

Advanced Systems Engineering

Contribution of the SPES Methodology and Open
Research Questions

Advanced systems engineering (ASE) is a new paradigm for agile, efficient, evolutionary,
and quality-aware development of complex cyber-physical systems using modern digital
technologies and tools. ASE is essentially enabled by smart digital modeling tools for
specifying, modeling, testing, simulating, and analyzing the system under development
embedded in a coherent and consistent methodology.

The German Federal Ministry of Education and Research (BMBF) projects SPES2020,
SPES_XT, and CrESt offer such a methodology and framework for model-based systems
engineering (MBSE). The framework provides a comprehensive methodology for MBSE
that is independent of tools and modeling languages. The framework also offers a
comprehensive set of concrete modeling techniques and activities that build on a formal,
mathematical foundation. The SPES framework is based on four principles that are of
paramount importance: (1) Functional as well as non-functional requirements fully
modeled and understood at system level. (2) Consistent consideration of interfaces at
each system level. (3) Decomposition of systems into subsystems and their interfaces. (4)
Models for a variety of cross-sectional topics (e.g., variability, safety, dynamics).

Manfred Broy, Technical University of Munich
Wolfgang Böhm, Technical University of Munich
Bernhard Rumpe, RWTH Aachen University

© The Author(s) 2021

W. Böhm et al. (eds.), Model-Based Engineering of Collaborative Embedded Systems,

https://doi.org/10.1007/978-3-030-62136-0_19

353

https://doi.org/10.1007/978-3-030-62136-0_19
https://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-62136-0_19&domain=pdf

354 Advanced Systems Engineering

19.1 Introduction

Many systems and technical products developed today and in the
future are or will be cyber-physical systems. These systems exhibit
physical as well as smart, complex, and high-performance
functionality, are typically not "stand alone," being instead connected
to users and to other systems via digital networks such as the Internet,
and their services mutually use and complement each other. It is
recognizable that to a certain extent, subsystems, which are created
by heuristic procedures, are built into the systems, — for example, by
"learning procedures."

Typical for those cyber-physical systems is that they embody
software intensively, which enables powerful and connected
functionalities that go dramatically beyond what was possible in the
past for rather isolated mechatronic systems. The high proportion of
software leads to an extensive design space in which the most diverse
requirements can be identified. Therefore, the identification of a
requirements concept is of particular importance. This also creates
extensive potential for innovation, both in terms of purely logical
functionality but also very much in human-centered human-machine
interaction and automation up to full autonomy.

Cyber-physical systems are characterized by the fact that they
usually have mechatronic components, especially sensors and
actuators to enable the interaction between physical and software
components as well as an interaction of the systems with their
environment. These new forms of software enable functionalities
through the use of advanced software technology, including artificial
intelligence methods, and enable human-centered user interfaces for
these systems.

It is particularly noteworthy that today's systems contain an
extensive proportion of software for good reasons, as this enables
functionalities that were completely out of scope even a few years ago.
Due to the strong networking, it is obvious to connect systems with
completely different tasks and functionalities — in order to use
functionality from other systems, but also to make functionality
available for other systems and thus increase the degree of
automation and optimization.

Cyber-physical systems

Software as a driving
factor

19.2 Advanced Systems Engineering 355

19.2 Advanced Systems Engineering

The systems of the future are characterized by the following features:

 Extensive software components and functionality, which is
mainly determined by the software components

 High degree of networking with other systems for the mutual use
of data services

 Strong integration of software with mechanical and electrical
components

 Comprehensive, dedicated user interfaces
 High degree of automation up to autonomy
 Continuous further development — including during operation
 Complex integration with business software

These features are also reflected in the required development
approaches and determine the characteristics of the advanced
systems engineering (ASE) approach. Accordingly, ASE is
characterized by the following features:

 Strong demand for modeling techniques to ensure the correctness
of complex functionality and comprehensive tool support

 Frontloading – shifting efforts towards early phases in
development

 Strong integration of the development processes of the
engineering disciplines involved (mainly software engineering,
mechanical engineering, electrical engineering) and the tools
used; conventional processes such as sequential, discipline-
specific development no longer meet the new requirements

 Strictly systems-centric approach for the holistic integration of
the required multidisciplinary design approaches

 Consistency of development across the family of models, with
clear semantic foundations, precisely defined relationships
between the models, and development steps systematically
develop further models from the elaborated model up to the
generation of code and test cases based on well-understood
semantic coherence.

 Equal support of a top-down and bottom-up approach via the
consistency of the transitions between the models.

 Close interlinking of the data-driven and model-driven approach
through harmonization of the component and interface concept.

 Intensive use of software tools for all phases of development,
consistent artifact orientation, virtual development by creating
suitable digital artifacts, automation of the development process

System characteristics

Characteristics of the
ASE approach

356 Advanced Systems Engineering

through simulation, generation and automated deduction and
quality verification

 Merging of development and operation (continuous development
and delivery, DevOps, agility)

 Use of development models for further evolution and during
operation (from system model to digital twin)

 New types of cost structures, higher development costs in relation
to lower production costs due to the often dramatically higher
variability

 Intensive integration of new forms of software and the resulting
possibility of adding new and modified functionality even during
operation of the systems leads to new types of business models

It is evident that these points interact with, complement, and reinforce
each other.

19.3 MBSE as an Essential Basis

The approach pursued by MBSE is clearly distinguished from the
document-centered, manual approach that is still widely used today.
Objectives, functions, components, interfaces, or quality properties
that a system fulfils or provides are described by explicit model
elements based on well-defined and well-understood concepts of the
domain. A number of modeling concepts are used in model-based
development. The concepts are selected in such a way that they
capture the essential system properties clearly and precisely. A
separate theory can be specified for each of these modeling concepts.
The same applies to the description of the relationship between the
different modeling concepts used. This has the advantage that users
trained in the approach (similar to programming languages) are
familiar with the concepts and know which models they have to apply
to certain questions. Engineers thus also know the basic problems
they have to deal with in order to create the models in a goal-oriented
way and use them in system analysis or synthesis. Model-based
development is much more than just drawing or setting up models; it
also includes the comprehensive use of an elaborated modeling
approach.

Pre-built model types, based on a scientific foundation, guarantee
properties such as compositionality, which clearly defines the
integration of subsystems described by models (such as
communication via an interface) and reuse. The models must be
coordinated in terms of content and engineers must understand

Formal system model

19.3 MBSE as an Essential Basis 357

exactly how the different modeling approaches interact. One
important point is the semantic coherence across model boundaries
and the boundaries of modeling languages, which ensures that a
comprehensive model of the system is created. A system description
is then no longer this vaguely informal structure of documents, but
rather an interwoven network of standardized models that form a
common whole. An instance of the system model, which in this form
is then consistently stored in a central model repository ("single point
of truth"), is managed. Stakeholders have different views of this
central system model that are tailored precisely to their respective
roles in the product life cycle (for example, function developer,
architect, service). This avoids undetected inconsistencies and, in
particular, simplifies the ability to change the models, thus reducing a
significant cost driver.

The transition from textual descriptions in natural language to
models also has the advantage of reducing ambiguities, making
consistency and completeness verifiable, and improving
communication between stakeholders. The more formal the model
used, the less ambiguity there is in the description. More importantly,
formal models enable automatic analyses—for example, to check the
interaction of the individual components—and they also allow the use
of generators to generate parts of other models and artifacts (such as
code or test cases) from elaborated system models.

This shows that model-based development constitutes one,
perhaps the key to advanced systems engineering with a high level of
tool support.

Another important point here is the possibility of tool-supported
development of systems. Here, the software is of particular interest in
two respects: on the one hand, the development of systems in their
inevitable complexity will be supported in a way that is indispensable
to advance such systems in general; on the other hand, supported
development requires comprehensive, systematic modeling and thus
a virtual registration of the systems. This means that these models can
be used as digital twins for the operation of the systems and thus
ensure even more extended functionalities. The software optimizes
itself during development, so to speak.

Three aspects of MBSE must be considered separately, but
nevertheless skillfully coordinated with each other:

Methodology: A system model, which in turn consists of a
multitude of model types, is itself a complex artifact that cannot be
created effectively and efficiently without an underlying science-
based methodology. Therefore, an MBSE methodology includes the

Tool-supported
development

Aspects of MBSE

358 Advanced Systems Engineering

definition of the relevant model types and their relationships.
Furthermore, it defines views of the system model, which structure
the complex overall model into several, less complex models that are
adapted to the given development situation. Examples of views
include functional and logical or technical architecture views. An
MBSE methodology also describes possibilities for analysis and
generation of the specific models. The degree of formalization of the
models defined in the system model determines the degree of
automation of analyses and model generation. A high degree of
automation, which of course must also be supported by the tools used,
allows in turn an iterative and agile development process, such as in
pure software development.

Modeling language: The modeling language defines the syntax and
semantics used to describe the models of the methodology in concrete
terms — for example, which textual or graphical notations are
allowed (syntax). The semantics of a modeling language defines the
meaning of these notations. The problem here is that many of the
common modeling languages (such as SysML) have at best a loosely
defined semantics. This causes problems similar to those of natural
language descriptions.

Tools: The methodology and language must be supported by
appropriate tools in order to make efficient use of the possibilities
offered by models. It is also crucial that the tool chains used are
compatible with each other and that the tools used support the chosen
methodology and the modeling language both syntactically and
semantically and with a high degree of automation.

19.4 The Integrated Approach of SPES and SPES_XT

In the BMBF project SPES2020 [Pohl et al. 2012] and its successors
SPES_XT [Pohl et al. 2016] and CrESt, a methodology and framework
for MBSE were developed that allow efficient model-based
development of embedded systems. The SPES framework provides a
comprehensive methodology for MBSE that is independent of tools
and modeling languages. The framework also offers a comprehensive
set of concrete modeling techniques and activities that build on a
formal, mathematical foundation. The SPES framework is based on
four principles of paramount importance:

 Functional as well as non-functional requirements fully modeled
at system level using appropriate abstractions (views)

 Consistent consideration of interfaces at each level

Principles of the SPES
modeling framework

19.4 The Integrated Approach of SPES and SPES_XT 359

 Decomposition of the interface behavior and the description of
systems via subsystems and components at different levels of
granularity

 Definition of models based on the above principles for a variety of
cross-sectional topics (variability, safety, etc.) and analysis
options

A system model in the SPES approach is a conceptual ("generic")
model for the description of systems and their properties, consisting
of:

 Models for the operational context that influences or is influenced
by the system at runtime

 Models of the interface that clearly delimit the system from its
operational context

 A behavior of the system that can be observed at the interface
 Models of the internal structure of the system implemented by

state machines or by interrelated and communicating subsystems
(architecture) to which the SPES framework can be recursively
applied

The core of the methodology is the universal interface concept, which
defines interfaces for all elements, each consisting of the interface
syntax and a description of the behavior observable at the element
boundary. Requirements, functions, and logical or technical
components are thus described via the interface and are connected to
each other via their interfaces. The interface concept provides the
basic decomposition and modularity.

Views [IEEE42010 2011] in the SPES framework are the
requirements view, functional view, logical view, and technical view.
They decompose the system into the logical or technical components
involved. Crosscutting topics supplement the models of the views
accordingly. For example, this allows aspects of the functional safety
of systems to be described and analyzed. The SPES framework is open
to the addition of new views, such as a geometric view.

In order to make the complexity of the system and the associated
development process manageable, relevant architectural components
are considered as independent (sub)systems according to the
principle of "divide and rule." For these systems, models and views
are created according to the SPES approach. This creates predefined
views for the system and its subsystems with matching levels of
granularity. The modeling of the system at the different levels of
granularity determines the subject of the discourse (scope) and is an

System model in SPES

Universal interface
concept

Views and crosscutting
topics

Levels of granularity

360 Advanced Systems Engineering

important tool in model-based development to reduce system
complexity and to make the development process manageable.

The SPES MBSE methodology follows a strict system-centric
approach that specifies a system at several levels of granularity. At the
highest level of granularity, there are always the models that
represent the system under consideration as a whole. At (varying
numbers of) further levels of granularity, increasingly fine
subsystems are successively considered, and further details are
modeled. Although "top-down" is the basic principle, iterative, agile,
and evolutionary processes are also supported. The mathematical
model FOCUS, on which the SPES framework is based, ensures the
consistency of the models of systems and subsystems. Levels of
granularity help to (1) control the complexity of the system under
consideration, (2) perform checks on the system at different levels of
complexity, (3) distribute development tasks—for example, to
suppliers—and (4) reuse individual models several times. Since the
principle of granularity levels is based only on the interface concept,
the mechanism allows the integration of the different engineering
disciplines (mechanical engineering, electrical engineering, software
engineering). As long as the interface concept is realized, the methods,
processes, or tools used to develop the subsystems at the lower levels
of granularity are irrelevant.

Besides abstraction and granularity, consistency is an important
feature of the models in the SPES framework. We distinguish between
horizontal consistency and vertical consistency. Two models are
horizontally consistent if they belong to different views of the same
system (i.e., are within one level of granularity) and do not represent
contradictory properties of the system under consideration. Two
models are vertically consistent if they belong to one view at different
levels of granularity and do not represent contradictory properties of
the system under consideration with regard to the specific view.

The SPES framework does not specify the order in which the
different models should be created for the views. Thus, the SPES
method can be used to implement top-down as well as bottom-up
approaches and iterative or incremental development and even
evolution. As mentioned above, the mechanism of granularity levels
allows the integration of different approaches and development tools,
as typically required for mechatronic systems. Since the formal basis
of the SPES methodology also supports under-specification, it is
possible to extend and successively refine the models iteratively step
by step. This means in particular that the model-based approach does
not contradict but rather supplements the basic principles of agile

Mathematical
foundation

Consistency of the
models

Agile and iterative
development

19.5 Methodological Extensions: From SPES to ASE 361

development. Techniques such as "continuous integration" can also
be used in a purposeful manner. It should be emphasized that this
form of an agile approach is not just code-centric but also model-
centric.

In the CrESt project, the SPES framework was extended to support
collaboration and dynamics (formation of system networks at
runtime) in systems. The existing viewpoint structure was essentially
retained, but the models contained within the structure were
extended by additional model types and information.

19.5 Methodological Extensions: From SPES to ASE

Advanced systems engineering (ASE) is definitely a new paradigm for
agile, efficient, evolutionary, and quality-aware development of
complex cyber-physical systems using modern digital technologies
and tools. As said earlier, ASE is essentially enabled by smart digital
modeling tools for specifying, modeling, testing, simulating, and
analyzing the system under development embedded in a coherent and
consistent methodology.

Model-based systems engineering is thus a core element of ASE
and the SPES methodology, as a fully model-based approach,
therefore provides an excellent basis for ASE. In particular, the SPES
methodology includes:

 Consistent models that cover the entire product development
process

 A variety of modeling techniques to ensure and analyze the
correctness of complex functionality

 Modularity and decomposition, which allow reuse of model
elements at all levels

 Consistent architecture views and executable model elements,
which allow functional prototypes and automated analyses in
early phases of the development process (frontloading)

 Strict system-centric approach to support the necessary
multidisciplinary design approaches

 Integration of the development processes of the engineering
disciplines involved (computer science, mechanical engineering,
electrical engineering) and the tools used there via the concept of
granularity levels

 Extensive models especially for software engineering and strong
integration of software with mechanical and electrical
components

Extension towards
networks of systems

SPES contribution to ASE

362 Advanced Systems Engineering

 Extension of the SPES framework towards aspects such as
dynamic networking and collaboration of systems at runtime in
the CrESt project; for this purpose, a number of additional
crosscutting topics were defined, and the models of the existing
viewpoints were supplemented accordingly

New methodological and crosscutting issues would be, for example:

 Extension of the predominantly discrete models to analog models;
integration of control engineering approaches — keyword
“interdisciplinary modeling”

 Integration of novel methods for the generation of subsystems
and their behavior through big data and machine learning

 Integration of security models for safety and security into model-
driven development with a focus on certification

 Consideration of digital twins as part of the overall system to be
developed

 Quality assurance at runtime
 System qualification and certification
 Dedicated user interfaces

Up to now, the development of the SPES framework has focused
exclusively on the product development process. At the same time,
SPES offers the possibility to add new viewpoints to the already
existing viewpoints or to extend the existing viewpoints via additional
crosscutting topics and integrate them into the framework. A further
development towards ASE should therefore take into account
extensions towards the entire product life cycle, including models and
extensions for market and business models as well as system
operation and service models.

The models, methodology, and techniques developed in the SPES,
SPES_XT, and CrESt projects were deliberately written independently
of a specific modeling language in order to ensure the greatest
possible range of application. In industrial practice, especially in small
and medium-sized enterprises, it has been shown that almost all
MBSE implementation projects rely on SysML as a modeling language,
despite all the open questions and shortcomings associated with it.
The reason for this is the spread of SysML in companies as well as the
support of SysML in many MBSE tools available in practice. Due to the
spread and acceptance of SysML, it must be explicitly supported as a
modeling language both syntactically and semantically with the SPES
methodology. A research project based on the SPES framework is
planned that will break down the current barriers to the industrial
introduction of MBSE and thus pave the way for a broad industrial

Further development
towards ASE

SysML as a modeling
language

19.6 Conclusion 363

adoption of the SPES methodology based on common language syntax
and pragmatic tools.

Parts of future systems will be determined by the use of techniques
such as machine learning (ML) or, more generally, artificial
intelligence (AI). Integrating AI components into embedded systems
leverages the considerable potential of current and future AI
technologies in embedded systems. Their use enables future
embedded systems to suitably process the constantly growing volume
of information resulting from digitalization and to adapt to changing
conditions and to the knowledge gained from the data at runtime. In
order to be able to develop such systems efficiently, the explicit
modeling methods available must be extended by implicitly learned
modeling techniques. In principle, the approach presented here is
already suitable for systems that have AI components. The universal
interface concept of the SPES framework provides a sustainable basis
for this. However, it has to be considered that the behavior of such
systems is subject to a certain variability during runtime — for
example, if the component continues to learn during runtime.

One central challenge for the integration of AI methods into
embedded systems is therefore the guarantee (verifiability) of the
essential functionality and quality properties of the systems — and
this despite the fact that system components cannot be completely
specified and are often non-deterministic or even dynamically
adapting due to adaptations of the systems at runtime that could not
be foreseen at development time.

19.6 Conclusion

ASE requires a clean scientific foundation and a consistent integration
of software development and system development methods when
designing software-intensive cyber-physical systems. Central to
advanced systems engineering is the use of digital techniques in both
the product and the development process and the exploitation of the
synergies between them. The preliminary work in the area of model-
based development of software-intensive systems offers an ideal
entry point. Nothing less than a paradigm shift from the engineering
of mechanical machines to the integrated engineering of networked,
information-centric mechanical systems must be mastered.

Artificial intelligence

Quality properties

364 Advanced Systems Engineering

19.7 Literature
[Broy 2010] M. Broy: A Logical Basis for Component-Oriented Software and Systems

Engineering. In: The Computer Journal, Vol. 53, No. 10, 2010, pp. 1758-1782.

[Broy and Rumpe 2007] M. Broy, B. Rumpe: Modulare hierarchische Modellierung als
Grundlage der Software- und Systementwicklung. In: Informatik-Spektrum.
Springer Verlag, Band 30, Heft 1, 2007 (available in German only).

[Broy and Stølen 2001] M. Broy, K. Stølen: Specification and Development of Interactive
Systems: Focus on Streams, Interfaces, and Refinement, Springer, 2001.

[Broy et al. 2007] M. Broy, M. L. Crane, J. Dingel, A. Hartmann, B. Rumpe, B. Selic: UML 2
Semantics Symposium: Formal Semantics for UML. In: Models in Software
Engineering. Workshops and Symposia at Models 2006. Genoa, LNCS 4364,
Springer, 2007.

[Broy et al. 2020] M. Broy, W. Böhm, M. Junker, A. Vogelsang, S. Voss: Praxisnahe
Einführung von MBSE – Vorgehen und Lessons Learnt, White Paper, fortiss GmbH,
2020 (available in German only).

[IEEE42010 2011] ISO/IEC/IEEE 42010:2011: Systems and Software Engineering —
Architecture Description. International Organization for Standardization, 2011.

[Pohl et al. 2012] K. Pohl, H. Hönninger, R. Achatz, M. Broy: Model-Based Engineering of
Embedded Systems, Springer, 2012.

[Pohl et al. 2016] K. Pohl, M. Broy, M. Daembkes, H. Hönninger: Advanced Model-Based
Engineering of Embedded Systems, Extensions of the SPES 2020 Methodology,
Springer, 2016.

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits use, sharing, adaptation, distribution and reproduction in
any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to
the Creative Commons license and indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative Commons license,
unless indicated otherwise in a credit line to the material. If material is not included in the chapter’s Creative Commons
license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to
obtain permission directly from the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	19 Advanced Systems Engineering
	19.1 Introduction
	19.2 Advanced Systems Engineering
	19.3 MBSE as an Essential Basis
	19.4 The Integrated Approach of SPES and SPES_XT
	19.5 Methodological Extensions: From SPES to ASE
	19.6 Conclusion
	19.7 Literature

