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Research Questions 
 

Advanced systems engineering (ASE) is a new paradigm for agile, efficient, evolutionary, 
and quality-aware development of complex cyber-physical systems using modern digital 
technologies and tools. ASE is essentially enabled by smart digital modeling tools for 
specifying, modeling, testing, simulating, and analyzing the system under development 
embedded in a coherent and consistent methodology. 

The German Federal Ministry of Education and Research (BMBF) projects SPES2020, 
SPES_XT, and CrESt offer such a methodology and framework for model-based systems 
engineering (MBSE). The framework provides a comprehensive methodology for MBSE 
that is independent of tools and modeling languages. The framework also offers a 
comprehensive set of concrete modeling techniques and activities that build on a formal, 
mathematical foundation. The SPES framework is based on four principles that are of 
paramount importance: (1) Functional as well as non-functional requirements fully 
modeled and understood at system level. (2) Consistent consideration of interfaces at 
each system level. (3) Decomposition of systems into subsystems and their interfaces. (4) 
Models for a variety of cross-sectional topics (e.g., variability, safety, dynamics). 
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19.1 Introduction 

Many systems and technical products developed today and in the 
future are or will be cyber-physical systems. These systems exhibit 
physical as well as smart, complex, and high-performance 
functionality, are typically not "stand alone," being instead connected 
to users and to other systems via digital networks such as the Internet, 
and their services mutually use and complement each other. It is 
recognizable that to a certain extent, subsystems, which are created 
by heuristic procedures, are built into the systems, — for example, by 
"learning procedures." 

Typical for those cyber-physical systems is that they embody 
software intensively, which enables powerful and connected 
functionalities that go dramatically beyond what was possible in the 
past for rather isolated mechatronic systems. The high proportion of 
software leads to an extensive design space in which the most diverse 
requirements can be identified. Therefore, the identification of a 
requirements concept is of particular importance. This also creates 
extensive potential for innovation, both in terms of purely logical 
functionality but also very much in human-centered human-machine 
interaction and automation up to full autonomy. 

Cyber-physical systems are characterized by the fact that they 
usually have mechatronic components, especially sensors and 
actuators to enable the interaction between physical and software 
components as well as an interaction of the systems with their 
environment. These new forms of software enable functionalities 
through the use of advanced software technology, including artificial 
intelligence methods, and enable human-centered user interfaces for 
these systems. 

It is particularly noteworthy that today's systems contain an 
extensive proportion of software for good reasons, as this enables 
functionalities that were completely out of scope even a few years ago. 
Due to the strong networking, it is obvious to connect systems with 
completely different tasks and functionalities — in order to use 
functionality from other systems, but also to make functionality 
available for other systems and thus increase the degree of 
automation and optimization. 
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19.2 Advanced Systems Engineering 

The systems of the future are characterized by the following features: 

 Extensive software components and functionality, which is 
mainly determined by the software components 

 High degree of networking with other systems for the mutual use 
of data services 

 Strong integration of software with mechanical and electrical 
components 

 Comprehensive, dedicated user interfaces 
 High degree of automation up to autonomy 
 Continuous further development — including during operation 
 Complex integration with business software 

These features are also reflected in the required development 
approaches and determine the characteristics of the advanced 
systems engineering (ASE) approach. Accordingly, ASE is 
characterized by the following features: 

 Strong demand for modeling techniques to ensure the correctness 
of complex functionality and comprehensive tool support 

 Frontloading – shifting efforts towards early phases in 
development 

 Strong integration of the development processes of the 
engineering disciplines involved (mainly software engineering, 
mechanical engineering, electrical engineering) and the tools 
used; conventional processes such as sequential, discipline-
specific development no longer meet the new requirements 

 Strictly systems-centric approach for the holistic integration of 
the required multidisciplinary design approaches 

 Consistency of development across the family of models, with 
clear semantic foundations, precisely defined relationships 
between the models, and development steps systematically 
develop further models from the elaborated model up to the 
generation of code and test cases based on well-understood 
semantic coherence. 

 Equal support of a top-down and bottom-up approach via the 
consistency of the transitions between the models. 

 Close interlinking of the data-driven and model-driven approach 
through harmonization of the component and interface concept. 

 Intensive use of software tools for all phases of development, 
consistent artifact orientation, virtual development by creating 
suitable digital artifacts, automation of the development process 
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through simulation, generation and automated deduction and 
quality verification 

 Merging of development and operation (continuous development 
and delivery, DevOps, agility) 

 Use of development models for further evolution and during 
operation (from system model to digital twin) 

 New types of cost structures, higher development costs in relation 
to lower production costs due to the often dramatically higher 
variability 

 Intensive integration of new forms of software and the resulting 
possibility of adding new and modified functionality even during 
operation of the systems leads to new types of business models 

It is evident that these points interact with, complement, and reinforce 
each other. 

19.3 MBSE as an Essential Basis 

The approach pursued by MBSE is clearly distinguished from the 
document-centered, manual approach that is still widely used today. 
Objectives, functions, components, interfaces, or quality properties 
that a system fulfils or provides are described by explicit model 
elements based on well-defined and well-understood concepts of the 
domain. A number of modeling concepts are used in model-based 
development.  The concepts are selected in such a way that they 
capture the essential system properties clearly and precisely. A 
separate theory can be specified for each of these modeling concepts. 
The same applies to the description of the relationship between the 
different modeling concepts used. This has the advantage that users 
trained in the approach (similar to programming languages) are 
familiar with the concepts and know which models they have to apply 
to certain questions. Engineers thus also know the basic problems 
they have to deal with in order to create the models in a goal-oriented 
way and use them in system analysis or synthesis. Model-based 
development is much more than just drawing or setting up models; it 
also includes the comprehensive use of an elaborated modeling 
approach. 

Pre-built model types, based on a scientific foundation, guarantee 
properties such as compositionality, which clearly defines the 
integration of subsystems described by models (such as 
communication via an interface) and reuse. The models must be 
coordinated in terms of content and engineers must understand 

Formal system model 
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exactly how the different modeling approaches interact. One 
important point is the semantic coherence across model boundaries 
and the boundaries of modeling languages, which ensures that a 
comprehensive model of the system is created. A system description 
is then no longer this vaguely informal structure of documents, but 
rather an interwoven network of standardized models that form a 
common whole. An instance of the system model, which in this form 
is then consistently stored in a central model repository ("single point 
of truth"), is managed. Stakeholders have different views of this 
central system model that are tailored precisely to their respective 
roles in the product life cycle (for example, function developer, 
architect, service). This avoids undetected inconsistencies and, in 
particular, simplifies the ability to change the models, thus reducing a 
significant cost driver. 

The transition from textual descriptions in natural language to 
models also has the advantage of reducing ambiguities, making 
consistency and completeness verifiable, and improving 
communication between stakeholders. The more formal the model 
used, the less ambiguity there is in the description. More importantly, 
formal models enable automatic analyses—for example, to check the 
interaction of the individual components—and they also allow the use 
of generators to generate parts of other models and artifacts (such as 
code or test cases) from elaborated system models. 

This shows that model-based development constitutes one, 
perhaps the key to advanced systems engineering with a high level of 
tool support. 

Another important point here is the possibility of tool-supported 
development of systems. Here, the software is of particular interest in 
two respects: on the one hand, the development of systems in their 
inevitable complexity will be supported in a way that is indispensable 
to advance such systems in general; on the other hand, supported 
development requires comprehensive, systematic modeling and thus 
a virtual registration of the systems. This means that these models can 
be used as digital twins for the operation of the systems and thus 
ensure even more extended functionalities. The software optimizes 
itself during development, so to speak. 

Three aspects of MBSE must be considered separately, but 
nevertheless skillfully coordinated with each other: 

Methodology: A system model, which in turn consists of a 
multitude of model types, is itself a complex artifact that cannot be 
created effectively and efficiently without an underlying science-
based methodology. Therefore, an MBSE methodology includes the 

Tool-supported 
development 
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definition of the relevant model types and their relationships. 
Furthermore, it defines views of the system model, which structure 
the complex overall model into several, less complex models that are 
adapted to the given development situation. Examples of views 
include functional and logical or technical architecture views. An 
MBSE methodology also describes possibilities for analysis and 
generation of the specific models. The degree of formalization of the 
models defined in the system model determines the degree of 
automation of analyses and model generation. A high degree of 
automation, which of course must also be supported by the tools used, 
allows in turn an iterative and agile development process, such as in 
pure software development. 

Modeling language: The modeling language defines the syntax and 
semantics used to describe the models of the methodology in concrete 
terms — for example, which textual or graphical notations are 
allowed (syntax). The semantics of a modeling language defines the 
meaning of these notations. The problem here is that many of the 
common modeling languages (such as SysML) have at best a loosely 
defined semantics. This causes problems similar to those of natural 
language descriptions. 

Tools: The methodology and language must be supported by 
appropriate tools in order to make efficient use of the possibilities 
offered by models. It is also crucial that the tool chains used are 
compatible with each other and that the tools used support the chosen 
methodology and the modeling language both syntactically and 
semantically and with a high degree of automation. 

19.4 The Integrated Approach of SPES and SPES_XT 

In the BMBF project SPES2020 [Pohl et al. 2012] and its successors 
SPES_XT [Pohl et al. 2016] and CrESt, a methodology and framework 
for MBSE were developed that allow efficient model-based 
development of embedded systems. The SPES framework provides a 
comprehensive methodology for MBSE that is independent of tools 
and modeling languages. The framework also offers a comprehensive 
set of concrete modeling techniques and activities that build on a 
formal, mathematical foundation. The SPES framework is based on 
four principles of paramount importance:  

 Functional as well as non-functional requirements fully modeled 
at system level using appropriate abstractions (views) 

 Consistent consideration of interfaces at each level 

Principles of the SPES 
modeling framework 
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 Decomposition of the interface behavior and the description of 
systems via subsystems and components at different levels of 
granularity 

 Definition of models based on the above principles for a variety of 
cross-sectional topics (variability, safety, etc.) and analysis 
options 

A system model in the SPES approach is a conceptual ("generic") 
model for the description of systems and their properties, consisting 
of: 

 Models for the operational context that influences or is influenced 
by the system at runtime 

 Models of the interface that clearly delimit the system from its 
operational context 

 A behavior of the system that can be observed at the interface 
 Models of the internal structure of the system implemented by 

state machines or by interrelated and communicating subsystems 
(architecture) to which the SPES framework can be recursively 
applied 

The core of the methodology is the universal interface concept, which 
defines interfaces for all elements, each consisting of the interface 
syntax and a description of the behavior observable at the element 
boundary. Requirements, functions, and logical or technical 
components are thus described via the interface and are connected to 
each other via their interfaces. The interface concept provides the 
basic decomposition and modularity. 

Views [IEEE42010 2011] in the SPES framework are the 
requirements view, functional view, logical view, and technical view. 
They decompose the system into the logical or technical components 
involved. Crosscutting topics supplement the models of the views 
accordingly. For example, this allows aspects of the functional safety 
of systems to be described and analyzed. The SPES framework is open 
to the addition of new views, such as a geometric view. 

In order to make the complexity of the system and the associated 
development process manageable, relevant architectural components 
are considered as independent (sub)systems according to the 
principle of "divide and rule." For these systems, models and views 
are created according to the SPES approach. This creates predefined 
views for the system and its subsystems with matching levels of 
granularity. The modeling of the system at the different levels of 
granularity determines the subject of the discourse (scope) and is an 

System model in SPES 
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important tool in model-based development to reduce system 
complexity and to make the development process manageable. 

The SPES MBSE methodology follows a strict system-centric 
approach that specifies a system at several levels of granularity. At the 
highest level of granularity, there are always the models that 
represent the system under consideration as a whole. At (varying 
numbers of) further levels of granularity, increasingly fine 
subsystems are successively considered, and further details are 
modeled. Although "top-down" is the basic principle, iterative, agile, 
and evolutionary processes are also supported. The mathematical 
model FOCUS, on which the SPES framework is based, ensures the 
consistency of the models of systems and subsystems. Levels of 
granularity help to (1) control the complexity of the system under 
consideration, (2) perform checks on the system at different levels of 
complexity, (3) distribute development tasks—for example, to 
suppliers—and (4) reuse individual models several times. Since the 
principle of granularity levels is based only on the interface concept, 
the mechanism allows the integration of the different engineering 
disciplines (mechanical engineering, electrical engineering, software 
engineering). As long as the interface concept is realized, the methods, 
processes, or tools used to develop the subsystems at the lower levels 
of granularity are irrelevant. 

Besides abstraction and granularity, consistency is an important 
feature of the models in the SPES framework. We distinguish between 
horizontal consistency and vertical consistency. Two models are 
horizontally consistent if they belong to different views of the same 
system (i.e., are within one level of granularity) and do not represent 
contradictory properties of the system under consideration. Two 
models are vertically consistent if they belong to one view at different 
levels of granularity and do not represent contradictory properties of 
the system under consideration with regard to the specific view. 

The SPES framework does not specify the order in which the 
different models should be created for the views. Thus, the SPES 
method can be used to implement top-down as well as bottom-up 
approaches and iterative or incremental development and even 
evolution. As mentioned above, the mechanism of granularity levels 
allows the integration of different approaches and development tools, 
as typically required for mechatronic systems. Since the formal basis 
of the SPES methodology also supports under-specification, it is 
possible to extend and successively refine the models iteratively step 
by step. This means in particular that the model-based approach does 
not contradict but rather supplements the basic principles of agile 
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development. Techniques such as "continuous integration" can also 
be used in a purposeful manner. It should be emphasized that this 
form of an agile approach is not just code-centric but also model-
centric. 

In the CrESt project, the SPES framework was extended to support 
collaboration and dynamics (formation of system networks at 
runtime) in systems. The existing viewpoint structure was essentially 
retained, but the models contained within the structure were 
extended by additional model types and information. 

19.5 Methodological Extensions: From SPES to ASE 

Advanced systems engineering (ASE) is definitely a new paradigm for 
agile, efficient, evolutionary, and quality-aware development of 
complex cyber-physical systems using modern digital technologies 
and tools. As said earlier, ASE is essentially enabled by smart digital 
modeling tools for specifying, modeling, testing, simulating, and 
analyzing the system under development embedded in a coherent and 
consistent methodology. 

Model-based systems engineering is thus a core element of ASE 
and the SPES methodology, as a fully model-based approach, 
therefore provides an excellent basis for ASE. In particular, the SPES 
methodology includes: 

 Consistent models that cover the entire product development 
process 

 A variety of modeling techniques to ensure and analyze the 
correctness of complex functionality 

 Modularity and decomposition, which allow reuse of model 
elements at all levels 

 Consistent architecture views and executable model elements, 
which allow functional prototypes and automated analyses in 
early phases of the development process (frontloading) 

 Strict system-centric approach to support the necessary 
multidisciplinary design approaches 

 Integration of the development processes of the engineering 
disciplines involved (computer science, mechanical engineering, 
electrical engineering) and the tools used there via the concept of 
granularity levels 

 Extensive models especially for software engineering and strong 
integration of software with mechanical and electrical 
components 

Extension towards 
networks of systems 

SPES contribution to ASE 
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 Extension of the SPES framework towards aspects such as 
dynamic networking and collaboration of systems at runtime in 
the CrESt project; for this purpose, a number of additional 
crosscutting topics were defined, and the models of the existing 
viewpoints were supplemented accordingly 

New methodological and crosscutting issues would be, for example: 

 Extension of the predominantly discrete models to analog models; 
integration of control engineering approaches — keyword 
“interdisciplinary modeling” 

 Integration of novel methods for the generation of subsystems 
and their behavior through big data and machine learning 

 Integration of security models for safety and security into model-
driven development with a focus on certification 

 Consideration of digital twins as part of the overall system to be 
developed 

 Quality assurance at runtime 
 System qualification and certification 
 Dedicated user interfaces 

Up to now, the development of the SPES framework has focused 
exclusively on the product development process. At the same time, 
SPES offers the possibility to add new viewpoints to the already 
existing viewpoints or to extend the existing viewpoints via additional 
crosscutting topics and integrate them into the framework. A further 
development towards ASE should therefore take into account 
extensions towards the entire product life cycle, including models and 
extensions for market and business models as well as system 
operation and service models. 

The models, methodology, and techniques developed in the SPES, 
SPES_XT, and CrESt projects were deliberately written independently 
of a specific modeling language in order to ensure the greatest 
possible range of application. In industrial practice, especially in small 
and medium-sized enterprises, it has been shown that almost all 
MBSE implementation projects rely on SysML as a modeling language, 
despite all the open questions and shortcomings associated with it. 
The reason for this is the spread of SysML in companies as well as the 
support of SysML in many MBSE tools available in practice. Due to the 
spread and acceptance of SysML, it must be explicitly supported as a 
modeling language both syntactically and semantically with the SPES 
methodology. A research project based on the SPES framework is 
planned that will break down the current barriers to the industrial 
introduction of MBSE and thus pave the way for a broad industrial 
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adoption of the SPES methodology based on common language syntax 
and pragmatic tools. 

Parts of future systems will be determined by the use of techniques 
such as machine learning (ML) or, more generally, artificial 
intelligence (AI). Integrating AI components into embedded systems 
leverages the considerable potential of current and future AI 
technologies in embedded systems. Their use enables future 
embedded systems to suitably process the constantly growing volume 
of information resulting from digitalization and to adapt to changing 
conditions and to the knowledge gained from the data at runtime. In 
order to be able to develop such systems efficiently, the explicit 
modeling methods available must be extended by implicitly learned 
modeling techniques. In principle, the approach presented here is 
already suitable for systems that have AI components. The universal 
interface concept of the SPES framework provides a sustainable basis 
for this. However, it has to be considered that the behavior of such 
systems is subject to a certain variability during runtime — for 
example, if the component continues to learn during runtime. 

One central challenge for the integration of AI methods into 
embedded systems is therefore the guarantee (verifiability) of the 
essential functionality and quality properties of the systems — and 
this despite the fact that system components cannot be completely 
specified and are often non-deterministic or even dynamically 
adapting due to adaptations of the systems at runtime that could not 
be foreseen at development time. 

19.6 Conclusion 

ASE requires a clean scientific foundation and a consistent integration 
of software development and system development methods when 
designing software-intensive cyber-physical systems. Central to 
advanced systems engineering is the use of digital techniques in both 
the product and the development process and the exploitation of the 
synergies between them. The preliminary work in the area of model-
based development of software-intensive systems offers an ideal 
entry point. Nothing less than a paradigm shift from the engineering 
of mechanical machines to the integrated engineering of networked, 
information-centric mechanical systems must be mastered. 

Artificial intelligence 
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