Skip to main content

A New Volume-Based Convexity Measure for 3D Shapes

  • Conference paper
  • First Online:
Advances in Computer Graphics (CGI 2020)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 12221))

Included in the following conference series:

  • 1909 Accesses

Abstract

Convexity, as a global and learning-free shape descriptor, has been widely applied to shape classification, retrieval and decomposition. Unlike its extensively addressed 2D counterpart, 3D shape convexity measurement attracting insufficient attention has yet to be studied. In this paper, we put forward a new volume-based convexity measure for 3D shapes, which builds on a conventional volume-based convexity measure but excels it by resolving its problems. By turning the convexity measurement into a problem of influence evaluation through Distance-weighted Volume Integration, the new convexity measure can resolve the major problems of the existing ones and accelerate the overall computational time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aktaş, M.A., Žunić, J.: Sensitivity/robustness flexible ellipticity measures. In: Pinz, A., Pock, T., Bischof, H., Leberl, F. (eds.) DAGM/OAGM 2012. LNCS, vol. 7476, pp. 307–316. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32717-9_31

    Chapter  Google Scholar 

  2. Attene, M., Mortara, M., Spagnuolo, M., Falcidieno, B.: Hierarchical convex approximation of 3D shapes for fast region selection. Comput. Graph. Forum 27(5), 1323–1332 (2008)

    Article  Google Scholar 

  3. Chen, X., Golovinskiy, A., Funkhouser, T.: A benchmark for 3D mesh segmentation. ACM Trans. Graph. 28, 1–12 (2009)

    Google Scholar 

  4. Leou, J.J., Tsai, W.H.: Automatic Rotational Symmetry Determination For Shape Analysis. Elsevier Science Inc., New York (1987)

    Book  Google Scholar 

  5. Li, R., Liu, L., Sheng, Y., Zhang, G.: A heuristic convexity measure for 3D meshes. Vis. Comput. 33, 903–912 (2017). https://doi.org/10.1007/s00371-017-1385-6

    Article  Google Scholar 

  6. Li, R., Shi, X., Sheng, Y., Zhang, G.: A new area-based convexity measure with distance weighted area integration for planar shapes. Comput. Aided Geom. Des. 71, 176–189 (2019)

    Article  MathSciNet  Google Scholar 

  7. Lian, Z., Godil, A.: A feature-preserved canonical form for non-rigid 3D meshes. In: International Conference on 3D Imaging, Modeling, Processing, Visualization and Transmission, pp. 116–123 (2011)

    Google Scholar 

  8. Lian, Z., Godil, A., Rosin, P.L., Sun, X.: A new convexity measurement for 3D meshes. In: Computer Vision and Pattern Recognition (CVPR), pp. 119–126 (2012)

    Google Scholar 

  9. Lian, Z., Rosin, P.L., Sun, X.: Rectilinearity of 3D meshes. Int. J. Comput. Vis. 89, 130–151 (2010)

    Article  Google Scholar 

  10. Mesadi, F., Tasdizen, T.: Convex decomposition and efficient shape representation using deformable convex polytopes. In: Computer Vision and Pattern Recognition (2016)

    Google Scholar 

  11. Ren, Z., Yuan, J., Liu, W.: Minimum near-convex shape decomposition. IEEE Trans. Patt. Anal. Mach. Intell. 35(10), 2546–2552 (2013)

    Article  Google Scholar 

  12. Rosin, P.L.: Classification of pathological shapes using convexity measures. Pattern Recogn. Lett. 30, 570–578 (2009)

    Article  Google Scholar 

  13. Shilane, P., Min, P., Kazhdan, M., Funkhouser, T.: The princeton shape benchmark. Shape Model. Appl. IEEE 105, 167–178 (2004)

    Google Scholar 

  14. Sipiran, I., Gregor, R., Schreck, T.: Approximate symmetry detection in partial 3D meshes. Comput. Graph. Forum 33(7), 131–140 (2014)

    Article  Google Scholar 

  15. Wang, G.: Shape circularity measure method based on radial moments. J. Electron. Imaging 22, 022–033 (2013)

    Google Scholar 

  16. Zhang, J., Kaleem, S., Diego, M., Sven, D.: Retrieving articulated 3D models using medial surfaces. Mach. Vis. Appl. 19, 261–275 (2008)

    Article  Google Scholar 

  17. Zimmer, H., Campen, M., Kobbelt, L.: Efficient computation of shortest path-concavity for 3D meshes. In: Computer Vision Pattern Recognition, pp. 2155–2162 (2013)

    Google Scholar 

  18. Zunic, D., Zunic, J.: Measuring shape rectangularity. Electron. Lett. 47, 441–442 (2011)

    Article  Google Scholar 

  19. Zunic, J., Rosin, P.L.: A new convexity measure for polygons. IEEE Trans. Pattern Anal. Mach. Intell. 26, 923–934 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiayan Shi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shi, X., Li, R., Sheng, Y. (2020). A New Volume-Based Convexity Measure for 3D Shapes. In: Magnenat-Thalmann, N., et al. Advances in Computer Graphics. CGI 2020. Lecture Notes in Computer Science(), vol 12221. Springer, Cham. https://doi.org/10.1007/978-3-030-61864-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-61864-3_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-61863-6

  • Online ISBN: 978-3-030-61864-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics