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Abstract. Analysing credit data using a neural network has hitherto
proved to be very resilient to attempts to improve success rates in pre-
diction. We present a technique using simulated data which results in a
marginal improvement in success rate. The empirical probability distri-
bution for each feature of the training data is determined, and random
samples are drawn from those distributions. The result is termed ’artifi-
cial’ data. It is then possible to generate equal volumes of data for each of
the binary outcomes (default or not), thereby alleviating a class imbalance
classification problem. The simulation method uses a copula (to preserve
the correlation structure of the original data) and optimal feature weight-
ing to give acceptable results. The results indicate that overall percentage
success rates for the more common outcome only are improved, but there
is a more significant improvement in the AUC metric. The significance
of this result in the context of assessing credit worthiness is discussed
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1 Introduction

Recent advances in medical diagnoses using artificial intelligence (AI) have been
remarkably successful. See, for example, Chabon, [5], Awan [2], Yala [19], and
McKinney [13]. Overall classification success rates (i.e. total number of correct
predictions divided by total number of predictions) exceeding 90% are common,
with AUC values as high as 0.9.

Attempts to apply neural network technology to credit data have not hitherto
proved to be as successful as the widely-used logistic regression methods that
most lenders employ. Using the same technology (a neural network implemented
in Tensorflow) that Google employed for the Chabon [5] study, it was difficult
to achieve success rates of more than 74%. An attempt to explain this result
was made in [14]. It appears that the indicators used when assessing credit
worthiness, or combinations of them, are not strong pointers to future success
in repayment.

In this paper we attempt to improve on the results reported in [14] using a
variant of the Probabilistic Novelty Detection technique (hereinafter referred to
as PND) developed by Clifton et al [6] to generate artificial data. The literature
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review below summarises the principal drivers for this paper. Following that, our
method of deriving and using artificial data is described. Result comparisons are
then made, and explanations are offered.

In this paper, the most common outcome (i.e. the one with the most in-
stances) will be referred to as the major outcome, and the least common outcome
will be referred to as the minor outcome.

2 Literature Review: Credit Risk and Artificial data

In this review we concentrate on the application of novelty detection methods
and to the assessment of credit worthiness. In doing so we provide some specific
details of our previous work which provide a basis on which to improve.

AI with Credit Data: previous research
Earlier application of AI technology to credit data have yielded mediocre re-

sults compared to the recent medical successes already mentioned. For example,
Louzada [12] quotes mean success rates of 77.7% for German credit data and
88.1% for Australian credit data (see [8]). Those figures mask success rates for
the major and minor outcomes. Although ’better’ results have been reported
([11]: AUC=0.915 and [1]: AUC=0.975), we suspect that either the data set
used contains some behavioural indicator of default, or that loans in the dataset
are only for ’select’ customers who have a high probability of non-default.

Summary of the Metric Framework for Data Concentration
In [14] the first author explores whether the relative lack of success in using

artificial neural networks to model credit risk may arise from inherent structures
in the data. Three metrics (Copula, Hypersphere and k-Neighbours) are used
to measure the ’shape’ of the data. They are combined in a metric Ĥ. It was
observed that a high value of Ĥ implies that either the data are too noisy or
that they provide insufficient predictive information to train a neural network.

The richness and complexity of the data comes from having different paths to
success (or failure), which implies that there is little room to improve on initial
results. Effectively, data corresponding to the major and minor outcomes appear
to be almost coincident.

Summary of Probabilistic Novelty Detection
An general overview of Novelty Detection methods is given in [16]. This review

concentrates on a specific example from that paper: the PND method of Clifton
et al [6]. It is designed to cope with situations where the instances of the minor
outcome are extremely rare, or even non-existent. Original data is used to define
a hypersphere of radius r , defined by the centroid of the real data. The data
set for the major outcome is assumed to exist within a hypersphere of radius 2r
and the minor class is assumed to exist outside that radius (i.e. the minor class
comprises outliers). The artificial data are used as a training set and the original
data are used as the test set for an ensuing AI process.
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Two sets of PND application results, both derived using SVM, are reported.
Both show a clear separation between artificial data for the major and minor
outcomes. Summarizing:

1. Combustion monitoring: AUC ∼ 0.81− 0.96
2. Patient vital sign monitoring. AUC ∼ 0.9, indicated by ROC curves.

We have found that the PND method resulted in a deterioration of our previous
results when applied to credit data. We suggest reasons in Section 4.3.

The statistical outlier detection method in [18] adopts a different approach.
Outliers (equivalent to the ’minor outcome’ set in the Clifton method) are de-
termined by first dividing a training set into as many partitions as there are
classes. An instance of a feature is considered an outlier if any feature value is
more than three times the inter-quartile range from the third quartile for feature
values in each partition. The German data set ([8]) mentioned in Section 2 was
analysed in this way, and it was found that less than 10% of that data set could
be considred as an outlier. The significance of this result is discussed in Section
6.

Subsequent research advanced the PND method further. Gorokhov et al [10]
applied a convolutional neural networks to extract features from text data by se-
quentially filtering features from training and test sets (AUC=0.92). Pidhorskyi
et al. [15] use a generative-PND method to compute the density function of im-
age data on a training set, and generate samples from it (AUC ≥ 0.98 using the
MNIST data). Two further studies adopt the same general approach: Rad et al
[17] (mobility assessment, AUC ∈ (0.65, 0.95)), and Contreras et al [7] (robotics,
77% of predictions exceeded 90% accuracy). Bhattacharjee et al [3] treats data
that cannot be classified with confidence as ’novelties’ (image classification, AUC
∈ (0.77, 0.90))

3 Methodology: Artificial Data generation and use

We have found that the algorithm presented in [6] did not produce satisfactory
results. Reasons are suggested in Section 4. Therefore we have developed an
alternative, the overall strategy for which is summarised the following algorithm.
The step numbers correspond to the steps in Figure 1.

1. Partition the original data into training and test sets, Dtrain and Dtest re-
spectively (Step A).

2. Partition Dtrain into two subsets Dtrain,0 and Dtrain,1 according to the bi-
nary outcomes 0 and 1 respectively (Step A).

3. Generate artificial data Dart,0 and Dart,1 from the subsets Dtrain,0 and
Dtrain,1 respectively (Steps B and C).

4. Combine Dart,0 and Dart,1 to form a single artificial data set Dart (Step D).
5. Use Dart for training and Dtest for testing.

The steps above are summarised in Figure 1. The source of importance
weights is discussed in Step B.1 of the detailed algorithm. (Section 3.1). The
numbers in black roundals refer to the steps in Section 3.1.
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Fig. 1. Artificial Data generation algorithm. The step numbers in black roundals refer
to sub-sections in 3.1.
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3.1 Artificial Data algorithm: Details

The details of our algorithm to generate artificial data are summarised in the
steps that follow. The starting point is a dataset comprising N feature columns
labelled X1, X2, ...XN . The outcome column is labelled Y and takes values zero
for the major outcome (correct prediction-credit pass) and one for the minor
outcome (incorrect prediction-credit fail). The data are imbalanced: the number
of major outcomes is approximately 1/3 of all outcomes.

Step A
Partition the original data D such that there is sufficient data in each partition to
model the empirical data accurately. In our case, four partitions P01, P02, P03, P04

for the major outcome Y = 0, and two partitions P11, P12 for the minor outcome
Y = 1.

Step B
The empirical distribution of each of the six partitions was determined by formu-
lating a histogram based on the values of each feature. The method to formulate
the histogram is described in Step B.1. Empirical distributions were the most
generally applicable across all features (categorical and non-categorical). The
outputs of this step are labelled D01, D02, D03, D04, D11, D12, corresponding to
the partitions in Step A. The histogram comprises metrics di (Equation 1). In
our case, N = 22.

di =

N∑
j=1

wj(Mj − xij)2 (1)

Each corresponding empirical distribution Eij(i ∈ (1, 2, 3, 4); j ∈ (0, 1)) is
characterised by a vector of feature values and corresponding relative frequencies.

Step B.1
It was found that outliers diminish the prediction accuracy considerably. The
outliers correspond to empirical distributions E40, E30 and E21 and are dis-
carded.

Step B.2
Importance weighting plays a significant part in determining the distributions
Dij . For each feature, a distance metric di is defined in equation 1 above. This
metric is the sum of the deviation of each feature value xij (datum i with feature
j ) from the mean of all values for feature j, multiplied by an importance weight
for that feature, wj (clarified below).

Of the importance weighting schemes considered, two were more significant
than others. The most significant (termed ISSE - Inverse Sum of Squared Ex-
pectation) used the inverse of the sum of residuals of a logistic regression fit to
data. Importance weights derived using the Boruta algorithm also worked well.
The ISSE importance weights, wi are calculated from Equation 2 which sum-
marises the ISSE calculation for a logistic regression function ρ acting on each
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of N features in the training data xi[Train] and outcome yi, with a logistic re-
gression prediction function Pred which takes test data xi[Test] as an additional
argument.

wi =

(
N∑
j=1

Pred
(
ρ
(
xi[Train], yi

)
− xi[Test]

)2)−1

(2)

Step C
Fit a copula Cij to pseudo observations of each partition Pij . The copula pre-
serves the dependency structure of the features of the original data. The Normal
and Frank copulas proved to be optimal.

Step C.1
Uniformly distributed random samples Uij were extracted from each copula Cij .
The sample size was set for each partition so as to be sufficient to generate
enough artificial data to use in a neural network and to produce approximately
the same number of ’Y = 0’ cases as ’Y = 1’ cases. It was found that using
partitions P12, P03, P04 resulted in diminished results, and sample sizes of 1 were
allocated to these sets.

Step C.2
The random samples Uij were transformed to the appropriate empirical distri-
butions Dij using inverse empirical distribution function transformations.

Step D
The outputs of the previous step were combined columnwise. This combination
constitutes the artificial data.

4 Results

4.1 Data and Implementation

The data set used was the data set labelled INT in [14]. It comprises 8202
records: 2690 records for the minor outcome Y = 1 (credit fail), and 5512 for
the minor outcome Y = 1 (credit pass). Each record had N = 22 features, each
normalised to [0,1], and a binary decision flag Y. Calculations were done using R
on an i7 processor with 16MB RAM. We are grateful for the Tensorflow neural
network code supplied by Chollet and Allaire in [4].

4.2 Copula and Importance Weighting Results

In order to choose an importance weighting scheme for Step B of the Artificial
Data algorithm, the overall algorithm at the start of Section 3 was run with
the most generally applicable copula (the Normal copula), cycling through a
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range of importance weighting schemes. Repeated trials showed that ISSE im-
portance weighting (see Section 3.1, Step B.1 ) was optimal (AUC=0.865), and
produced particularly stable results. The Boruta method was almost as good
(AUC=0.845). The AUC without importance weighting was 0.649, so is not
a viable option. Other weighting schemes tested were Principal Components,
Pseudo-R2, Recursive Feature Elimination, Log-Likelihood ratio, Random For-
est, Logistic Regression and LVQ.

Given the optimal ISSE choice, the copulas tested were Normal, Student-t,
Joe, Clayton, Gumbel and Frank. There was very little variation between them,
and the Frank copula was optimal (AUC=0.871). The Frank copula stresses out-
lier and near-origin data more than the others, which may explain its optimality.

4.3 Results using Artificial Data

Table 1 shows a comparison of neural network and logistic regression results
with original data only, with data derived from the PND method [6], and with
data derived from our Artificial Data method. The mean and standard deviation
results for 25 runs using each method are shown.

Table 1. Neural network and logistic regression results (Mean, SD), using the Artificial
data method (see note 1), the Probabilistic Novelty Detection method (see note 2), and
with original data exclusively (see note 3).

Method Metric mean Original data PND Artificial data

NN % Success (65.91, 6.88) (95.89, 0.86) (77.26, 4.89)
NN % Success Major (65.83, 7.01) (98.5, 0.98) (76.74, 6.89)
NN % Success Minor (74.07, 7.25) (5.18, 3.98) (77.27, 5.18)
NN Gini (0.63, 0.01) (0.23, 0.07) (0.72, 0.03)
NN AUC (0.82, 0.01) (0.61, 0.04) (0.86, 0.01)

LR % Success (72.02, 1.54) (97.11, 0.06) (55.43, 4.8)
LR % Success Major (72.13, 1.71) (99.87, 0.1) (54.58, 5.02)
LR % Success Minor (69.6, 5.19) (1.11, 1.79) (85.04, 3.46)
LR Gini (0.52, 0.04) (0.24, 0.03) (0.65, 0.04)
LR AUC (0.76, 0.02) (0.62, 0.02) (0.83, 0.02)

Note 1: Artificial Data. Frank copula, ISSE importance weighting, 2000 ma-
jor outcome data, 5000 minor outcome data. 25 runs, each ∼ 10 minutes
Note 2: PND, with parameters defined in [6] da=0.25, dn=0.01, ra = 3r . 2000
records generated, 10 runs, each ∼ 5 hours
Note 3 : Results with original data only, from [14]. LR training sets were obtained
by random sampling.

The results in Table 1 indicate that using Artificial Data gives an improve-
ment on the results derived using original data only. In particular, the balance
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between % success for the major and minor outcomes is preserved using a neural
network. If logistic regression is used instead, it is not. In contrast, there is a
marked deterioration of results using PND. We suggest that the reason is some
or all of the following points.

• The dependency structure of the original data is not preserved.
• It is assumed that the minor outcome corresponds to outliers, as defined by

the hypersphere. That is unlikely to be the case for credit data.
• There is no clear way to tune the model parameters.
• There is an over-dependence on uniformly-distributed data. Only a few credit

data feature distributions resemble uniform distributions.

In contrast, our Artificial Data set is specifically designed to preserve the de-
pendency structure of the original data, and models individual features for the
major and minor outcomes as closely as possible.

5 Discussion: analysis of the Lorenz curve

We now consider an alternative approach, in the context of credit risk, to mea-
suring ’success’ by AUC or % of correct predictions. Lorenz curves are a useful
tool to measure, in the context of credit risk, the proportion of predictive success
in the binary outcomes Y = 0 and Y = 1. More often they are used to quantify
economic inequality: proportion of income against proportion of population. See
a recent discussion in [9]

A Lorenz curve is a plot, parameterised by threshold, of modelled propensity
against % minor outcome class included up to a given threshold (horizontal) and
% major outcome class included up that threshold (vertical). Lorenz curves are
well established for visualizing the ability of a model to rank order by likelihood
of default. A perfect rank ordering would start at the origin, rise vertically as it
works through the major class, and then horizontally across the top of the unit
square (note, there is no requirement for the propensity cut off to be 0.5). The
power of such a model is given by gini (=2*AUC-1). Gini values lie between −1
and 1, with 0 representing random selection and negatives a reverse ordering).
Modelling is typically geared towards maximizing the gini, because of a broad
relationship between gini and the capital a bank needs to hold for credit risk
exposure. Figure 2 shows a hypothetical Lorenz curve.

However, the practical use of this model is often focused on a particular
region. For illustration:

• Always lend to people with a predicted default probability less than 1%,
• Never lend to people with a predicted default probability more than 5%.

So in terms of decisioning, the area of the curve near p = 3% might be critical.
It shows how different the population between p = 3% and p + ∆ = 4% looks
compared to the population between p − ∆ = 2% and p = 3%. In that way
we get a sense of the performance of the model at the decision boundary. This
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Fig. 2. Lorenz curve illustration, showing a gradient discontinuity near a typical deci-
sion boundary. The axes are explained in the associated text.

may be thought off as the difference in gradient of line segments as shown in
Figure 2. The flatter the gradient the higher the local density of defaults per
non-defaulter. Although not considered in this paper, understanding the effect
near the decision boundary would be required for implementation. The point of
such analysis would be to reduce the incidence of false-negatives, which cause
far more harm to a bank than false-positives.

6 Conclusion

In this paper we have attempted to improve upon a previous result obtained
when applying neural network technology to credit data. Using Artificial Data
has made it possible to improve the previous result marginally, in terms of both
AUC and success rates. Correct predictions of the minor outcome (credit fail)
is a major factor in credit analysis, since every defaulted loan requires multiple
non-defaulted loans to compensate for any shortfall incurred. Therefore a valu-
able theme to pursue is to improve on the minor outcome success rate without
compromising the major outcome, using the idea suggested in Section 5.

In section 2 a method of outlier detection ([18]) was noted. The particular case
of the German credit data ([8]) has a bearing on the results of this paper. In that
case, less than 10% of instances were classified as outliers. We consider, following
analysis ising the Novelty Detection method of [6], that there are similarities
between the data used in our analysis and the German credit data. Specifically,
outliers cannot be used to generate artificial data, because outliers are sparse.
The subsets corresponding to ’credit fail’ and ’credit pass’ are almost coincident.
Outliers comprise a mixture of the two subsets.
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