Skip to main content

GARNet: Graph Attention Residual Networks Based on Adversarial Learning for 3D Human Pose Estimation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12221))

Abstract

Recent studies have shown that, with the help of complex network architecture, great progress has been made in estimating the pose and shape of a 3D human from a single image. However, existing methods fail to produce accurate and natural results for different environments. In this paper, we proposed a novel adversarial learning approach and studied the problem of learning graph attention network for regression. Graph Attention Residual Networks (GARNet), which processes regression tasks with graphic-structured data, learns to capture semantic information, such as local and global node relationships, through end-to-end training without additional supervision. The adversarial learning module is implemented by a novel multi-source discriminator network to learn the mapping from 2D pose distribution to 3D pose distribution. We conducted a comprehensive study to verify the effectiveness of our method. Experiments show that the performance of our method is superior to that of most existing techniques.

Supported by the National Natural Science Foundation of China (Grant No. 61672228, 61370174) and Shanghai Automotive Industry Science and Technology Development Foundation (No. 1837).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Kocabas, M., Karagoz, S., Akbas, E.: Self-supervised learning of 3D human pose using multi-view geometry. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1077–1086 (2019)

    Google Scholar 

  2. Pavlakos, G., Zhou, X., Derpanis, K.G., Daniilidis, K.: Coarse-to-fine volumetric prediction for single-image 3D human pose. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 1263–1272 (2017)

    Google Scholar 

  3. Zhou, X., Huang, Q., Sun, X., Xue, X., Wei, Y.: Towards 3D human pose estimation in the wild: a weakly-supervised approach. In: IEEE International Conference on Computer Vision, pp. 398–407 (2017)

    Google Scholar 

  4. Liang, S., Sun, X., Wei, Y.: Compositional human pose regression. Comput. Vis. Image Underst. 176–177, 1–8 (2018)

    Article  Google Scholar 

  5. Mehta, D., et al.: Monocular 3D human pose estimation in the wild using improved CNN supervision. In: 2017 International Conference on 3D Vision, pp. 506–516 (2017)

    Google Scholar 

  6. Tomè, D., Russell, C., Agapito, L.: Lifting from the deep: convolutional 3D pose estimation from a single image. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, pp. 5689–5698 (2017)

    Google Scholar 

  7. Sun, X., Xiao, B., Wei, F., Liang, S., Wei, Y.: Integral human pose regression. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11210, pp. 536–553. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01231-1_33

    Chapter  Google Scholar 

  8. Morenonoguer, F.: 3D human pose estimation from a single image via distance matrix regression. In: 2017 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1561–1570 (2017)

    Google Scholar 

  9. Buades, A., Coll, B., Morel, J.: A non-local algorithm for image denoising. In: 2005 IEEE Conference on Computer Vision and Pattern Recognition, pp. 60–65 (2005)

    Google Scholar 

  10. Martinez, J.A., Hossain, R., Romero, J., Little, J.J.: A simple yet effective baseline for 3D human pose estimation. In: IEEE International Conference on Computer Vision, pp. 2659–2668 (2017)

    Google Scholar 

  11. Pavlakos, G., Zhou, X., Daniilidis, K.: Ordinal depth supervision for 3D human pose estimation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 7307–7316 (2018)

    Google Scholar 

  12. Fang, H., Xu, Y., Wang, W., Liu, X., Zhu, S.: Learning pose grammar to encode human body configuration for 3D pose estimation. In: Conference on Artificial Intelligence, pp. 6821–6828 (2018)

    Google Scholar 

  13. Yan, S., Xiong, Y., Lin, D.: Spatial tempobral graph convolutional networks for skeleton-based action recognition. In: Conference on Artificial Intelligence, pp. 7444–7452 (2018)

    Google Scholar 

  14. Yang, J., Lu, J., Lee, S., Batra, D., Parikh, D.: Graph R-CNN for scene graph generation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11205, pp. 690–706. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01246-5_41

    Chapter  Google Scholar 

  15. Wandt, B., Ackermann, H., Rosenhahn, B.: A kinematic chain space for monocular motion capture. In: Leal-Taixé, L., Roth, S. (eds.) ECCV 2018. LNCS, vol. 11132, pp. 31–47. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11018-5_4

    Chapter  Google Scholar 

  16. Wandt, B., Rosenhahn, B.: RepNet: weakly supervised training of an adversarial reprojection network for 3D human pose estimation. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 7782–7791 (2019)

    Google Scholar 

  17. Chen, Y., Shen, C., Wei, X., Liu, L., Yang, J.: Adversarial PoseNet: a structure-aware convolutional network for human pose estimation. In: IEEE International Conference on Computer Vision, pp. 1221–1230 (2017)

    Google Scholar 

  18. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In: IEEE Conference on Computer Vision and Pattern Recognition, pp. 770–778 (2016)

    Google Scholar 

  19. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift. In: Proceedings of the 32nd International Conference on Machine Learning, pp. 448–456 (2015)

    Google Scholar 

  20. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on Machine Learning, pp. 807–814 (2010)

    Google Scholar 

  21. Sun, X., Shang, J., Liang, S., Wei, Y.: Compositional human pose regression. In: IEEE International Conference on Computer Vision, pp. 2621–2630 (2017)

    Google Scholar 

  22. Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3.6m: large scale datasets and predictive methods for 3D human sensing in natural environments. IEEE Trans. Pattern Anal. Mach. Intell. 36, 1325–1339 (2014)

    Article  Google Scholar 

  23. Andriluka, M., Pishchulin, L., Gehler, P V., Schiele, B.: 2D human pose estimation: new benchmark and state of the art analysis. In: 2014 IEEE Conference on Computer Vision and Pattern Recognition, pp. 3686–3693 (2014)

    Google Scholar 

  24. Du, Y., et al.: Marker-less 3D human motion capture with monocular image sequence and height-maps. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9908, pp. 20–36. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46493-0_2

    Chapter  Google Scholar 

  25. Yang, W., Ouyang, W., Wang, X., Ren, J., Li, H., Wang, X.: 3D human pose estimation in the wild by adversarial learning. In: 2018 IEEE Conference on Computer Vision and Pattern Recognition, pp. 5255–5264 (2018)

    Google Scholar 

  26. Hossain, M.R.I., Little, J.J.: Exploiting temporal information for 3D human pose estimation. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11214, pp. 69–86. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01249-6_5

    Chapter  Google Scholar 

  27. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 483–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_29

    Chapter  Google Scholar 

  28. Kamel, A., Sheng, B., Yang, P., Li, P., Shen, R., Feng, D.D.: Deep convolutional neural networks for human action recognition using depth maps and postures. IEEE Trans. Syst. Man Cybern. Syst. 49(9), 1806–1819 (2019)

    Article  Google Scholar 

  29. Karambakhsh, A., Kamel, A., Sheng, B., Li, P., Yang, P., Feng, D.D.: Deep gesture interaction for augmented anatomy learning. Int. J. Inf. Manage. 45, 328–336 (2019)

    Article  Google Scholar 

  30. Sheng, B., Li, P., Zhang, Y., Mao, L.: GreenSea: visual soccer analysis using broad learning system. IEEE Trans. Cybern. 1–15 (2020)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihua Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chen, Z., Liu, X., Sheng, B., Li, P. (2020). GARNet: Graph Attention Residual Networks Based on Adversarial Learning for 3D Human Pose Estimation. In: Magnenat-Thalmann, N., et al. Advances in Computer Graphics. CGI 2020. Lecture Notes in Computer Science(), vol 12221. Springer, Cham. https://doi.org/10.1007/978-3-030-61864-3_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61864-3_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61863-6

  • Online ISBN: 978-3-030-61864-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics