Skip to main content

Exploiting Bluetooth to Enquire Close Contacts Without Privacy Leakage

  • Conference paper
  • First Online:
  • 1134 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12486))

Abstract

An outbreak of infectious diseases does as much harm to human society as a war, and which is even more difficult to prevent. The prevention of infectious diseases needs to start from the source, meanwhile, to identify anyone in close contact. Finding the close contacts via Bluetooth search signals to better identify potential patients can help to reduce the impact on human society caused by droplet transmission of infectious diseases. In this study, we use Bluetooth search record and machine learning to identify close contacts on the premise of protecting patients’ privacy. We proposed a classification method based on privacy protection, which can store and calculate user’s private information without revealing it on an untrusted server, and without knowing the user’s plain text message of the saved information. This method can be carried out with acceptable computational overhead and achieve a higher accuracy.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Vaidya, J., Kantarcıoğlu, M., Clifton, C.: Privacy-preserving naive bayes classification. VLDB J. 17(4), 879–898 (2008)

    Article  Google Scholar 

  2. Wright, R., Yang, Z.: Privacy-preserving Bayesian network structure computation on distributed heterogeneous data. In: Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 713–718 (2004)

    Google Scholar 

  3. Yang, Z., Zhong, S., Wright, R.N.: Privacy-preserving classification of customer data without loss of accuracy. In: Proceedings of the 2005 SIAM International Conference on Data Mining. Society for Industrial and Applied Mathematics, pp. 92–102 (2005)

    Google Scholar 

  4. Blum, A., Dwork, C., McSherry, F., Nissim, K.: Practical privacy: the SuLQ framework. In: Proceedings of the Twenty-Fourth ACM SIGMOD-SIGACT-SIGART Symposium on Principles of Database Systems, pp. 128–138 (2005)

    Google Scholar 

  5. Lindell, Y., Pinkas, B.: Privacy preserving data mining. In: Proceedings of the 2000 ACM SIGMOD International Conference on Management of Data, pp. 439–450 (2000)

    Google Scholar 

  6. Du, W., Han, Y.S., Chen, S.: Privacy-preserving multivariate statistical analysis: linear regression and classification. In: Proceedings of the 4th SIAM International Conference on Data Mining, vol. 233 (2004)

    Google Scholar 

  7. Laur, S., Lipmaa, H., Mielikäinen, T.: Cryptographically private support vector machines. In: Proceedings of the 12th ACM SIGKDDACM, pp. 18–624 (2006)

    Google Scholar 

  8. Bost, R., Popa, R., Tu, S., Goldwasser, S.: Machine learning classification over encrypted data. In: Proceedings of National Academy Science Armenia, pp. 1–14 (2015)

    Google Scholar 

  9. Samanthula, B.K., Elmehdwi, Y., Jiang, W.: k-nearest neighbor classification over semantically secure encrypted relational data. IEEE Trans. Knowl. Data Eng. 27(5), 1261–1273 (2015)

    Article  Google Scholar 

  10. Paillier, P., Pointcheval, D.: Efficient public-key cryptosystems provably secure against active adversaries. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 165–179. Springer, Heidelberg (1999). https://doi.org/10.1007/978-3-540-48000-6_14

    Chapter  Google Scholar 

  11. Zhang, D., Gatica-Perez, D., Bengio, S., McCowan, I.: Semi-supervised adapted HMMs for unusual event detection. In: Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp. 611–618 (2005)

    Google Scholar 

  12. Liu, X., Lu, R., Ma, J., Chen, L., Qin, B.: Privacy-preserving patient-centric clinical decision support system on naive Bayesian classification. IEEE J. Biomed. Health Informat. 2(20), 1261–1273 (2016)

    Google Scholar 

  13. Yao, A.C.: Protocols for secure computations. In: FOCS, pp. 160–164 (1982)

    Google Scholar 

  14. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: STOC, pp. 218–229 (1987)

    Google Scholar 

  15. Lindell, Y., Pinkas, B.: An efficient protocol for secure two-party computation in the presence of malicious adversaries. In: Naor, M. (ed.) EUROCRYPT 2007. LNCS, vol. 4515, pp. 52–78. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-72540-4_4

    Chapter  MATH  Google Scholar 

  16. Ishai, Y., Prabhakaran, M., Sahai, A.: Founding cryptography on oblivious transfer – efficiently. In: Wagner, D. (ed.) CRYPTO 2008. LNCS, vol. 5157, pp. 572–591. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-85174-5_32

    Chapter  Google Scholar 

  17. Lindell, Y., Pinkas, B.: A proof of security of Yao’s protocol fortwo-party computation. J. Cryptol 22, 161–188 (2009)

    Article  Google Scholar 

  18. Henecka, W., Kögl, S., Sadeghi, A.-R., Schneider, T., Wehrenberg, I.: TASTY: tool for automating secure two-party computations. In: CCS, pp. 451–462 (2010)

    Google Scholar 

  19. Malkhi, D., Nisan, N., Pinkas, B., Sella, Y.: Fairplay-secure two-party computation system. In: USENIX Security Symposium, pp. 287–302 (2004)

    Google Scholar 

  20. Ben-David, A., Nisan, N., Pinkas, B.: FairplayMP: a system for secure multi-party computation. In: CCS, pp. 17–21 (2008)

    Google Scholar 

  21. Exploiting Social Network to Enhance Human-to-Human Infection Analysis without Privacy Leakage

    Google Scholar 

  22. Wiens, J., Guttag, J., Horvitz, E.: Learning evolving patient risk processes for C. diff colonization. In: ICML (2012)

    Google Scholar 

  23. Singh, A., Guttag, J.: Cardiovascular risk stratification using non-symmetric entropy-based classification trees. In: NIPS Workshop on Personalized Medicine (2011)

    Google Scholar 

  24. Singh, A., Guttag, J.: Leveraging hierarchical structure in diagnostic codes for predicting incident heart failure. In: ICML Workshop on Role of Machine Learning in Transforming Healthcare (2013)

    Google Scholar 

  25. Bost, R., Popa, R.A., Tu, S., Goldwasser, S.: Machine learning classification over encrypted data. In: NDSS, vol. 4324, p. 4325 (2015)

    Google Scholar 

Download references

Acknowledgments

This work is supported by the National Natural Science Foundation of China (61872069), the Fundamental Research Funds for the Central Universities (N2017012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, S., Wang, C., Xu, J. (2020). Exploiting Bluetooth to Enquire Close Contacts Without Privacy Leakage. In: Chen, X., Yan, H., Yan, Q., Zhang, X. (eds) Machine Learning for Cyber Security. ML4CS 2020. Lecture Notes in Computer Science(), vol 12486. Springer, Cham. https://doi.org/10.1007/978-3-030-62223-7_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62223-7_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62222-0

  • Online ISBN: 978-3-030-62223-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics