Skip to main content

Multi-agent Based Manifold Denoising

  • Conference paper
  • First Online:
Book cover Intelligent Data Engineering and Automated Learning – IDEAL 2020 (IDEAL 2020)

Abstract

Manifold learning plays a central role in many Machine Learning (ML) methods where it assumes information lies on a low-dimensional manifold, but the presence of high dimensional noise may defect their performance. In this contribution, we propose a novel (swarm) algorithm to suppress the noise of manifolds of potentially varying dimensionalities. Inspired by colonial insects this method employs multiple agents with different strategies moving through the data space in parallel. During this process, they use local information to reconstruct the manifolds and then move data objects close to them. Moreover, principles of evolutionary game theory are used to encourage agents to select better strategies and hence optimize the hyper-parameters automatically. While other denoising techniques can be seen as single-agent approaches, the new algorithm is a multi-agent approach which makes it more flexible and suitable for scenarios including multiple manifolds. In the experiments, we simulate several situations from a simple manifold with a specific noise level, to more complex manifolds where there are variations on the density, noise level or dimensionalities. Furthermore, we demonstrate the improvement of the proposed algorithm for the performance of the Parzen Window (PW) density estimator.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Code and supplementary material: https://git.lwp.rug.nl/m.mohammadi/em3a.

References

  1. Bentley, J.L.: Multidimensional binary search trees used for associative searching. Commun. ACM 18(9), 509–517 (1975)

    Article  MathSciNet  Google Scholar 

  2. Blum, C., Roli, A., Dorigo, M.: Hc-aco: The hyper-cube framework for ant colony optimization. Proceedings of MIC, vol. 2, pp. 399–403 (2001)

    Google Scholar 

  3. Chu, Shu-Chuan., Roddick, John F., Su, Che-Jen, Pan, Jeng-Shyang: Constrained ant colony optimization for data clustering. In: Zhang, Chengqi, W. Guesgen, Hans, Yeap, Wai-Kiang (eds.) PRICAI 2004. LNCS (LNAI), vol. 3157, pp. 534–543. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28633-2_57

    Chapter  Google Scholar 

  4. Deneubourg, J.L., Goss, S., Franks, N., Sendova-Franks, A., Detrain, C., Chrétien, L.: The dynamics of collective sorting robot-like ants and ant-like robots. In: Proceedings of the First International Conference on Simulation of Adaptive Behavior on from Animals to Animats, pp. 356–363 (1991)

    Google Scholar 

  5. Dorigo, M., Maniezzo, V., Colorni, A.: Positive feedback as a search strategy. Technical Report. 91–016, Politecnico di Milano, Italy (1991)

    Google Scholar 

  6. Dorigo, M., Maniezzo, V., Colorni, A., et al.: Ant system: optimization by a colony of cooperating agents. IEEE Trans. Syst. Man Cybern. Part B: Cybern 26(1), 29–41 (1996)

    Article  Google Scholar 

  7. Golub, G.H., Van Loan, C.F.: Matrix computations, vol. 3. JHU press (2012)

    Google Scholar 

  8. Gong, D., Sha, F., Medioni, G.: Locally linear denoising on image manifolds. In: Proceedings of the 13th International Conference on AI and Stats, pp. 265–272 (2010)

    Google Scholar 

  9. Hein, M., Maier, M.: Manifold denoising. In: Advances in Neural Information Processing Systems, pp. 561–568 (2007)

    Google Scholar 

  10. Hofbauer, J., Sigmund, K., et al.: Evolutionary Games and Population Dynamics. Cambridge University Press, Cambridge (1998)

    Book  Google Scholar 

  11. Kaslovsky, D.N., Meyer, F.G.: Non-asymptotic analysis of tangent space perturbation. Inf. Infer. J. IMA 3(2), 134–187 (2014)

    MathSciNet  MATH  Google Scholar 

  12. Little, A.V., Maggioni, M., Rosasco, L.: Multiscale geometric methods for estimating intrinsic dimension. Proc. SampTA, 4(2) (2011)

    Google Scholar 

  13. Lumer, E.D., Faieta, B.: Diversity and adaptation in populations of clustering ants. In: Proceedings of the 3rd International Conference on Simulation of Adaptive Behavior: from Animals to Animats 3, pp. 501–508. MIT Press (1994)

    Google Scholar 

  14. Mordohai, P., Medioni, G.G.: Unsupervised dimensionality estimation and manifold learning in high-dimensional spaces by tensor voting. In: IJCAI, pp. 798–803 (2005)

    Google Scholar 

  15. Runkler, T.A.: Ant colony optimization of clustering models. Int. J. Intell. Syst. 20(12), 1233–1251 (2005)

    Article  Google Scholar 

  16. Shelokar, P., Jayaraman, V.K., Kulkarni, B.D.: An ant colony approach for clustering. Anal. Chim. Acta 509(2), 187–195 (2004)

    Article  Google Scholar 

  17. Stützle, T., Hoos, H.H.: Max-min ant system. Future Gen. Comput. Syst. 16(8), 889–914 (2000)

    Article  Google Scholar 

  18. Taubin, G.: A signal processing approach to fair surface design. In: Proceedings of the 22nd Conference on Computer graphics and interactive techniques, pp. 351–358 (1995)

    Google Scholar 

  19. Tsai, C.F., Tsai, C.W., Wu, H.C., Yang, T.: ACODF: a novel data clustering approach for data mining in large databases. J. SS 73(1), 133–145 (2004)

    Google Scholar 

  20. Wang, W., Carreira-Perpinán, M.A.: Manifold blurring mean shift algorithms for manifold denoising. In: 2010 IEEE CVPR, pp. 1759–1766. IEEE (2010)

    Google Scholar 

  21. Wang, X., Tiňo, P., Fardal, M.A.: Multiple manifolds learning framework based on hierarchical mixture density model. In: ECML PKDD, pp. 566–581 (2008)

    Google Scholar 

  22. Wang, X., Tino, P., Fardal, M.A., Raychaudhury, S., Babul, A.: Fast parzen window density estimator. In: 2009 IJCNN, pp. 3267–3274. IEEE (2009)

    Google Scholar 

  23. Xiang, Y., Chen, Y.C.: Statistical inference using mean shift denoising (2016). arXiv preprint arXiv:1610.03927

Download references

Acknowledgments

This project has received financial support from the European Union’s Horizon 2020 research and innovation program under the Marie Sklodowska-Curie grant agreement No. 721463 to the SUNDIAL network.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mohammadi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mohammadi, M., Bunte, K. (2020). Multi-agent Based Manifold Denoising. In: Analide, C., Novais, P., Camacho, D., Yin, H. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2020. IDEAL 2020. Lecture Notes in Computer Science(), vol 12490. Springer, Cham. https://doi.org/10.1007/978-3-030-62365-4_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62365-4_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62364-7

  • Online ISBN: 978-3-030-62365-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics