ′, col′) and all their neighbours in G, with
respect to c′.
Suppose that it is not true, and there is a vertex v ∈ NG[H(G, c′)∩V(Φ′, col′)]
such that c(v) 6= c′(v). Then v ∈ V (GΦ′′) ∪ NG(V(Φ′′, out′′)) and c′(v) 6=
c′′(v). Using the fact that (Φ, col, out) is a good triple, we can obtain a con-
tradiction. We skip this case analysis, as it is very similar to the case analysis
shown above for proving that c ∈ C(Φ′, col′, out′) ∩ C(Φ′′, col′′, out′′). �

Claim 6 shows that two colorings c′ ∈ C(Φ′, col′, out′) and c′′ ∈ C(Φ′′, col′′, out′′)
that agree with (Φ, col, out) always can be merged in a single coloring c ∈
C(Φ, col, out) ofGΦ preserving happy vertices in both V(Φ′, out′) and V(Φ′′, out′′),
so Lemma 2 holds. With Lemma 2, it is easy to compute the value of
OPT (Φ, col, out) in (`+ 1)2w · nO(1) time, as |Pi(coli)| ≤ (`+ 1)2.

3. Φ = ρi→jΦ
′. Take a coloring c ∈ C(Φ, col, out). Note that necessarily coli =

outi = 0, as Vi = ∅. We want to find the values of col′ and out′, so that
c ∈ C(Φ′, col′, out′) and V(Φ, out) = V(Φ′, out′). As only labels i and j are
touched by the topmost operator in Φ, colk = col′k and outk = out′k for any
k not equal to i or j. We assume that neither V ′i nor V ′j are empty, otherwise
finding col′ and out′ is trivial. If colj = 0, i.e. |c(Vj)| = |c(V ′i ∪ V ′j)| ≥ 2,
then necessarily at least one of coli and colj is equal to 0 (so |c(V ′i)| ≥ 2
or |c(V ′j)| ≥ 2) or coli 6= colj (so |c(V ′i) ∪ c(V ′j)| = 2). If colj 6= 0, then
col′i = col′j = colj obviously.
Now consider handling out′i and out′j . If outj = 0 and NG(Vj) 6= NGΦ(Vj),
then the vertices with label j in GΦ are not counted in OPT (Φ, col, out), so
we can skip counting them in OPT (Φ′, col′, out′) by putting out′i = out′j = 0.
If outj 6= 0, then c(NG(Vj) \NGΦ(Vj)) = c(NG(V ′i ∪ V ′j) \NGΦ′ (V

′
i ∪ V ′j)) =

outj , so out′i = out′j = outj necessarily. Hence, in either case out′i = out′j =
outj , so out′ = out.
Thus, we obtain

OPT (Φ, col, out) = max
col′

OPT (Φ′, col′, out),

where the values of col′i and col′j are iterated over a few options (if colj 6= 0,

they are both equal to colj , otherwise there are at most (`+ 1)2 − ` options
as discussed above). For each k not equal to i or j, col′k = colk.

4. Φ = ηi,jΦ
′. Again, take a coloring c ∈ C(Φ, col, out) and consider finding

appropriate col′ and out′ so that c ∈ C(Φ, col′, out′) and OPT (Φ, col, out) =
OPT (Φ, col′, out′).
Trivially, col′ = col as Vi = V ′i for each i ∈ [w]. For each k not equal to i or
j, it is enough to put out′k = outk, as NGΦ′ (V

′
k) = NGΦ(Vk).

Consider now the value of outi. If Vj is empty (hence, colj = 0), GΦ equals
GΦ′ , so outi = out′i. If outi = 0, then we should put out′i = 0 so Vi(Φ, out) =

Maximizing Happiness in Graphs of Bounded Clique-Width 17

Vi(Φ′, out′). Suppose that outi 6= 0 and Vj is not empty. If colj = 0 or
colj 6= outi, then all vertices in Vi are unhappy with respect to c, as Vj t
(NG(Vi) \NGΦ(Vi)) ⊆ NG(Vi), but |c(Vj t (NG(Vi) \NGΦ(Vi)))| ≥ 2. Thus,
we would like not to count the vertices in Vi happy in GΦ, so we can put
out′i = 0. In case when colj = outi, all vertices with label i that are happy
in GΦ′ with respect to c are happy in GΦ with respect to c as well. Hence,
one should put out′i = outi in this case. The value of out′j is handled in the
same way.
We finally obtain that OPT (Φ, col, out) = OPT (Φ′, col, out′), where outk =
out′k for each k not equal to i or j, and

out′i =

{
0, if outi 6= 0 and colj 6= outi,
outi, otherwise;

out′j =

{
0, if outj 6= 0 and coli 6= outj ,
outj , otherwise.

This exhausts the list of possible cases.

It is easy to see that the time required for the computation of a value
OPT (Φ, col, out) requires polynomial time for each case, except for the case
of the disjoint union operator. For this case, at most (`+ 1)2w ·nO(1) operations
are required for the computation of a single cell of OPT . Since OPT consists
of at most |Ψ | · (`+ 1)2w cells, computation of all values of OPT takes at most
(`+ 1)4w · nO(1) running time.

It is left to answer the initial problem question using the computed values of
OPT . Note that each full coloring of G extending p is contained in C(Ψ, col, 0)
for some choice of col. Furthermore, V(Ψ, 0) = V (G), so OPT (Ψ, col, 0) is the
maximum number of happy vertices that can be obtained in G with respect
to colorings in C(Ψ, col, 0). Thus, the maximum number of happy vertices that
can be obtained in G equals maxcolOPT (Ψ, col, 0), and this can be found in
O((`+ 1)w) running time having all values of OPT computed. This finishes the
description of the algorithm. �

Corollary 3. Maximum Happy Vertices parameterized by cw +` admits an
FPT-algorithm.

In the rest of this section we show that Maximum Happy Vertices is poly-
nomially solvable on the class of interval graphs, that is related to clique-width
in the following sense. Interval graphs have unbounded clique-width, moreover,
unit interval graphs are minimal hereditary graph class of unbounded clique-
width [22]. Since threshold graphs are a subclass of interval graphs, this result
also covers the result of Choudhari and Reddy in [6], where they showed that
MHV is polynomially solvable on the class of threshold graphs. We also note
that MHE, in contrast to MHV, is NP-hard on the class of interval graphs,
which is a corollary of Theorem 1.

We start with the following convenient characterization of interval graphs.

Theorem 4 ([14]). A graph is an interval graph if and only if its maximal
cliques can be linearly ordered in such a way that for every vertex in the graph
the maximal cliques to which it belongs occur consecutively in the linear order.

18 I. Bliznets and D. Sagunov

The sequence of the maximal cliques of an interval graph G in the correct
ordering from Theorem 4 can be found in O(|V (G)|2) time using the LBFS
algorithm of Corneil, Olariu and Stewart [7]. The following lemma is a folklore
technical result, so it is given without a proof.

Lemma 3. Let G be an interval graph, n = |V (G)|, m = |E(G)|. There is a
sequence S0, S1, . . . , S2n of subsets of V (G), such that

– S0 = S2n = ∅;
– uv ∈ E(G) if and only if u, v ∈ Si for some i;
– for each i ∈ [2n − 1], either Si+1 = Si ∪ {v} for some v ∈ V \ Si, or
Si+1 = Si \ {v} for some v ∈ Si;

– for each vertex v ∈ V (G), {i : v ∈ Si} = [lv, rv − 1] for some 0 < lv < rv ≤
2n.

Moreover, this sequence can be found in O(n2) time.

We shall now prove a very useful property of this sequence.

Lemma 4. Let S1, S2, . . . , S2n be the sequence from Lemma 3. Let i be an ar-
bitrary integer in [0, 2n]. Let Gi = G[S0 ∪ S1 ∪ S2 ∪ . . . ∪ Si]. There is an or-
dering v1, v2, . . . , v|Si| of the vertices in Si such that NGi [v1] ⊇ NGi [v2] ⊇ . . . ⊇
NGi [v|Si|]. Moreover, this ordering can be found in O(n) time.

Proof. We claim that for each Si an appropriate order is the order v1, v2, . . . , v|Si|
so that the values of lvi go in the increasing order. As the values of lv are found in
O(n) time, it is easy to find such ordering in O(n) time as well, using additional
O(n) memory.

It is easy to prove that this ordering is sufficient by induction on i. The base
case i = 0 is trivial since Si = ∅. Let now i > 0 be an integer and the claim hold
for i−1. There are two possible cases: either Si = Si−1\{v} or Si = Si−1∪{v}. In
the former case, Gi−1 and Gi are the same, and the ordering of the vertices Si is
just a subsequence of the ordering of the vertices of Si−1, so the claim holds true
for i. In the latter case, Gi differs from Gi−1 in the vertex v and edges connecting
each vertex in Si−1 with v, so NGi [v] = Si and NGi [u] = NGi−1

[u]∪{v} for each
vertex u ∈ Si−1. Since Si induces a clique in Gi, Si ⊆ NGi [u], equivalently,
NGi [v] ⊆ NGi [u] for each u ∈ Si. As v has the largest value of lv among all
vertices in Si, it stands the last in the ordering for Si, and its neighbourhood is
contained in the neighbourhood of each other vertex in Si. The other vertices in
the ordering of Si are no different from these of Si−1, so the claim holds true for
i as well. The proof is finished. �

We are now ready to present a polynomial time algorithm for the Maximum
Happy Vertices problem on the class of interval graphs.

Theorem 5. There is O(`n2) running time algorithm for Maximum Happy
Vertices on interval graphs.

Maximizing Happiness in Graphs of Bounded Clique-Width 19

Proof. We present an algorithm solving Maximum Happy Vertices on the
class of interval graphs. Let (G, p, k) be an instance of MHV given to the algo-
rithm, where G is an interval graph, n = |V (G)|, m = |E(G)|.

Firstly, the algorithm finds a sequence S0, S1, S2, . . . , S2n from Lemma 3 in
O(n2) time. Then it employs a dynamic programming over the sequence. Denote
by Gi the graph induced by the union of the first i+ 1 subsets in the sequence,
i.e. Gi = G[S0∪S1∪ . . .∪Si]. Then, for each i ∈ {0}∪ [2n], each h ∈ {0}∪ [|Si|],
each a ∈ {−1} ∪ [`] and each u ∈ {−1} ∪ Si, the dynamic programming value
OPT (i, h, a, u) is formally defined as

OPT (i, h, a, u) = max


|H(Gi, c)|

∣∣∣∣∣∣∣∣∣∣∣∣∣

c : V (Gi)→ [`],
c extends p in Gi,
h = |H(Gi, c) ∩ Si|,

a = c

(
argmax
v∈Si

(rv)

)
, if Si 6= ∅; or a = −1,

u = argmax
v∈Si,c(v)6=a

(rv), if |c(Si)| > 1; or u = −1.


.

(3)
Also denote by C(i, h, a, u) the set of all colorings of Gi corresponding to the

right part of equation 3 for OPT (i, h, a, u), so

OPT (i, h, a, u) = max
c∈C(i,h,a,u)

|H(Gi, c)|.

For each choice of (i, h, a, u) such that there is no appropriate coloring c for this
choice, i.e. C(i, h, a, u) = ∅, we put OPT (i, h, a, u) = −∞. Strictly speaking,
OPT (i, h, a, u) denotes the maximum number of vertices that can be happy
simultaneously in Gi with respect to colorings c such that there are exactly h
happy vertices in Si, the vertex v ∈ Si with the largest value of rv is colored
with the color a. And u denotes the vertex that is colored with a color different
from a with the largest value of ru.

The intuition behind this DP is the following. Since each Si induces a clique
in G, Si can contain a happy vertex only if all its vertices are colored with the
same color. Thus, we do not really need to store the colors of all vertices in Si
as parameters of OPT , since happy vertices can be produced only when there is
exactly one color in Si. The value of u allows to understand whether all vertices
in Si are colored with the same color. Moreover, the value of a clearly determines
this color. Due to the interval structure of G, the values of h, a and u can be
easily maintained while making transitions from i to i+ 1. The following claim
shows that the set of happy vertices inside Si is determined uniquely by the
value of h.

Claim 7. Let c ∈ C(i, h, a, u) be a coloring of Gi extending p. Let v1, v2, . . . , v|Si|
be an ordering of the vertices in Si from Lemma 4. Then H(Gi, c) ∩ Si =
{v|Si|−h+1, v|Si|−h, . . . , v|Si|}.

Proof of the claim. By definition of C(i, h, a, u), |H(Gi, c)∩Si| = h. By Lemma
4, NGi [vj] ⊇ NGi [vj+1] for each j ∈ [|Si| − 1]. Hence, if vj ∈ H(Gi, c), then

20 I. Bliznets and D. Sagunov

vj+1 ∈ H(Gi, c) also. Thus, H(Gi, c)∩ Si consists of the last h vertices from the
ordering. �

Clearly, OPT (0, 0,−1,−1) = 0 and every other value of OPT (0, ·, ·, ·) equals
−∞, as S0 = ∅. Now the algorithm has all values of OPT computed correctly for
i = 0. Then, the algorithm iterates over all values of i from 0 to 2n−1. Having the
value of i fixed, our algorithm initializes all values of OPT (i+ 1, ·, ·, ·) with −∞.
Then it iterates over each state of the dynamic programming OPT (i, h, a, u)
with OPT (i, h, a, u) 6= −∞. Consider now a coloring c ∈ C(i, h, a, u) of Gi.
There are two possible options of how Gi+1 and Si+1 differs from Gi and Si.
If Si+1 = Si \ {v}, then Gi+1 = Gi, so c is a full coloring of Gi+1 extending p.
The following claim formalizes dynamic programming transitions that should be
made in this case.

Claim 8. Let c ∈ C(i, h, a, u). Suppose Si+1 = Si \ {v} for some v ∈ Si. Then
c ∈ C(i+ 1, h′, a′, u′), where

h′ =

{
h− 1, if v ∈ H(Gi, c),
h, otherwise.

(4)

and

a′ =

{
−1, if Si+1 = ∅,
a, otherwise.

(5)

and

u′ =

{
−1, if u = v,
u, otherwise.

(6)

and

H(Gi+1, c) = H(Gi, c). (7)

Proof of the claim. H(Gi+1, c) = H(Gi, c) is true since Gi = Gi+1. Recall that
h′ = |H(Gi+1, c)∩Si+1| = |H(Gi, c)∩(Si \{v})|. If v ∈ H(Gi, c), then h′ = h−1,
otherwise h′ = h.

Recall that a denotes the color of the vertex w ∈ Si with the largest value of
rw, and a′ denotes such a color in Si+1 = Si \ {v}. Since v is the vertex with the
smallest value of rv in Si (rv = i + 1), a′ should change only if Si = {v}. The
same can be said about u and u′. �

Basically, Claim 8 states that C(i, h, a, u) = C(i + 1, h′, a′, u′), where h′, a′

and u′ depend only on the values of i, h, a and u. Note that in order to compute
the value of h′, our algorithm firstly finds H(Gi, c)∩Si as stated in Claim 7. To
do this, the algorithm needs the ordering of the vertices of Si from Lemma 4.
This ordering is found once for a fixed value of i in O(n) time. When the ordering
for a fixed i is known, then, by Claim 7, the condition v ∈ H(Gi, c) (equivalently,
v ∈ H(Gi, c) ∩ Si) from equation 4 can be checked in O(1) time using the value
of h. Thus, for each fixed values of i, h, a and u, the algorithm computes h′, a′

Maximizing Happiness in Graphs of Bounded Clique-Width 21

and u′ and updates current value of OPT (i+ 1, h′, a′, u′) (initially all values of
OPT (i+ 1, ·, ·, ·) are equal to −∞) with the value of OPT (i, h, a, u):

OPT (i+ 1, h′, a′, u′) := max{OPT (i+ 1, h′, a′, u′), OPT (i, h, a, u)}.

Since each full coloring of Gi+1 is a full coloring of Gi and all values OPT (i, ·, ·, ·)
are computed correctly, all values of OPT (i+ 1, ·, ·, ·) are computed correctly as
well. Note that if h > 0 and u 6= −1, then necessarily OPT (i, h, a, u) = −∞, as
there may be no happy vertices inside Si, if Si contains two vertices colored with
distinct colors. The algorithm does not iterate over such values of OPT (i, h, a, u),
so for a fixed value of i it iterates over at most

|Si| · ` · 1 + 1 · ` · |Si| = O(`n) (**)

values. For each fixed triple of values of h, a and u the transitions are done inO(1)
time, so it takes O(`n) time in total to compute all values of OPT (i + 1, ·, ·, ·)
in the case Si+1 = Si \ {v}.

We now describe transitions for the second case, when Si+1 = Si ∪ {v}, so
Gi+1 differs from Gi by a vertex v and all edges between v and Si. Now, for a
coloring c ∈ C(i, h, a, u) we consider each extension of c onto v agreeing with
p. That is, if v is a vertex precolored by p, we consider only one extension of c.
Otherwise, we consider all ` colors of v in an extension of c. When the color of
v in an extension of c, say c′, is specified, then c′ ∈ C(i + 1, h′, a′, u′) for some
values of h′, a′ and u′. The following claim shows how to determine these values.

Claim 9. Let c ∈ C(i, h, a, u). Suppose Si+1 = Si∪{v} for some v ∈ V \Si and
denote w = argmax

w∈Si
rw, if Si 6= ∅. Let c′ be an extension of c onto V (Gi+1) such

that c′(v) = b. Then c′ ∈ C(i+ 1, h′, a′, u′), where

h′ =

{
h+ 1, if a = −1 or (a = b and u = −1),
0, otherwise.

(8)

and

a′ =

{
a, if a 6= −1 and rv < rw,
b, otherwise.

(9)

and

u′ =


−1, if u = −1 and (a = −1 or a = b),
u, if a = b or (u 6= −1 and rv < ru),
w, if a 6= b and rv > rw,
v, otherwise.

(10)

and
|H(Gi+1, c

′)| = |H(Gi, c)|+ h′ − h. (11)

Proof of the claim. Consider proving the equation for h′. Recall that NGi+1
(v) =

Si and h′ = |H(Gi+1, c
′) ∩ Si+1| = |H(Gi+1, c

′) ∩ (Si ∪ {v})|. Note that if v is
happy with respect to c′, then all vertices in Si are colored with the color b
or Si = ∅. Clearly, Si = ∅ is equivalent to a = −1. Note that u = −1 is

22 I. Bliznets and D. Sagunov

equivalent |c(Si)| ≤ 1. Thus, u = −1 and a = b is equivalent to that Si is
not empty and all vertices in Si are colored with the color b by c. Thus, if
v is happy with respect to c′ in Gi+1, then H(Gi+1, c

′) = H(Gi, c) ∪ {v}, so
h′ = h + 1. If, otherwise, v /∈ H(Gi+1, c

′), then no vertex in Si (hence no
vertex in Si+1), is happy with respect to c′ in Gi+1, so h′ = 0. The equality
|H(Gi+1, c

′)| = |H(Gi, c)|+h′−h follows from the discussion above and the fact
that H(Gi+1, c

′) \ Si+1 = H(Gi, c) \ Si.
To prove the equation for a′, recall that

a′ = c′

(
argmax
z∈Si+1

(rz)

)
= c′

(
argmax
z∈Si∪{v}

(rz)

)
= c′

(
argmax
z∈{v,w}

(rz)

)
,

if Si 6= ∅. Hence, a′ = c′(w) = c(w) = a if rw > rv, and a′ = c′(v) = b
otherwise. If Si = ∅, which is equivalent to a = −1, then Si+1 = {v}, so obviously
a′ = c′(v) = b.

It is left to prove the equation for u′. Recall that u stands for the vertex in
Si with the largest value of ru among all vertices that are colored with a color
different from a. u′ denotes the same vertex, but for Si+1 and a′. If u = −1, then
either Si is empty (equivalently, a = −1) or all vertices in Si are colored with
the same color a. If a = −1 or a = b, then Si+1 is a set of vertices colored with
the same color. Hence, in this case u′ = −1. For any other case, u′ 6= −1. The
other parts of the equation for u′ are handled technically in a similar way. �

Similarly to the previous case, algorithm iterates over all values of h, a and u
(except for values with OPT (i, h, a, u) = −∞), computes the values of h′, a′, u′

according to Claim 9 and performs an update

OPT (i+ 1, h′, a′, u′) := max{OPT (i+ 1, h′, a′, u′), OPT (i, h, a, u) + h′ − h}.

Note that the value of w in Claim 9 depends only on i and is computed once
in O(n) time. Also in this case algorithm also has to iterate over all ` values of
c′(v) (except for if p(v) is specified, then it is just a single fixed value). Iterating
over the values of h, a and u takes O(`n) time by ** and iterating over the
value of c′(v) takes O(`) time and the transitions are done in O(1) time, so the
computation of all values of OPT (i+ 1, ·, ·, ·) takes O(`2n) time in total.

This already gives us an overall O(`2n2) running time bound for the algo-
rithm. We shall now optimize the algorithm to obtain the upper bound of O(`n2)
for its running time. Note that for the values of i with Si = ∅ the running time
bound of O(1) is achieved by the algorithm, as the only value of OPT (i, ·, ·, ·) not
equal to −∞ is OPT (i, 0,−1,−1). We now assume that Si 6= ∅, hence a 6= −1.
Consider the case when rv > rw and the equations in Claim 9. Note that the
values of h′, a′ and u′ do not depend on the value of b itself, but only on whether
a 6= b or not. Thus, it is not necessary for the algorithm to iterate over all `
possible values of b = c′(v), as all values of c′(v) different from a are handled in
the same way with the same dynamic programming transitions. So it is enough
for the algorithm to consider only two cases c′(v) = a and c′(v) 6= a (if v is a

Maximizing Happiness in Graphs of Bounded Clique-Width 23

precolored vertex, there is still the only case c′(v) = p(v)). Hence, for the values
of i for which rv < rw, this change in the algorithm achieves the desired O(`n)
running time bound.

Consider now the other case, rv > rw. In this case, the value of a′ equals to
the color of v in c′, but does not depend on a. It only matters whether a 6= b or
not for correct computation of h′ and u′. Thus, in this case algorithm iterates
over possible values of h, u and c′(v), but not fixing the value of a′. To handle
the case c′(v) = a, it is enough to find the values of h′ and u′ accordingly to
Claim 9 and make the transition

OPT (i+1, h′, c′(v), u′) := max{OPT (i+1, h′, c′(v), u′), OPT (i, h, c′(v), u)+h′−h}.

To handle the other case, c′(v) 6= a, essentially a transition of kind

OPT (i+1, h′, c′(v), u′) := max{OPT (i+1, h′, c′(v), u′), max
a6=c′(v)

OPT (i, h, a, u)+h′−h}

is enough to be made. Thus, it is enough to compute maxa6=c′(v)OPT (i, h, a, u)
faster for any given value of c′(v). To achieve that, for a fixed triple of val-
ues i, h and u compute a sequence p0, p1, . . . , p`, where p0 = −∞ and pj =
max{pj−1, OPT (i, h, j, u)} for each j ∈ [`], in O(`) time straightforwardly. pj
is essentially the maximum value among the values of OPT (i, h, ·, u) taken
for the first j colors. Analogously compute a sequence s`+1, s`, . . . , s1, where
s`+1 = −∞ and sj = max{sj+1, OPT (i, h, j, u)} for each j ∈ [`], in O(`) run-
ning time. In other words, sj is the maximum value of OPT (i, h, ·, u) among
the colors from j to `. When these two sequence are computed, then, clearly,
maxa 6=c′(v)OPT (i, h, a, u) can be found as max{pc′(v)−1, sc′(v)+1}. Hence, the
transition above can be done in O(1) time. For a fixed value of i, the sequences
p and s are computed in O(`) time once for each pair of values of h and u,
then, for each triple h, u and c′(v), the transition is done in O(1) time. Thus,
the algorithm requires O(`n) running time for these steps.

This finishes the description of the computation of OPT . For each fixed value
of i the computation of OPT (i + 1, ·, ·, ·) takes O(`n) time, so it takes O(`n2)
time in total to compute all values of OPT .

Clearly, the maximum number of happy vertices that can be obtained in
(G, p) equals OPT (2n, 0,−1,−1), as G2n = G and C(2n, 0,−1,−1) equals the
set of all colorings of G extending p. Hence, the algorithm finally checks that
OPT (2n, 0,−1,−1) is at least k to determine whether (G, p, k) is a yes-instance
of MHV. This finishes the proof. �

References

1. Agrawal, A.: On the parameterized complexity of happy vertex coloring. In: Inter-
national Workshop on Combinatorial Algorithms. pp. 103–115. Springer (2017)

2. Aravind, N., Kalyanasundaram, S., Kare, A.S.: Linear time algorithms for happy
vertex coloring problems for trees. In: International Workshop on Combinatorial
Algorithms. pp. 281–292. Springer (2016)

24 I. Bliznets and D. Sagunov

3. Aravind, N., Kalyanasundaram, S., Kare, A.S., Lauri, J.: Algorithms and hardness
results for happy coloring problems. arXiv preprint arXiv:1705.08282 (2017)

4. Bliznets, I., Sagunov, D.: Lower bounds for the happy coloring problems. In:
Du, D.Z., Duan, Z., Tian, C. (eds.) Computing and Combinatorics. pp. 490–502.
Springer International Publishing, Cham (2019)

5. Bliznets, I., Sagunov, D.: On happy colorings, cuts, and structural parameteri-
zations. In: International Workshop on Graph-Theoretic Concepts in Computer
Science. pp. 148–161. Springer (2019)

6. Choudhari, J., Reddy, I.V.: On structural parameterizations of happy coloring,
empire coloring and boxicity. In: WALCOM: Algorithms and Computation, pp.
228–239. Springer International Publishing (2018)

7. Corneil, D.G., Olariu, S., Stewart, L.: The LBFS structure and recognition of
interval graphs. SIAM Journal on Discrete Mathematics 23(4), 1905–1953 (Jan
2010). https://doi.org/10.1137/s0895480100373455

8. Courcelle, B., Olariu, S.: Upper bounds to the clique width of graphs. Discrete
Applied Mathematics 101(1-3), 77–114 (apr 2000)

9. Cygan, M., Fomin, F.V., Kowalik, L., Lokshtanov, D., Marx, D., Pilipczuk, M.,
Pilipczuk, M., Saurabh, S.: Parameterized algorithms, vol. 3. Springer (2015)

10. Diestel, R.: Graph theory. Springer Publishing Company, Incorporated (2018)
11. Espelage, W., Gurski, F., Wanke, E.: How to solve np-hard graph problems on

clique-width bounded graphs in polynomial time. In: International Workshop on
Graph-Theoretic Concepts in Computer Science. pp. 117–128. Springer (2001)

12. Fomin, F.V., Golovach, P.A., Lokshtanov, D., Saurabh, S.: Almost optimal lower
bounds for problems parameterized by clique-width. SIAM Journal on Computing
43(5), 1541–1563 (2014)

13. Gerber, M.U., Kobler, D.: Algorithms for vertex-partitioning problems on graphs
with fixed clique-width. Theoretical Computer Science 299(1-3), 719–734 (2003)

14. Gilmore, P.C., Hoffman, A.J.: A characterization of comparability graphs and
of interval graphs. Canadian Journal of Mathematics 16, 539–548 (1964).
https://doi.org/10.4153/cjm-1964-055-5

15. Giménez, O., Hliněnỳ, P., Noy, M.: Computing the tutte polynomial on graphs of
bounded clique-width. In: International Workshop on Graph-Theoretic Concepts
in Computer Science. pp. 59–68. Springer (2005)

16. Hartmann, T.A.: Target set selection parameterized by clique-width and maximum
threshold. In: International Conference on Current Trends in Theory and Practice
of Informatics. pp. 137–149. Springer (2018)

17. Hliněnỳ, P., Oum, S., Seese, D., Gottlob, G.: Width parameters beyond tree-width
and their applications. The Computer Journal 51(3), 326–362 (nov 2007)

18. Kobler, D., Rotics, U.: Polynomial algorithms for partitioning problems on graphs
with fixed clique-width. In: Proceedings of the 12th annual ACM-SIAM SODA.
pp. 468–476. Society for Industrial and Applied Mathematics (2001)

19. Kobler, D., Rotics, U.: Edge dominating set and colorings on graphs with fixed
clique-width. Discrete Applied Mathematics 126(2-3), 197–221 (2003)

20. Lackner, M., Pichler, R., Rümmele, S., Woltran, S.: Multicut on graphs of bounded
clique-width. In: Combinatorial Optimization and Applications, pp. 115–126.
Springer Berlin Heidelberg (2012)

21. Lewis, R., Thiruvady, D., Morgan, K.: Finding happiness: An analysis of the max-
imum happy vertices problem. Computers & Operations Research 103, 265–276
(2019)

22. Lozin, V.V.: Clique-width of unit interval graphs. arXiv:0709.1935 preprint (2007)

https://doi.org/10.1137/s0895480100373455
https://doi.org/10.4153/cjm-1964-055-5

Maximizing Happiness in Graphs of Bounded Clique-Width 25

23. Mahadev, N.V.R., Peled, U.N.: Threshold graphs and related topics. Amsterdam:
Elsevier (1995)

24. Mahadev, N., Peled, U.: Threshold Graphs and Related Topics, Volume 56 (Annals
of Discrete Mathematics). North Holland (1995)

25. Makowsky, J.A., Rotics, U., Averbouch, I., Godlin, B.: Computing graph polyno-
mials on graphs of bounded clique-width. In: International Workshop on Graph-
Theoretic Concepts in Computer Science. pp. 191–204. Springer (2006)

26. Misra, N., Reddy, I.V.: The parameterized complexity of happy colorings. In: In-
ternational Workshop on Combinatorial Algorithms. pp. 142–153. Springer (2017)

27. Xu, Y., Goebel, R., Lin, G.: Submodular and supermodular multi-labeling, and
vertex happiness. CoRR (2016)

28. Zhang, P., Jiang, T., Li, A.: Improved approximation algorithms for the maximum
happy vertices and edges problems. In: International Computing and Combina-
torics Conference. pp. 159–170. Springer (2015)

29. Zhang, P., Li, A.: Algorithmic aspects of homophyly of networks. Theoretical Com-
puter Science 593, 117–131 (2015)

30. Zhang, P., Xu, Y., Jiang, T., Li, A., Lin, G., Miyano, E.: Improved approximation
algorithms for the maximum happy vertices and edges problems. Algorithmica
80(5), 1412–1438 (2018)

	Maximizing Happiness in Graphs of Bounded Clique-Width

