Skip to main content

A Comparison of Evolutionary Multi-objective Optimization Algorithms Applied to Antenna Design

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 12490))

Abstract

In complex engineering problems, it is common to deal with more than two output target variables, making it challenging to obtain the best trade-offs among all output variables. Multi-objective optimization algorithms are promising candidates for providing Pareto Fronts that describe these possibilities. Particularly in antenna design, the input variables are geometrical elements associated with the antenna type. On the other hand, the output variables are the desirable performance indicators, such as resonance frequency, bandwidth, and gain. This paper aims to use several state-of-the-art multi-objective evolutionary algorithms and study the underlying mechanics of their operators to understand how we can optimally choose the antenna design parameters. Moreover, we propose an entire pipeline to automate this task, which is based on main phases: performing simulations using six multi-objective evolutionary algorithms, analyzing the convergence, Pareto front approximation, and quality indicators. Numerical results demonstrate the OMOPSO is a potential approach for the two evaluated studies of cases on antenna design.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Audet, C., Bigeon, J., Cartier, D., Le Digabel, S., Salomon, L.: Performance indicators in multiobjective optimization. Optim. Online (2018)

    Google Scholar 

  2. Carvalho, R.d., Saldanha, R.R., Gomes, B., Lisboa, A.C., Martins, A.: A multi-objective evolutionary algorithm based on decomposition for optimal design of Yagi-Uda antennas. IEEE Trans. Magn. 48(2), 803–806 (2012)

    Google Scholar 

  3. Chand, S., Wagner, M.: Evolutionary many-objective optimization: a quick-start guide. Surv. Oper. Res. Manag. Sci. 20(2), 35–42 (2015)

    MathSciNet  Google Scholar 

  4. Coello, C.A.C., Lamont, G.B., Van Veldhuizen, D.A., et al.: Evolutionary Algorithms for Solving Multi-objective Problems, vol. 5. Springer, Boston (2007). https://doi.org/10.1007/978-0-387-36797-2

    Book  MATH  Google Scholar 

  5. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-ii. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)

    Article  Google Scholar 

  6. Dong, J., Li, Q., Deng, L.: Fast multi-objective optimization of multi-parameter antenna structures based on improved MOEA/D with surrogate-assisted model. AEU Int. J. Electron. Commun. 72, 192–199 (2017)

    Article  Google Scholar 

  7. Easum, J.A., Nagar, J., Werner, D.H.: Multi-objective surrogate-assisted optimization applied to patch antenna design. In: 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, pp. 339–340. IEEE (2017)

    Google Scholar 

  8. Kennedy, J., Eberhart, R.: Particle swarm optimization. In: Proceedings of ICNN 1995-International Conference on Neural Networks, vol. 4, pp. 1942–1948. IEEE (1995)

    Google Scholar 

  9. Laszczyk, M., Myszkowski, P.B.: Survey of quality measures for multi-objective optimization. Construction of complementary set of multi-objective quality measures. Swarm Evol. Comput. 48, 109–133 (2019)

    Google Scholar 

  10. Lee, Y.H., Cahill, B.J., Porter, S.J., Marvin, A.C.: A novel evolutionary learning technique for multi-objective array antenna optimization. Progress Electromagn. Res. 48, 125–144 (2004)

    Article  Google Scholar 

  11. Mirjalili, S., Lewis, A.: Novel performance metrics for robust multi-objective optimization algorithms. Swarm Evol. Comput. 21, 1–23 (2015)

    Article  Google Scholar 

  12. Nebro, A.J., Durillo, J.J., Garcia-Nieto, J., Coello, C.C., Luna, F., Alba, E.: SMPSO: a new pso-based metaheuristic for multi-objective optimization. In: 2009 IEEE Symposium on Computational Intelligence in Multi-Criteria Decision-Making (MCDM), pp. 66–73. IEEE (2009)

    Google Scholar 

  13. Reyes-Sierra, M., Coello, C.C., et al.: Multi-objective particle swarm optimizers: a survey of the state-of-the-art. Int. J. Comput. Intell. Res. 2(3), 287–308 (2006)

    MathSciNet  Google Scholar 

  14. Riquelme, N., Von Lücken, C., Baran, B.: Performance metrics in multi-objective optimization. In: 2015 Latin American Computing Conference (CLEI), pp. 1–11. IEEE (2015)

    Google Scholar 

  15. Schott, J.R.: Fault tolerant design using single and multicriteria genetic algorithm optimization. Technical report, Air force inst of tech Wright-Patterson afb OH (1995)

    Google Scholar 

  16. Sierra, M.R., Coello Coello, C.A.: Improving PSO-based multi-objective optimization using crowding, mutation and \(\in \)-dominance. In: Coello Coello, C.A., Hernández Aguirre, A., Zitzler, E. (eds.) EMO 2005. LNCS, vol. 3410, pp. 505–519. Springer, Heidelberg (2005). https://doi.org/10.1007/978-3-540-31880-4_35

    Chapter  MATH  Google Scholar 

  17. Zhang, Q., Li, H.: MOEA/D: a multiobjective evolutionary algorithm based on decomposition. IEEE Trans. Evol. Comput. 11(6), 712–731 (2007)

    Article  Google Scholar 

  18. Zitzler, E.: Evolutionary algorithms for multiobjective optimization: Methods and applications, vol. 63. Citeseer (1999)

    Google Scholar 

  19. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective search. In: Yao, X., et al. (eds.) PPSN 2004. LNCS, vol. 3242, pp. 832–842. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30217-9_84

    Chapter  Google Scholar 

  20. Zitzler, E., Laumanns, M., Thiele, L.: SPEA 2: Improving the strength pareto evolutionary algorithm. TIK-report 103 (2001)

    Google Scholar 

  21. Zitzler, E., Thiele, L.: Multiobjective evolutionary algorithms: a comparative case study and the strength pareto approach. IEEE Trans. Evol. Comput. 3(4), 257–271 (1999)

    Article  Google Scholar 

Download references

Ackonwledgment

This study was financed in part by the Coordenaçǎo de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pedro B. Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Santos, P.B., Melo, M.C., Faustino Jr., E., Cerqueira S. Jr., A., Bastos-Filho, C.J.A. (2020). A Comparison of Evolutionary Multi-objective Optimization Algorithms Applied to Antenna Design. In: Analide, C., Novais, P., Camacho, D., Yin, H. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2020. IDEAL 2020. Lecture Notes in Computer Science(), vol 12490. Springer, Cham. https://doi.org/10.1007/978-3-030-62365-4_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62365-4_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62364-7

  • Online ISBN: 978-3-030-62365-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics