
ar
X

iv
:2

00
9.

01
54

4v
1

 [
cs

.D
C

]
 3

 S
ep

 2
02

0

Fast Byzantine Gathering with Visibility in Graphs

Avery Miller and Ullash Saha

University of Manitoba, Winnipeg, MB, Canada

Abstract

We consider the gathering task by a team of m synchronous mobile robots in a graph of n
nodes. Each robot has an identifier (ID) and runs its own deterministic algorithm, i.e., there is no
centralized coordinator. We consider a particularly challenging scenario: there are f Byzantine
robots in the team that can behave arbitrarily, and even have the ability to change their IDs
to any value at any time. There is no way to distinguish these robots from non-faulty robots,
other than perhaps observing strange or unexpected behaviour. The goal of the gathering task
is to eventually have all non-faulty robots located at the same node in the same round. It is
known that no algorithm can solve this task unless there at least f + 1 non-faulty robots in
the team. In this paper, we design an algorithm that runs in polynomial time with respect to
n and m that matches this bound, i.e., it works in a team that has exactly f + 1 non-faulty
robots. In our model, we have equipped the robots with sensors that enable each robot to see
the subgraph (including robots) within some distance H of its current node. We prove that the
gathering task is solvable if this visibility range H is at least the radius of the graph, and not
solvable if H is any fixed constant.

1 Introduction

Mobile robots play a vital role in real-life applications such as military surveillance, search-and-
rescue, environmental monitoring, transportation, mining, infrastructure protection, and autonomous
vehicles. In networks, the robots/agents move from one location to another to collectively complete
a task, and might all need to meet at one location in order to share information or start their next
task. Therefore, gathering becomes a fundamental problem for mobile robots in networks.

Gathering is hard to accomplish even in a fault-free system, as the robots may not have any
planned location where to meet, nor any initial information about the topology of the network.
Moreover, in a distributed system, each robot runs its own deterministic algorithm to make deci-
sions, i.e., there is no centralized coordinator. We want a deterministic algorithm that can be run
by each robot, and eventually, they will gather at a single node which is not fixed in advance. Addi-
tionally, we consider a particularly challenging scenario in which some of the robots are Byzantine:
such robots do not follow our installed algorithm and can behave arbitrarily. We can think of these
robots as malicious robots in our system, i.e., they have been compromised by outsiders/hackers,
and, knowing the algorithm we intend to run, they can behave in ways that attempt to mislead the
non-faulty robots into making incorrect decisions. Moreover, non-faulty robots do not know which
of the robots (or even how many of the robots) are Byzantine, because all robots look identical.
We might face this type of scenario in real-world applications when attackers try to disrupt the
normal behavior of systems, so algorithms that are resilient to such attacks are very useful.

1

http://arxiv.org/abs/2009.01544v1

The relative number of non-faulty robots versus Byzantine robots is an essential factor in solving
this problem. If there are many Byzantine robots compared to the number of non-faulty robots,
then the behaviour of the Byzantine robots can be very influential. As shown in previous work [10],
a team that contains f Byzantine robots cannot solve gathering if the number of non-faulty robots
is less than f + 1. The challenge, and the goal of our work, is to provide an efficient gathering
algorithm that works when this bound is met, i.e., when the number of non-faulty robots is exactly
f + 1. We provide such an algorithm in a model in which each robot is endowed with sensors that
allow them to see all nodes and robots within a fixed distance H of its current location, where H
is at least the radius of the network. We also prove an impossibility result which shows that no
algorithm can solve gathering in this model if H is any fixed constant (i.e., independent of any
graph parameter). It’s important to note that this impossibility result does not contradict previous
results [4, 5, 10, 19] that provide gathering algorithms with no visibility, as those algorithms make
assumptions about additional information known to the robots (such as bounds on the network
size, or on the number of Byzantine robots) or make assumptions about additional features such
as authenticated whiteboards at the nodes.

1.1 Model and Definitions

We consider a team of m robots that are initially placed at arbitrary nodes of an undirected
connected graph G = (V,E). We denote by n the number of nodes in the graph, i.e., n = |V |.
The nodes have no labels. At each node v, the incident edges are labeled with port numbers
0, . . . , deg(v) − 1 in an arbitrary way, where deg(v) represents the degree of node v. The two
endpoints of an edge need not be labeled with the same port number.

For any two nodes v,w, the distance between v and w, denoted by d(v,w), is defined as the length
of a shortest path between v and w. The eccentricity of a node v, denoted by ecc(v), is the maximum
distance from v to any other node, i.e., ecc(v) = maxw∈V {d(v,w)}. The radius of a graph, denoted
by R, is defined as the minimum eccentricity taken over all nodes, i.e., R = minv∈V {ecc(v)}.

The team of m robots contains f Byzantine robots and m− f non-faulty robots. Each robot α
has a distinct identifier (ID) lα, and it knows its own ID. The Byzantine and non-faulty robots look
identical, i.e., there is no way to distinguish them other than perhaps noticing strange or unexpected
behaviour. All robots have unbounded memory, i.e., they can remember all information that they
have previously gained during their algorithm’s execution. We describe the differences between the
two types of robots below.

1.1.1 Properties of non-faulty robots.

The non-faulty robots have no initial information about the size or topology of the graph, and they
have no information about the number of Byzantine robots. A non-negative integer parameter H
defines the visibility range of each robot, which we describe in Partial Snapshot below. Each non-
faulty robot executes a synchronous deterministic algorithm: in each round, each robot performs
one Look-Compute-Move sequence, i.e., it performs the following three operations in the presented
order.

1. The Look operation: A non-faulty robot α located at a node v at the start of round t gains
information from two types of view.

2

• Local View: Robot α can see the degree of node v and the port numbers of its incident
edges. It can also see any other robots located at v at the start of round t, along with
their ID numbers.

• Partial Snapshot View: Robot α sees the subgraph consisting of all nodes, edges, and
port numbers that belong to paths of length at most H that have v as one endpoint.
Also, for each node w in this subgraph, robot α sees the list of all IDs of the robots
occupying w at the start of round t.

2. The Compute operation: Using the information gained during all previous Look op-
erations, a robot α located at a node v deterministically chooses a value from the set
{null, 0, . . . , deg(v) − 1}. In particular, it chooses null if it decides that it will stay at its
current node v, and it chooses a value p ∈ {0, . . . , deg(v) − 1} if it decides to move to the
neighbour of node v that is the other endpoint of the incident edge labeled with port number
p.

3. The Move operation: A robot α located at a node v performs the action that it chose
during the Compute operation. In particular, it does nothing if it chose value null, and
otherwise, it moves towards a neighbour w of v along the incident edge labeled with the
chosen port number p, and it arrives at w at the start of the next round. It sees the port
number that it uses to enter node w. There is no restriction of how robots move along an
edge, i.e., multiple robots may traverse an edge simultaneously, in either direction.

All non-faulty robots wake up at the same time and perform their Look-Compute-Move sequences
synchronously in every round.

1.1.2 Properties of the Byzantine robots.

We assume that a centralized adversary controls all of the Byzantine robots. This adversary has
complete knowledge of the algorithm being executed by the non-faulty robots, and can see the
entire network and the positions of all robots at all times. In each round, the adversary can make
each Byzantine robot move to an arbitrary neighbouring node. Further, we assume that the faulty
robots are strongly Byzantine, which means that the adversary can change the ID of any Byzantine
robot at any time (in contrast, a weakly Byzantine robot would have a fixed ID during the entire
execution).

1.1.3 Problem Statement.

Assume that m robots are initially placed at nodes of a network, where f of the robots are strongly
Byzantine. The robots synchronously execute a deterministic distributed algorithm. Eventually,
all non-faulty robots must terminate their algorithm in the same round, and at termination, all
non-faulty robots must be located at the same node.

1.2 Related Work

The study of algorithms for mobile robots is extensive, as evidenced by a recent survey [13]. The
Gathering problem has been investigated thoroughly under a wide variety of model assumptions,
as summarized in [3, 9, 12] for continuous models and in [8, 18] for discrete models. Of particular

3

interest to our current work are discrete models where the robots are located in a network, have
some amount of visibility beyond its own position [1, 2, 7, 11, 15], and where faults may occur
[6, 16, 17].

Most relevant to our current work are the results about Gathering in networks when some of
the robots can be Byzantine [4, 5, 10, 19]. In [19], the authors consider weakly Byzantine agents
and add authenticated whiteboards to the model. Additionally, each robot has the ability to write
“signed” messages that authenticate the ID of the writer and whether the message was originally
written at the current node. The authors provide an algorithm such that all correct robots gather
at a single node in O(f · |E|) rounds, where f is an upper bound on the number of Byzantine robots
and |E| is the number of edges in the network.

For the model we consider in our work (but with visibility range 0), the Gathering problem
was first considered in [10]. The authors explored the gathering problem under four variants of the
model: (i) known size of the graph, weakly Byzantine robots, (ii) known size of the graph, strongly
Byzantine robots, (iii) unknown size of the graph, weakly Byzantine robots, and (iv) unknown size
of the graph, strongly Byzantine robots. In all cases, the authors assume that the upper bound
f on the number of Byzantine robots is known to all non-faulty robots. The authors provided a
deterministic polynomial-time algorithms for the two models with weakly Byzantine robots. In the
model when the size of the graph is known, their algorithm works for any number of non-faulty
robots in the team. Recently, the authors of [14] provided a significantly faster algorithm under
the assumption that the number of non-faulty robots in the team is at least 4f2 + 8f + 4. In [10],
assuming that the size of the graph is unknown and f robots are weakly Byzantine, the authors
provide an algorithm that works when the number of non-faulty robots in the team is f +2. They
prove a matching lower bound in this scenario: no algorithm can solve Gathering if the number of
non-faulty robots in the team is less than f +2. For the model with strongly Byzantine robots and
known graph size, the authors provided a randomized algorithm that guarantees that the agents
gather in a finite number of rounds, and with high probability terminates in ncf rounds for some
constant c > 0. They also provided a deterministic algorithm whose running time is exponential
in n and the largest ID belonging to a non-faulty agent. In both cases, the number of non-faulty
robots in the team is assumed to be at least 2f + 1. The authors also proved a lower bound for
this model: no algorithm can solve Gathering if the number of non-faulty robots in the team is less
than f + 1. Finally, for the model with strongly Byzantine robots and unknown graph size, they
provided a deterministic algorithm that works when the number of non-faulty robots in the team is
at least 4f + 2. The running time is exponential in n and the largest ID belonging to a non-faulty
agent. They also proved a lower bound in this model: no algorithm can solve Gathering if the
number of non-faulty robots in the team is less than f + 2. Subsequent work focused on the case
of strongly Byzantine robots and attempted to close the gaps between the known upper and lower
bounds on the number of non-faulty robots in the team. This was achieved in [4], as the authors
provided algorithms that work when the number of non-faulty robots in the team are f + 1 and
f + 2 for the cases of known and unknown graph size, respectively. However, the running times of
these algorithms were also exponential in n and the largest ID belonging to a non-faulty agent.

More recently, the authors of [5] considered a version of the above model that does not assume
knowledge of the graph size nor the upper bound f on the number of strongly Byzantine agents.
Instead, they considered the amount of initial knowledge as a resource to be quantitatively measured
as part of an algorithm’s analysis. In this model, they designed an algorithm whose running time
is polynomial in n and the number of bits in the smallest ID belonging to a non-faulty agent,

4

where O(log log log n) bits of initial information is provided to all robots. The initial information
they provide is the value of log log n, which the algorithm uses as a rough estimate of the graph
size. Their algorithm works as long as the number of non-faulty robots in the team is at least
5f2 + 6f + 2. They also proved a lower bound on the amount of initial knowledge: for any
deterministic polynomial Gathering algorithm that works when the number of non-faulty robots in
the team is at least 5f2 + 6f + 2 and whose running time is polynomial in n and the number of
bits in the smallest ID, the amount of initial information provided to all robots must be at least
Ω(log log log n) bits.

1.3 Our Results

We consider a graph-based model in which each robot has no initial information other than its
own ID and has some visibility range H. We prove that no algorithm can solve Gathering in the
presence of Byzantine robots if H is any fixed constant. We also design an algorithm that solves
Gathering in any graph with n nodes containing m robots, f of which are strongly Byzantine, and
where each non-faulty robot has visibility range H equal to the radius of the graph (or larger).
Our algorithm has the following desirable properties: (1) the number of rounds is polynomial with
respect to n and m, in contrast to several previous algorithms whose running times are exponential
in n and the largest robot ID; (2) it works when the number of non-faulty robots in the team is
f + 1 (or larger), which is optimal due to an impossibility result from [10] that also holds in our
model, and significantly improves on the best previous polynomial-time algorithm, which requires
at least 5f2 + 6f + 2 non-faulty robots; (3) it does not assume any initial global knowledge, in
contrast to previous algorithms that assume a known bound on the graph size or on the number of
Byzantine robots. Such assumptions might be unrealistic in many applications.

2 The Algorithm

First, we define some notation that will be used in the algorithm’s description and analysis. For
any graph G, the center of graph G is the set of all nodes that have minimum eccentricity, i.e., all
nodes v ∈ V (G) such that ecc(v) = R, and the center graph of a graph G, denoted by C(G), is
defined as the subgraph induced by the center nodes. The following terminology will be used to
refer to what a robot α can observe in the Look operation of any round t during the execution of
an algorithm. The local view at a node v for round t is denoted by Lview(v, t), and refers to all of
the following information: the degree of v, the port numbers of its incident edges, and a list of the
IDs of all other robots located at node v at the start of round t. The snapshot view at a node v
for round t is denoted by Sview(v, t), and refers to all of the following information: the subgraph
consisting of all nodes, edges, and port numbers that belong to paths of length at most H that have
v as one endpoint, and, for each node w in this subgraph, the list of IDs of all robots occupying w
at the start of round t. For any graph G, an ID l is called a singleton ID if the total number of
times that l appears as a robot ID at the nodes of G is exactly 1.

2.1 Algorithm Description

In what follows, we assume that the visibility range of a non-faulty robot is at least equal to the
radius of the graph, i.e., H ≥ R. We also assume that the number of non-faulty robots is at least
f + 1.

5

The algorithm’s progress can be divided into three parts. The first part makes each non-faulty
robot move to a node vmax such that the robot’s snapshot view from vmax contains all the nodes
of the network G. This is the purpose of our Find-Lookout subroutine, which we now describe.
Each robot α produces a list of potential nodes in its initial snapshot view where it thinks it might
be located, and it does this by comparing its local view with the degree and robot list of each
node in its initial snapshot. It cannot be sure of its initial position within its snapshot view since
Byzantine robots can forge α’s ID and position themselves at other nodes that have the same degree
as α’s current node. From each guessed initial position, α computes a port sequence of a depth-first
traversal of its snapshot view and tries following it in the real network. Since one of the guessed
initial positions must be correct, at least one of the depth-first traversals will successfully visit all
nodes contained in α’s initial snapshot view. Since the visibility range is at least the radius of the
network, the robot’s initial snapshot view must contain a node in the center of the network G, so
at least one step of at least one of the traversals will visit a node in the center of G. When located
at such a node, the robot will see all nodes in the network. So, by counting how many nodes it sees
at every traversal step, and keeping track of where it saw the maximum, it can correctly remember
and eventually go back to a node vmax from which it saw all nodes in the network. See Algorithm
1 for the pseudocode of Find-Lookout. After returning to vmax at the end of Find-Lookout, each
robot α constructs a set Pα consisting of nodes in its snapshot view that match its local view.
These can be thought of as ‘candidate’ locations where α thinks it might actually be located within
its snapshot view.

Algorithm 1 Find-Lookout, executed by α starting at a node v in round 0

1: Store the initial snapshot Sview(v, 0) in its memory as S0

2: Determine which nodes in S0 might be its starting location, i.e., compute a set X of nodes w ∈ S0 where
the degree of w and the list of robot ID’s at w is the same as v’s local view in round 0.

3: for each w ∈ X do
4: Compute a port sequence τ corresponding to a depth-first traversal of S0 starting at w, and attempt

to follow this port sequence in the actual network

5: In every round of the attempted traversal, take note of the number of nodes seen in the snapshot view,
and remember the maximum such number nmax, a node vmax where this maximum was witnessed,
the number mmax of robots seen in the snapshot when located at vmax, and the sequence of ports
τmax used to reach vmax from the starting location

6: Return to the starting node by reversing the steps taken during the attempt
7: end for
8: For the largest nmax seen in any of the traversal attempts, go to the corresponding node vmax using the

sequence τmax

The second part of the algorithm ensures that, eventually, there is a robot with a singleton
ID that is located in the center of the network G. This is the purpose of our March-to-Center
subroutine, which depends highly on the fact that each robot starts this part of the algorithm at
a node vmax from which it can see every node in the network. If a robot starts March-to-Center
knowing where in its snapshot view it is located (i.e., |Pα| = 1), then the robot moves directly to the
center of G: it computes the center of its snapshot, and moves to one of the nodes in the center of
this snapshot, which is also the center of the entire network G. If all robots do this, then the center
of the network will contain a singleton ID, since there are more non-faulty robots than Byzantine
robots, and all non-faulty robots have distinct ID’s. The difficult case is when a robot α is not sure
where in its snapshot it is located at the start of March-to-Center (i.e., |Pα| > 1). This is because

6

the Byzantine robots can forge α’s ID and position themselves at other nodes with the same degree
as α’s current node. In this case, α will not move during March-to-Center, and simply watch to
see if it can spot any inconsistencies between its local view and its possible starting locations in
its snapshot. The key observation, which we will prove, is that at least one of the following must
happen in each execution of March-to-Center: there is a robot with a singleton ID located at a node
in the center of the network, or, at least one robot sees an inconsistency and narrows down its list of
possible starting locations. So, after enough repetitions of March-to-Center, we can guarantee that
there will be a robot with a singleton ID that is located in the center of the network. The location
of the robot with the smallest such singleton ID is chosen as vtarget by all non-faulty robots, and
this is the place where the robots will eventually gather. See Algorithm 2 for the pseudocode of
March-to-Center.

Algorithm 2 March-to-Center(Pα), run by α starting at a node v in round t

1: if |Pα| = 1 then
2: Use current snapshot Sview(v, t) to compute a shortest path π starting at the node v0 ∈ Pα and

ending at a node vclosest in the center graph C(Sview(v, t)) that minimizes the distance d(v0, vclosest)

3: Move along the port sequence in π and then wait H − |π| rounds at vclosest
4: else
5: Wait at current node v for H rounds, and observe every node vj ∈ Pα in every snapshot view during

the waiting period

6: If, in any round of the waiting period, there is some vj that does not have any robot with ID lα, then
remove vj from Pα (as we’re not currently located at vj)

7: end if
8: In both cases, at the end of the waiting period, check if there is a singleton ID in the center graph

C(Sview(v, t +H)). If there is such a singleton ID, set vtarget as the node that contains a robot with
the smallest singleton ID in C(Sview(v, t+H)). Otherwise, vtarget is set to null.

The third part of the algorithm gets each robot to successfully move to the target node vtarget,
which completes the gathering process. This is the purpose of our Merge subroutine. As above, if
a robot starts Merge knowing where in its snapshot view it is located (i.e., |Pα| = 1), then it can
simply compute a sequence of port numbers that leads to vtarget and follow it. The difficult case is
when a robot α is not sure where in its snapshot it is located at the start of Merge (i.e., |Pα| > 1).
In this case, α just tries one node from its list of possibilities, computes a sequence of port numbers
that leads to vtarget, and tries to follow it. If it notices any inconsistencies along the way or after it
arrives, it deletes the guessed starting node from its list Pα. After each Merge, each robot reverses
the steps it took during the Merge in order to go back to where it started so that it can run Merge
again. Each execution of Merge finishes in one of two ways: all robots have gathered, or, at least
one robot has eliminated one incorrect guess about its starting position. So, after a carefully chosen
number of repetitions, we can guarantee that the last performed Merge gathers all robots at the
same node. See Algorithm 3 for the pseudocode of Merge.

The pseudocode for the complete algorithm, called the H-View-Algorithm, is provided as Algo-
rithm 4.

2.2 Analysis

We consider three main parts of the algorithm. Our first goal is to show that, immediately after
robot α executes Find-Lookout, it has moved to a node vmax such that the snapshot view from

7

Algorithm 3 Merge(Pα, vtarget, n), executed by robot α

1: Using the snapshot view, determine a shortest path π starting at the first node v0 ∈ Pα and ending at
vtarget.

2: Attempt to move along the port sequence in π to reach vtarget.
3: if there is a round in which the next port to take along path π does not exist in the local view, or, the

port used to arrive at the current node is different than the port specified in path π then
4: Delete v0 from Pα, then wait H − tα,Move rounds at the current node, where tα,Move is the number

of rounds taken to reach the current node
5: else ⊲ the port sequence in π was followed with no inconsistency
6: Wait H − |π| rounds at the current node v. In each of these rounds t′, consider the current snapshot

Sview(v, t′):
7: If the number of nodes in this view is less than n, then remove v0 from Pα

8: If lα is not at vtarget in Sview(v, t′), then remove v0 from Pα

9: If the current local view does not match the local view of vtarget in
Sview(v, t′) (i.e., a different degree, or a different list of robots),
then remove v0 from Pα

10: end if

Algorithm 4 H-View-Algorithm, run by α starting at node v in round 0

1: Execute Find-Lookout()
2: Wait at vmax until round x = (mmax + 2) · n2

max

3: In round x, create a set Pα consisting of the nodes w ∈ Sview(vmax, x) where the degree of w and the
list of robot ID’s at w are the same as vmax’s local view in round x

4: Initialize vtarget to null, initialize phase to 1
5: repeat
6: Execute March-to-Center(Pα)
7: phase← phase+ 1
8: until vtarget 6= null
9: repeat

10: Execute Merge(Pα, vtarget, nmax)
11: Perform the traversals of the previous Merge in reverse (returning to vmax)
12: phase← phase+ 1
13: until phase >

⌈

mmax

2

⌉

14: Execute Merge(Pα, vtarget, nmax)
15: terminate()

8

vmax contains nmax = n nodes and mmax = m robots.

Lemma 2.1. By round (m + 2) · n2, each non-faulty robot α is located at a node vmax such that
the snapshot view at vmax contains n nodes and m robots.

Proof. Consider an arbitrary robot α’s execution of the H-View-Algorithm starting at a node v.
First, α computes the set of nodes w ∈ Sview(v, 0) where the degree of w and the list of robot
ID’s at w is the same as v’s local view in round 0. In particular, this means that each such node
w contains α’s ID lα in its list of robots. Since at most f + 1 robots can have ID lα in round 0
(i.e., α itself and at most f Byzantine robots), we get that the number of nodes w in Sview(v, 0)
that look the same as Lview(v, 0) is at most f + 1. Consequently, this means that the number of
different depth-first traversals attempted by α is at most f +1. Each depth-first traversal takes at
most 2|E| rounds, which is less than n2. Together with the reversal to return back to its starting
node, we get that each attempt takes at most 2n2 rounds, so all traversals are complete by round
2(f + 1) · n2. Since one of the computed traversal sequences starts at α’s real initial location, it
follows that at least one of the traversal attempts visits all nodes in Sview(v, 0). By the definition of
the network’s center and the fact that H ≥ R, it follows that Sview(v, 0) must contain a node that
is in the network’s center, and we just showed that α necessarily visited all nodes in Sview(v, 0).
Since the snapshot view at any node in the center of the network contains all of the network’s nodes
(since H ≥ R), it follows that α visits at least one node at which the snapshot view contains all n
nodes (and contains all m robots). Robot α will save such a node as vmax, it will set nmax = n and
mmax = m, and it will set τmax to be a port sequence from v to vmax. The final traversal of the
path τmax to get from v to vmax takes at most another n2 rounds, so, in total, α arrives at vmax by
round (2f +3) ·n2. Since the number of non-faulty robots is at least f +1, we get that m ≥ 2f +1,
so f ≤ m−1

2 . Thus, (2f + 3) · n2 ≤ (m+ 2) · n2.

The second part of the algorithm consists of the executions of March-to-Center. Our main goal
is to prove that, after at most f + 1 executions of March-to-Center, every robot sets its vtarget
variable to the same non-null value. To this end, we first prove that each execution of March-to-
Center by the non-faulty robots is started at the same time, and, at the end of each execution,
every robot is located at a node such that its snapshot contains all of the network’s nodes. This
allows us to conclude that any particular feature seen by one robot can be seen by all other robots
at the same time.

Lemma 2.2. At the end of each execution of March-to-Center by any non-faulty robot α, the robot
resides at some node v such that its snapshot view contains all the nodes of G.

Proof. We consider the two cases in the description of March-to-Center. We note that, at the end
of each execution of March-to-Center by a non-faulty robot α, either α is at the node vmax where
it started the execution, or, it is at a node vclosest which is defined to be in C(Sview(vmax, t)), i.e.,
the center graph of α’s snapshot view from node vmax. In the first case, Lemma 2.1 tells us that
the snapshot view from node vmax contains all the nodes of G. In the second case, we observe that
vclosest is in the center of G since it is in the center graph of α’s snapshot view from node vmax

(which contains all nodes of G). But by the definition of center, the distance from vclosest to any
node in G is at most R ≤ H, so all nodes of G are in the snapshot view from vclosest as well.

Lemma 2.3. Suppose that every non-faulty robot starts an execution of March-to-Center in the
same round t′ > 0. In round t′ +H, every non-faulty robot has the same snapshot view.

9

Proof. We see from the description of March-to-Center that there can be two cases in each execution:
moving along the path π for |π| rounds followed by a waiting period of length H−|π|, or, a waiting
period of length H. In both cases, the execution takes exactly H rounds. Now, by Lemma 2.2, we
see that at the end of the execution, i.e., in round t′ +H, each robot’s snapshot view is the entire
graph.

Lemma 2.4. For any positive integers i and t′, suppose that every non-faulty robot starts its ith

execution of March-to-Center in round t′. Then, at the start of round t′ + H, exactly one of the
following is true: (i) every non-faulty robot sets vtarget equal to a non-null value, or, (ii) every non-
faulty robot has vtarget equal to null, and they all start their (i+1)th execution of March-to-Center.

Proof. By Lemma 2.3, in round t′ + H, every robot gets the same snapshot view S. There are
two cases to consider. In the first case, suppose that there is a singleton ID in the center graph of
S. Then, according to the description of March-to-Center, every non-faulty robot sets its variable
vtarget to the node that contains a robot with the smallest singleton ID, which implies that every
non-faulty robot has vtarget equal to a non-null value. In the second case, suppose that there is no
singleton ID in the center graph of S. Then, according to the description of March-to-Center, vtarget
at each non-faulty robot remains null. According to the description of the H-View-Algorithm, this
means that all non-faulty robots will execute March-to-Center again.

We now proceed to show that each execution of March-to-Center by the non-faulty robots is
started at the same time. This is useful because it means that the robots make decisions using the
same snapshot view, which minimizes the influence of the Byzantine robots: if a Byzantine robot
imitates a non-faulty robot’s ID l in a fixed round t, then it cannot imitate any other ID’s in the
same round.

Lemma 2.5. For any positive integer k, suppose that all non-faulty robots start their kth execution
of March-to-Center and have vtarget = null. For every positive integer i ≤ k, every non-faulty robot
starts executing its ith execution of March-to-Center in round (m+ 2)n2 + (i− 1)H.

Proof. We prove the statement by induction on i.
Base case: From the description of the H-View-Algorithm, each non-faulty robot executes

March-to-Center for the first time starting in round (mmax + 2) · n2
max = (m + 2) · n2. Thus, the

statement is true for i = 1.
Inductive step: Assume that, for some j ∈ {1, . . . , k − 1}, the statement is true for i =

j. In particular, assume that every robot started its jth execution of March-to-Center in round
(m+ 2)n2 + (j − 1)H. By the description of March-to-Center, there can be two cases in their jth

execution: moving along the path π for |π| rounds followed by a waiting period of length H−|π|, or,
a waiting period of length H. In both cases, the execution takes exactly H rounds. By Lemma 2.4
and the fact that no robot has set its vtarget variable to a non-null value before the kth execution,
we get that in round (m+2)n2 +(j − 1)H +H = (m+2)n2 + j ·H, every robot starts its (j +1)th

execution of March-to-Center.

Lemma 2.6. Let k > 0 be the smallest integer such that at least one non-faulty robot sets its vtarget
to a non-null value during its kth execution of March-to-Center, and suppose that this execution of
March-to-Center starts in round t′. Then, every non-faulty robot sets vtarget to the same value at
the start of round t′ +H.

10

Proof. By Lemma 2.5, for every positive integer i ≤ k, every robot starts its ith execution of March-
to-Center in the same round, so all robots start the kth execution of March-to-Center in round t′.
Lemma 2.4 implies that, at the start of round t′ + H, either every robot sets a non-null value of
vtarget, or, variable vtarget is null for every robot. The second case does not occur since we know
that at least one non-faulty robot sets its vtarget to a non-null value during its kth execution of
March-to-Center. Therefore, the first case occurs: all robots set their vtarget to a non-null value at
the start of round t′ +H. Moreover, by Lemma 2.3, every robot has the same snapshot view S in
round t′+H. Hence, by the description of March-to-Center, every robot sets its vtarget to the same
node: the node that contains a robot with smallest singleton ID in the center graph of S.

Corollary 2.7. If there exists a positive integer k such that at least one non-faulty robot sets its
vtarget to a non-null value during its kth execution of March-to-Center, then all non-faulty robots
set vtarget to the same non-null value at the start of round (m+ 2)n2 + kH.

We now set out to show that all robots set their vtarget variable to a non-null value within
f +1 executions of March-to-Center. The idea behind the proof is to show that, in each execution
of March-to-Center that ends with vtarget = null, at least one non-faulty robot makes progress
towards determining its correct location within its snapshot view. Once there are enough robots
that have determined their correct location (more than the number of Byzantine robots), we are
guaranteed to have at least one singleton ID appear in the center of the graph, and all robots will
set their vtarget as the location of the smallest such ID.

To formalize the argument, we introduce a function Φ that measures how much progress has
been made by all robots towards determining their correct location within their snapshot view. In
what follows, for each t ≥ (m + 2) · n2, we denote by Pα,t the value of variable Pα at robot α in
round t. From the description of the H-View-Algorithm, recall that Pα is set by each robot α for
the first time in round (m+ 2) · n2, and the value assigned in this round is the set of nodes in α’s
snapshot view that match its local view, i.e., the nodes that have the same degree and the same
list of robot ID’s as α’s current location. In subsequent rounds, the only changes to Pα involve the
removal of nodes, so Pα,t+1 ⊆ Pα,t for all t > (m+ 2) · n2. For any fixed round t ≥ (m+ 2) · n2, we
denote by Φt the sum

∑

α |Pα,t|, which is taken over all non-faulty robots α. We now prove some
useful bounds on Φt and how its value changes in each execution of March-To-Center.

Proposition 2.8. In any round t ≥ (m+ 2) · n2, we have m− f ≤ Φt ≤ m.

Proof. First, we show that Φt ≤ m. Since each Pα,t only contains nodes where the ID lα appears
in round t, it follows that |Pα,t| is bounded above by the number of robots whose ID in round
t is equal lα. As each robot has exactly one ID in round t (including the Byzantine robots), it
follows that Φt =

∑

α |Pα,t| ≤ m. Next, to show that Φt ≥ m− f , we observe that there are m− f
non-faulty robots, and each non-faulty robot α has |Pα,t| ≥ 1 in every round t ≥ (m+2) · n2. This
is because a non-faulty robot α only removes a node v from Pα if it performs March-to-Center or
Merge under the assumption that it starts the execution from node v in its snapshot view, but
notices an inconsistency between this assumption and its observed experience. Since α’s actual
vmax node from which it starts March-to-Center or Merge would not result in any inconsistency,
this node would never be removed from Pα, which implies that |Pα| ≥ 1 after the first round in
which Pα is given a value.

11

Lemma 2.9. Consider any execution of March-to-Center by the non-faulty nodes, and suppose that
the execution starts in round t′. Then, exactly one of the following occurs: (i) all non-faulty robots
set their vtarget variable to a non-null value at the start of round t′ +H, or, (ii) Φt′+H ≤ Φt′ − 1.

Proof. By Lemma 2.4, exactly one of the following occurs at the start of round t′ +H:

• All non-faulty robots set their vtarget variable to some non-null value, or,

• Variable vtarget is null for every robot. By Lemma 2.3, we know that in round t + H ′, all
non-faulty robots have the same snapshot view S, and, by Lemma 2.2, S contains all the
nodes of G. As there are at least f + 1 non-faulty robots and exactly f Byzantine robots,
there must be at least one non-faulty robot β whose ID will be a singleton ID in S. But
since vtarget is null for every non-faulty robot, this implies that there is no singleton ID in
C(S) in round t′ +H, and so β is located outside of C(S). According to the description of
March-to-Center, it must be the case that |Pβ | > 1 in round t′, because otherwise β would
have moved to a node in the center of its snapshot view in this execution of March-to-Center.
Consequently, according to March-to-Center, the robot β removes all other nodes from Pβ

except the one node that contains its ID lβ (as lβ is a singleton ID). Thus, the value of |Pβ |
decreases during some round in the range t′, . . . , t′ +H, so it follows that Φt′+H ≤ Φt′ − 1.

Theorem 2.10. There exists a positive integer k ≤ f + 1 such that every non-faulty robot sets its
variable vtarget to the same non-null value at the start of round (m+ 2)n2 + kH.

Proof. First, suppose that there is at least one non-faulty robot that sets its vtarget to a non-
null value during one of its first f executions of March-to-Center. In this case, the desired result
follows directly from Corollary 2.7. So, in what follows, we assume that all non-faulty robots have
vtarget = null during the first f executions of March-to-Center. Therefore, all non-faulty robots
start their (f + 1)th execution of March-to-Center with vtarget = null, and by Lemma 2.5, they
start this execution in round (m+2)n2+fH. By Lemmas 2.2 and 2.3, each non-faulty robot starts
this execution with the same snapshot view, which we’ll denote by S, that contains all the nodes
of G.

By Lemma 2.9, after each of the first f executions of March-to-Center, the value of Φ decreases
by at least 1. It follows that Φ(m+2)n2+fH ≤ Φ(m+2)n2 − f . However, by Proposition 2.8, we know
that Φ(m+2)n2 ≤ m and Φ(m+2)n2+fH ≥ m−f , so altogether we conclude that Φ(m+2)n2+fH = m−f .
But m− f is the number of non-faulty robots, so the sum Φ(m+2)n2+fH =

∑

α |Pα,(m+2)n2+fH | has
m − f non-zero terms. This implies that each |Pα,(m+2)n2+fH | is equal to exactly 1. Therefore,
by the description of March-to-Center, all non-faulty robots move to a node in the center graph of
their snapshot view S. This means that there are at least f + 1 non-faulty robots in the center of
S in round (m + 2)n2 + (f + 1)H, and at least one of their ID’s is a singleton ID since there are
at most f Byzantine nodes. Thus, by the description of March-to-Center, every non-faulty robot
sets its vtarget to the same node: the node that contains a robot with smallest singleton ID in the
center graph of S, which proves the desired statement with k = f + 1.

Now we come to the third part of the algorithm which consists of the executions of Merge. By
the description of the H-View-Algorithm, non-faulty robots start executing their Merge operation
immediately after setting a non-null value of vtarget. Moreover, by Theorem 2.10, we see that every

12

robot sets its vtarget variable to the same non-null value in the same round, and so every non-faulty
robot starts executing its first execution of Merge at the same time as well. More specifically, we
denote by k the number of executions of March-to-Center performed by the non-faulty robots, and
conclude that all non-faulty robots start their first execution of Merge in round (m + 2)n2 + kH.
By the description of Merge, each execution of Merge consists of exactly H rounds, and according
to the H-View-Algorithm, an additional H rounds are then used to perform the steps of Merge in
reverse. These observations imply the following fact.

Lemma 2.11. For any positive integer i, if an ith execution of Merge is performed, then all non-
faulty robots start this execution in round (m+ 2)n2 + (k + 2(i − 1))H.

Our final goal is to show that all non-faulty robots gather at vtarget after at most (f + 2) − k
executions of Merge, where k is the number of March-to-Center operations executed by the non-
faulty robots. Before proving this in Theorem 2.15, we establish the following technical results.

Lemma 2.12. For any t ≥ 0, suppose that v is a node such that at least m− f robots are located
at v at the start of round t. Then, the local view at v in round t is unique. More precisely, for any
node v′ 6= v, we have Lview(v′, t) 6= Lview(v, t).

Proof. For any v, v′ such that v 6= v′, if there are at least m− f robots at v in round t, there can
be at most f robots at v′ in round t. Since there are at least f + 1 non-faulty robots, it follows
that m ≥ 2f + 1, so m − f > f . In particular, this means that the number of ID’s in Lview(v, t)
is strictly greater than the number of ID’s in Lview(v′, t), so Lview(v, t) 6= Lview(v′, t).

Lemma 2.13. Consider any execution of Merge by the non-faulty nodes, and suppose that the
execution starts in round t′. Then at least one of the following holds: (i) all non-faulty robots are
gathered at vtarget in round t′ +H, or, (ii) Φt′+H ≤ Φt′ − 1.

Proof. Assume that (i) does not hold in round t′ + H, i.e., at least one non-faulty robot is not
located at vtarget in round t′ +H. There are two possibilities:

• There are at least m− f robots at vtarget in round t′ +H. By Lemma 2.12, each robot
β that is at a node v′ 6= vtarget in round t′ + H has a local view Lview(v′, t′ + H) that is
different than Lview(vtarget, t

′+H). Hence, according to the description of Merge, each such
robot β removes a node from its Pβ, i.e., the value of |Pβ | decreases in some round in the
range t′, . . . , t′ +H. It follows that Φt′+H ≤ Φt′ − 1.

• There are fewer than m− f robots at vtarget in round t′ +H. As the number of non-
faulty robots is m− f , it follows that there is at least one non-faulty robot α whose ID lα is
not seen at vtarget in α’s snapshot view in round t′ +H. Hence, according to the description
of Merge, α removes a node from its Pα, i.e., the value of |Pα| decreases in some round in the
range t′, . . . , t′ +H. It follows that Φt′+H ≤ Φt′ − 1.

Lemma 2.14. During the execution of the H-View-Algorithm, if k ≥ 1 executions of March-to-
Center are performed followed by f + 2 − k executions of Merge, then all non-faulty robots are
gathered at vtarget.

13

Proof. By the description of the H-View-Algorithm and Corollary 1, if k executions of March-to-
Center are performed, then vtarget was set for the first time by all non-faulty robots at the end of the
kth execution of March-to-Center. By Lemma 2.9, after each of the first k−1 executions of March-to-
Center, the value of Φ decreases by at least 1. It follows that Φ(m+2)n2+(k−1)H ≤ Φ(m+2)n2−(k−1).
By Proposition 2.8, we know that Φ(m+2)n2 ≤ m, so it follows that Φ(m+2)n2+(k−1)H ≤ m− (k− 1).
Since the value of Φ never increases (the algorithm only ever removes nodes from the Pα sets) it
follows that Φ(m+2)n2+kH ≤ m − (k − 1) as well, where round (m + 2)n2 + kH is when the first
Merge execution begins. Now, we consider the first f +1−k executions of Merge by the non-faulty
robots, and we consider two cases:

• Suppose that, for some i ∈ {1, . . . , f + 1 − k}, all non-faulty robots are gathered at vtarget
at the end of the ith execution of Merge. Since the number of non-faulty robots is m− f , it
follows that there would be at least m− f robots at vtarget. By Lemma 2.12, the local view
at vtarget would be unique in G, and the local view of each non-faulty robot would exactly
match it. Hence, according to the description of Merge, no non-faulty robot would modify
its Pα set, and so the next execution of Merge (if any) would start from the same node v0. It
follows that in all subsequent executions of Merge (in particular, the (f +2− k)th execution)
all non-faulty robots will be gathered at vtarget.

• Suppose that, for every i ∈ {1, . . . , f + 1− k}, at least one non-faulty robot is not located at
vtarget at the end of the ith execution of Merge. Then, according to Lemma 2.13, the value
of Φ decreases by at least 1 in each such execution. As the value of Φ was bounded above by
m − (k − 1) at the start of the first Merge execution, and it decreases by at least f + 1 − k
during the first f +1−k executions of Merge, it follows that, after the (f +1−k)th execution
of Merge, the value of Φ is at most m− f . However, by Proposition 2.8, we know that Φ is
at least m− f , so altogether we conclude that the value of Φ after the (f +1− k)th execution
of Merge is exactly m− f . But m− f is the number of non-faulty robots, so the summation
represented by Φ has m− f non-zero terms. This implies that each |Pα| is equal to exactly 1
for each non-faulty robot α. Then, in the final execution of Merge, i.e., in execution f +2−k,
each non-faulty robot will compute a path to vtarget using its snapshot view, but using its
actual location as starting node v0. This means that all non-faulty nodes will be located at
vtarget at the end of execution f + 2− k of Merge.

Finally, we verify that the H-View-Algorithm ensures that Merge is executed at least f +2− k
times after k executions of March-to-Center. The Merge operation is executed until the value of
phase is greater than ⌈m/2⌉, and from the assumption that the number of non-faulty robots is at
least f + 1, we know that m ≥ 2f + 1. In particular, this means that the combined number of
March-to-Center and Merge executions is at least f +1, and then one more Merge is executed after
exiting the ‘repeat’ loop. This concludes the proof of correctness of the H-View-Algorithm.

Theorem 2.15. In any n-node graph with radius R, if the H-View-Algorithm is performed by any
team of m robots consisting of f Byzantine robots and at least f +1 non-faulty robots with visibility
H ≥ R, then Gathering is solved within (m+ 2) · n2 +H ·m ∈ O(mn2) rounds.

Proof. By Lemma 2.1, every non-faulty robot spends exactly (m + 2)n2 rounds for the Find-
Lookout operation. Then, by Theorem 2.10, there exists a positive integer k ≤ f + 1 such that

14

every non-faulty robot sets its variable vtarget at the start of the round (m + 2)n2 + kH. More
precisely, robots spend exactly kH rounds performing the March-to-Center executions. After
that, every robot spends exactly (⌈m/2⌉ − k)2H + H rounds for its Merge executions, after
which all non-faulty are located at vtarget (by Lemma 2.14. In total, the number of rounds is
(m+2) ·n2+kH+(⌈m/2⌉−k)2H+H. For the minimum value of k = 1, we get that the robots use
at most (m+2) ·n2 +H ·m rounds to accomplish the gathering. As H ≤ n (at most full visibility),
the number of rounds is in O(mn2), i.e., polynomial in the network size and team size.

3 Impossibility Results

First, we recall Theorem 4.7 from [10], which states that there is no deterministic algorithm that
solves Gathering in the presence of f Byzantine robots if the number of non-faulty agents is at
most f (and these non-faulty agents know the size of the graph). This impossibility result was
proven in a model where robots have no visibility beyond their local view (i.e., visibility H = 0).
However, the same proof works under the assumption that each non-faulty robot has full visibility
of the entire graph in every round, which proves that our algorithm is optimal with respect to the
number of non-faulty robots in the team.

Theorem 3.1. There is no deterministic algorithm that solves Gathering if the number of Byzantine
robots in the team is f and the number of non-faulty robots is at most f , even if the non-faulty
agents have visibility H equal to the diameter of the graph.

Next, we prove that to solve Gathering in arbitrary graphs, the visibility H of each non-faulty
robot must somehow depend on the radius of the graph. In particular, it is not sufficient to fix some
constant visibility range. We remark that this does not contradict the existence of previously-known
algorithms that work when H = 0, as those algorithms make additional assumptions that are not
present in our model (e.g., knowledge of the graph size, knowledge of the number of Byzantine
robots, or whiteboards at the nodes).

Theorem 3.2. There is no deterministic algorithm that can solve Gathering when executed in any
graph by any team of m robots consisting of f ≥ 0 Byzantine robots and at least f + 1 non-faulty
robots if the visibility range H of each non-faulty robot is a fixed constant c.

Proof. Let c be any fixed positive integer. To obtain a contradiction, assume the existence of a
deterministic algorithm A that can solve Gathering when executed in any graph by any team of
m robots consisting of f ≥ 0 Byzantine robots and at least f + 1 non-faulty robots if the visibility
range H of each non-faulty robot is equal to c.

First, we construct an instance consisting of a cycle graph C1 = (V1, E1) with an even number
of nodes |V1| = 2c+2. The radius R1 of C1 is c+1. At each node v ∈ V1, the two incident edges are
labeled with port numbers 0 and 1 such that 0 leads clockwise and 1 leads anticlockwise. The initial
positions of the robots in C1 are as follows: a non-faulty robot α with ID lα is placed at some node
v0, and a non-faulty robot β with ID lβ at a node w such that the distance d(v0, w) = R1 = c+ 1.
There are no Byzantine robots in C1. Consider the execution EX1 of algorithm A on instance C1.
As A is assumed to be a correct algorithm, there exists some round r1 in which robots α and β
have terminated and gathered at some node vtarget ∈ V1.

Next, we construct a second instance consisting of a cycle graph C2 = (V2, E2) with an even
number of nodes |V2| = 4r1 + 2(c+ 1). The radius of R2 of C2 is 2r1 + c+ 1. At each node v ∈ V2,

15

the two incident edges are labeled with port numbers 0 and 1 such that 0 leads clockwise and 1
leads anticlockwise. The initial positions of the robots in C2 are as follows: the non-faulty robot α
with ID lα is placed at node v0 (as in the first instance C1 above), a Byzantine robot with ID lβ is
placed at a node vCW that is distance exactly c + 1 away from v0 in the clockwise direction, and
another Byzantine robot with ID lβ is placed at a node vACW that is distance exactly c + 1 away
from v0 in the anticlockwise direction. Further, we place 2 non-faulty robots at a node w such that
d(v0, w) = R2 = 2r1 + c+ 1. These 2 non-faulty robots have distinct ID’s that are not equal to lα
or lβ . The number of Byzantine robots is f = 2, and there are 3 = f + 1 non-faulty robots (one at
v0 and two at w). We denote by EX2 the execution of algorithm A on instance C2.

We now demonstrate that the Byzantine robots in C2 can behave in such a way that, for each
round t, the robot α with ID lα cannot distinguish between executions EX1 and EX2, i.e., robot
α’s local view and snapshot view in every round are the same across both executions. This leads
to a contradiction: since α terminates its algorithm in round r1 in execution EX1, it will also
terminate its algorithm in round r1 in execution EX2, and since the initial distance between α
and the other non-faulty robots is strictly greater than 2r1, it follows that α terminates before the
non-faulty robots can gather.

First, note that α’s visibility range is c in both executions, which means that its snapshot view
consists of 2c + 1 nodes in every round of both executions. By the initial placement of the robots
in both executions, we note that in round t = 0 of both executions, there are no robots within
distance c of α’s initial position v0. So, α’s local view in round 0 of both executions consists of a
node of degree 2 containing the ID lα, and, α’s snapshot view in round 0 of both executions consists
of a path of length 2c+1 nodes with only ID lα located at the middle node. Further, we note that
the two other non-faulty robots in C2 are never visible to α in execution EX2: their initial distance
to α is 2r1 + c+ 1, so in round r1, each of their distances to α is at least c+ 1.

To define the behaviour of the Byzantine robots in C2 during rounds t = 1, . . . , r1 of execution
EX2, we observe the execution EX1. In particular:

• For each round t > 0 of EX1 in which α does not see β in its snapshot view: the Byzantine
robots follow the same port in round t− 1 of EX2 as α did in round t− 1 in EX1. Doing so
ensures that both Byzantine robots remain at distance c + 1 from α at the start of round t
in EX2, i.e., are not in α’s snapshot view.

• For each round t > 0 of EX1 in which α sees β in its snapshot view but did not see β in its
snapshot view in round t− 1: the Byzantine robot on the appropriate side of α (clockwise or
counterclockwise) moves so that it appears at the same node in α’s snapshot view in round
t of EX2 as β does in round t of EX1. The other Byzantine robot follows the same port as
α does in round t− 1 (so that its distance from α at the start of round t is still c+ 1, i.e., it
does not appear in α’s snapshot view).

• For each round t > 0 of EX1 in which α sees β in its snapshot view and also saw β in its
snapshot view in round t − 1: the Byzantine robot that was in α’s snapshot view in round
t − 1 of EX2 follows the same port in round t − 1 of EX2 as β did in round t− 1 of EX1.
The other Byzantine robot follows the same port as α does in round t−1 (so that its distance
from α at the start of round t is still c+ 1, i.e., it does not appear in α’s snapshot view).

It is clear from this behaviour that α sees the same thing up to round r1 in both executions
EX1 and EX2: when α sees no other robots in round t of EX1, then both Byzantine robots move

16

so that they are both at distance c + 1 from α in round t of EX2; moreover, when α sees β in
round t of EX1, then one Byzantine robot (which has ID lβ) moves so that its position relative to
α in round t of EX2 is the same as β’s relative position to α in round t of EX1, while the other
Byzantine robot moves so that it is at distance c+ 1 from α in round t of EX2.

We were not able to extend the lower bound argument in Theorem 3.2 to a non-constant
visibility range H. The reason is that, when we change the underlying graph, the visibility radius
of a robot is different in the new graph, so we cannot use indistinguishability to conclude that a
robot will behave in the same way in both graphs. Establishing a lower bound on H with respect
to R is left as an open problem.

References

[1] Eduardo Mesa Barrameda, Nicola Santoro, Wei Shi, and Najmeh Taleb. Sensor deployment by
a robot in an unknown orthogonal region: Achieving full coverage. In 20th IEEE International
Conference on Parallel and Distributed Systems, ICPADS 2014, pages 951–960, 2014.

[2] Lali Barrière, Paola Flocchini, Eduardo Mesa Barrameda, and Nicola Santoro. Uniform scat-
tering of autonomous mobile robots in a grid. Int. J. Found. Comput. Sci., 22(3):679–697,
2011.

[3] Subhash Bhagat, Krishnendu Mukhopadhyaya, and Srabani Mukhopadhyaya. Computation
under restricted visibility. In Distributed Computing by Mobile Entities, Current Research in
Moving and Computing, pages 134–183. Springer, 2019.

[4] Sébastien Bouchard, Yoann Dieudonné, and Bertrand Ducourthial. Byzantine gathering in
networks. Distributed Computing, 29(6):435–457, 2016.

[5] Sébastien Bouchard, Yoann Dieudonné, and Anissa Lamani. Byzantine gathering in polynomial
time. In 45th International Colloquium on Automata, Languages, and Programming, ICALP
2018, pages 147:1–147:15, 2018.

[6] Jérémie Chalopin, Yoann Dieudonné, Arnaud Labourel, and Andrzej Pelc. Rendezvous in
networks in spite of delay faults. Distributed Computing, 29(3):187–205, 2016.

[7] Jérémie Chalopin, Emmanuel Godard, and Antoine Naudin. Anonymous graph exploration
with binoculars. In Distributed Computing - 29th International Symposium, DISC 2015, pages
107–122, 2015.

[8] Serafino Cicerone, Gabriele Di Stefano, and Alfredo Navarra. Asynchronous robots on graphs:
Gathering. In Distributed Computing by Mobile Entities, Current Research in Moving and
Computing, pages 184–217. Springer, 2019.

[9] Xavier Défago, Maria Potop-Butucaru, and Sébastien Tixeuil. Fault-tolerant mobile robots. In
Distributed Computing by Mobile Entities, Current Research in Moving and Computing, pages
234–251. Springer, 2019.

17

[10] Yoann Dieudonné, Andrzej Pelc, and David Peleg. Gathering despite mischief. ACM Trans-
actions on Algorithms (TALG), 11(1):1, 2014.

[11] Matthias Fischer, Daniel Jung, and Friedhelm Meyer auf der Heide. Gathering anonymous,
oblivious robots on a grid. In 13th International Symposium on Algorithms and Experiments
for Wireless Sensor Networks, ALGOSENSORS 2017, pages 168–181, 2017.

[12] Paola Flocchini. Gathering. In Distributed Computing by Mobile Entities, Current Research
in Moving and Computing, pages 63–82. Springer, 2019.

[13] Paola Flocchini, Giuseppe Prencipe, and Nicola Santoro, editors. Distributed Computing by
Mobile Entities, Current Research in Moving and Computing. Springer, 2019.

[14] Jion Hirose, Junya Nakamura, Fukuhito Ooshita, and Michiko Inoue. Gathering with a strong
team in weakly byzantine environments. CoRR, abs/2007.08217, 2020.

[15] Tien-Ruey Hsiang, Esther M. Arkin, Michael A. Bender, Sándor P. Fekete, and Joseph S. B.
Mitchell. Algorithms for rapidly dispersing robot swarms in unknown environments. In Fifth
International Workshop on the Algorithmic Foundations of Robotics, WAFR 2002, pages 77–
94, 2002.

[16] Fukuhito Ooshita, Ajoy K. Datta, and Toshimitsu Masuzawa. Self-stabilizing rendezvous of
synchronous mobile agents in graphs. In Stabilization, Safety, and Security of Distributed
Systems - 19th International Symposium, SSS 2017, pages 18–32, 2017.

[17] Andrzej Pelc. Deterministic gathering with crash faults. Networks, 72(2):182–199, 2018.

[18] Andrzej Pelc. Deterministic rendezvous algorithms. In Distributed Computing by Mobile En-
tities, Current Research in Moving and Computing, pages 423–454. Springer, 2019.

[19] Masashi Tsuchida, Fukuhito Ooshita, and Michiko Inoue. Byzantine-tolerant gathering of
mobile agents in arbitrary networks with authenticated whiteboards. IEICE Transactions,
101-D(3):602–610, 2018.

18

	1 Introduction
	1.1 Model and Definitions
	1.1.1 Properties of non-faulty robots.
	1.1.2 Properties of the Byzantine robots.
	1.1.3 Problem Statement.

	1.2 Related Work
	1.3 Our Results

	2 The Algorithm
	2.1 Algorithm Description
	2.2 Analysis

	3 Impossibility Results

