Skip to main content

Atmospheric Tomography Using Convolutional Neural Networks

  • Conference paper
  • First Online:
Intelligent Data Engineering and Automated Learning – IDEAL 2020 (IDEAL 2020)

Abstract

We present an application of Convolutional Neural Networks (CNN) to atmospheric tomography that is required for compensating optical aberrations introduced by the atmospheric turbulence using dedicated tomographic Adaptive Optics (AO) systems. We compare the state of the art Minimum Mean Square Error (MMSE) reconstructor with a Multi-Layer Perceptron (MLP) and a CNN architecture and show that the CNN performs up to 15%–20% better than the MMSE and is more robust to atmospheric profile variations up to 10% compared to the MLP. Such results pave the way to implement CNN architectures to revisit atmospheric tomography for astronomical telescopes equipped with AO.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Noll, R., et al.: Zernike polynomials and atmospheric turbulence. JOSA 6, 207–211 (1976)

    Article  Google Scholar 

  2. Correia, C., et al.: Object-oriented matlab adaptive optics. In: Sixth International Conference of AO4ELT (2019)

    Google Scholar 

  3. Costille, A., et al.: Impact of CN2 profile on tomographic reconstruction performance: application to E-ELT wide field AO systems. In: Adaptive Optics Systems III. Proceedings of the SPIE International Conference, vol. 8447 (2012)

    Google Scholar 

  4. deCosJuez, F.J., et al.: An ANN-based smart tomographic reconstructor in a dynamic environment. Sensors 12(7), 8895–911 (2012)

    Article  Google Scholar 

  5. Dozat, T.: Incorporating nesterov momentum into adam. Technical report (2015)

    Google Scholar 

  6. Fried, D.L.: Limiting resolution looking down through the atmosphere. JOSAA (1917–1983) 56, 1380 (1966)

    Article  Google Scholar 

  7. Gendron, E., et al.: Status update of the CANARY on-sky MOAO demonstrator. In: Adaptive Optics Systems II. Proceedings of the SPIE International Conference, vol. 7736 (2010)

    Google Scholar 

  8. Krizhevsky, A., et al.: ImageNet classification with deep convolutional neural networks. In: Pereira, F., Burges, C.J.C., Bottou, L., Weinberger, K.Q. (eds.) Advances in Neural Information Processing Systems 25, pp. 1097–1105 (2012)

    Google Scholar 

  9. LeCun, Y., et al.: Deep learning. Nature 521(7553), 436–444 (2015)

    Article  MathSciNet  Google Scholar 

  10. Osborn, J.: Open-loop tomography with artificial neural networks on CANARY: on-sky results. MNRAS 441, 2508–2514 (2014)

    Article  Google Scholar 

  11. Osborn, J., et al.: Using artificial neural networks for open-loop tomography. Opt. Express 20, 2420–2434 (2012)

    Article  Google Scholar 

  12. Rigaut, F., Neichel, B.: Multiconjugate adaptive optics for astronomy. Ann. Rev. Astron. Astrophys. 56, 277–314 (2018)

    Article  Google Scholar 

  13. Roddier, F.: The effects of atmospheric turbulence in optical astronomy. Progress in optics, vol. 19. North-Holland Publishing Co., Amsterdam (1981), 281–376 (1981). Roddier, F.: Adaptive Optics in Astronomy. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  14. Suàrez-Gómez, S.L.: Experience with artificial neural networks applied in multi-object adaptive optics. Publ. Astron. Soc. Pac. 131(1004), 108012 (2019)

    Article  Google Scholar 

  15. Szegedy, C.: Going deeper with convolutions. In: Computer Vision and Pattern Recognition (CVPR) (2015)

    Google Scholar 

Download references

Acknowledgments

The authors acknowledge Spanish ministry projects MINE CO AYA2017-89121- P, and support from the European Union’s Horizon 2020 research and innovation program under the H2020-INFRAIA-2018-2020 grant agreement No 210489629. This work has been partially funded by the French National Research Agency (ANR) program APPLY - ANR-19-CE31-0011. This work also benefited from the support of the WOLF project ANR-18-CE31-0018 of the and the OPTICON H2020 (2017–2020) Work Package 1. James Osborn acknowledges support from the UKRI Future Leaders Fellowship (UK) (MR/S035338/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. González-Gutiérrez .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

González-Gutiérrez, C., Beltramo-Martin, O., Osborn, J., Calvo-Rolle, J.L., de Cos Juez, F.J. (2020). Atmospheric Tomography Using Convolutional Neural Networks. In: Analide, C., Novais, P., Camacho, D., Yin, H. (eds) Intelligent Data Engineering and Automated Learning – IDEAL 2020. IDEAL 2020. Lecture Notes in Computer Science(), vol 12490. Springer, Cham. https://doi.org/10.1007/978-3-030-62365-4_54

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62365-4_54

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62364-7

  • Online ISBN: 978-3-030-62365-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics