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Abstract

We study the network localization problem, i.e., the problem of determining node positions of a wireless sensor
network modeled as a unit disk graph. In an arbitrarily deployed network, positions of all nodes of the network
may not be uniquely determined. It is known that even if the network corresponds to a unique solution, no
polynomial-time algorithm can solve this problem in the worst case, unless RP = NP. So we are interested in
algorithms that efficiently localize the network partially. A widely used technique that can efficiently localize
a uniquely localizable portion of the network is trilateration: starting from three anchors (nodes with known
positions), nodes having at least three localized neighbors are sequentially localized. However, the performance
of trilateration can substantially differ for different choices of the initial three anchors. In this paper, we propose
a distributed localization scheme with a theoretical characterization of nodes that are guaranteed to be localized.
In particular, our proposed distributed algorithm starts localization from a strongly interior node and provided
that the subgraph induced by the strongly interior nodes is connected, it localizes all nodes of the network
except some boundary nodes and isolated weakly interior nodes.

1 Introduction
A wireless sensor network (WSN) is a wireless network consisting of a large number of small autonomous
sensors spatially distributed in a region to monitor physical or environmental parameters. The sensor
nodes are low-cost, low-power, autonomous, multi-functional devices equipped with sensing, processing,
and communication capabilities. The knowledge of the physical location of sensor nodes is essential
in many applications where the geographical information of the sensed data is important, for example,
event detection, environment and habitat monitoring, target tracking, pervasive medical care, etc.
The positional information of the nodes also supports many fundamental location-aware protocols, like
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geographic routing, topology control, coverage, etc. One method of determining the location of the
nodes is by equipping the sensor nodes with Global Positioning System (GPS). However, the installation
of GPS on each node of a large scale WSN is expensive and the power consumption of GPS reduces
the battery life of the sensor nodes. Moreover, it is not suitable in dense forests, underground or
indoor environment where GPS signals are unavailable. Therefore, novel schemes have been proposed
to determine the positions of the nodes in a network where only some special nodes called anchors are
aware of their positions with respect to some global coordinate system (e.g., [1, 4–6, 21, 24]). In these
schemes, the nodes can measure the distances to their neighboring nodes and using these distance
information they try to determine their positions. This process of computing the positions of the nodes
is called range-based network localization or simply network localization.

The network localization problem can be abstracted as the following: given a weighted graph with
edge weights equal to the distances between the respective nodes and coordinates of some nodes,
called anchors, with respect to some coordinate system, we have to compute the coordinates of all
other nodes in that coordinate system. A network, with the given positions of anchors and distances
between adjacent nodes, is said to be uniquely localizable if all nodes of the network have unique
positions consistent with the given data, i.e., there is a unique solution. Obviously, if the given instance
corresponds to multiple feasible solutions, the actual positions of the nodes can not be determined.
The unique localizability of a network is completely determined by certain combinatorial properties of
the network graph and the number of anchors. Graph rigidity theory [8, 13, 14] provides the following
necessary and sufficient condition for unique localizability [8]: a network is uniquely localizable if and
only if it has at least 3 anchors and the network graph is globally rigid (See Section 2.3 for definition).
However, unless a network is highly dense and regular, it is unlikely that the network is globally rigid.
But even if a network is not globally rigid as a whole, a large portion of the network may be globally
rigid. For the remaining nodes, there are multiple feasible solutions and hence, their actual positions
can not be determined. In the decision version of the problem, also known as Graph Embedding
or Graph Realization problem, given a weighted graph we have to determine whether there is an
embedding of the graph in Euclidean plane so that the distances between the adjacent vertices are equal
to the edge weights. This problem has been shown to be strongly NP-hard [25]. In [8], it is shown
that the problem remains NP-hard even when the graph is globally rigid. However, these results are
for general graphs. In a sensor network, only nodes that are within a certain communication range, say
r, can measure their relative distances. Therefore, the network can be better modeled as a unit disk
graph: two nodes are adjacent if and only if their distance is ≤ r. In this version of the problem, apart
from the coordinates of the anchors and the distances between the adjacent nodes, we have a third
type of information: the distances between the non-adjacent nodes are > r. The decision version of
this problem, also known as Unit Disk Graph Reconstruction problem, is that given a weighted
graph with weights ≤ r, we have to determine whether there is an embedding of the graph in Euclidean
plane so that 1) the distances between the adjacent vertices are equal to the edge weights, and 2) the
distance between any pair of non-adjacent nodes is > r. It is shown in [2] that Unit Disk Graph
Reconstruction is NP-hard. Therefore, there is no efficient algorithm that solves the localization
problem in the worst case unless P = NP. It is further shown in [2] that a similar result holds even for
instances that have unique reconstructions: there is no efficient randomized algorithm that solves the
localization problem even for instances that have unique reconstructions unless RP = NP.

Since a real life instance may not have unique solution and even if it has, it is unlikely that there
is an efficient algorithm that solves the problem, we are interested in efficient heuristics that partially
localize the network. A very popular technique is trilateration which efficiently localizes a globally rigid
subgraph of the network. It is based on the simple fact that the position of a node can be determined
from its distance from three non-collinear nodes with known coordinates. The algorithm starts with at
least three anchor nodes and then nodes adjacent to at least three nodes with known coordinates are
sequentially localized. It is computationally efficient and very easy to implement in distributed setting,
thus widely used in practice. In this paper, we are interested in anchor-free localization, i.e., there are
no anchor nodes. Since for localization at least three anchor nodes are necessary, in the anchor-free
case, some three mutually adjacent nodes of the network fix their coordinates (respecting their mutual



distances) in some virtual coordinate system. These three nodes play the role of anchors. However,
in case of trilateration, the performance of the algorithm can drastically differ for different choices
of the initial three nodes. In this paper, we address this issue and propose a distributed anchor-free
localization scheme with a theoretical characterization of nodes that are guaranteed to be localized. In
our approach, a node, based on its local information, can categorize itself as either strongly interior,
non-isolated weakly interior, isolated weakly interior or boundary. Provided that the strong interior,
i.e., the subgraph induced by the set of strongly interior nodes, is connected, one strongly interior node
is chosen by a leader election protocol. Our sequential localization algorithm starts from that strongly
interior node, and it is theoretically guaranteed to localize all nodes except some boundary and isolated
weakly interior nodes. Due to the space restrictions, it is not possible to present a comprehensive survey
of the large number of works on localization (e.g., [1,3–6,9–12,15,17,21,22,24,26–28,32] etc.) in the
literature. The readers are instead referred to the surveys [7, 18,20,30] and the references therein.

2 Preliminaries
2.1 Basic Model and Assumptions
The mathematical model of wireless sensor network considered in this work is described in the following:

• A set of n sensors is arbitrarily deployed in R2. Each sensor node has computation and wireless
communication capabilities.

• There is a constant r > 0, called the communication range, such that any two sensor nodes can
directly communicate with each other if and only if the distance between them is ≤ r. This implies
that the corresponding communication network can be modeled as a unit disk graph (UDG): two
nodes are adjacent if and only if they are at most r distance apart. We assume that this graph
is connected. Note that if the graph is not connected, then it is impossible to localize the entire
network consistently.

• The euclidean distance between a pair of sensors can be measured directly and accurately if and
only if they are at most r distance apart. Hence, if a sensor node can directly communicate with
another node, then it also knows the distance between them.

• The sensor nodes are assumed to be in general positions, i.e., no three points are collinear. This
is not a major assumption, as the nodes of a randomly deployed network are almost always in
general positions.

2.2 Definitions and Notations
Let V be the set of n sensors at positions in R2. The corresponding wireless sensor network can be
modeled as an undirected edge-weighted graph G = (V, E , w), where

• V = {v1, . . . , vn} is the set of sensors,

• (vi, vj) ∈ E , i.e., vi is adjacent to vj if and only if d(vi, vj) ≤ r, where r is the communication
range of the sensors,

• the edge-weight w : E −→ R is given by w(vi, vj) = d(vi, vj).

We call G the underlying network graph of the wireless sensor network. As mentioned previously,
we assume that the graph G is connected.

A sensor node v ∈ V is called an interior node if for every point z ∈ ∂(Z(v)), where ∂(Z(v)) is the
boundary of Z(v), we have z ∈ Z(v′) for some v′ ∈ V \ {v}. If v ∈ V is not an interior node, then it
is called a boundary node. An interior node v ∈ V is said to be a strongly interior node if every node
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Figure 1: u is not a maximal neighbor of v as u �v u′.

in N (v) is an interior node. An interior node v ∈ V is said to be a weakly interior node if at least one
node in N (v) is a boundary node. A weakly interior node is said to be isolated if it is not adjacent
to any strongly interior node. The subgraph of G induced by the set of all interior nodes is called the
interior of G. Similarly, the subgraph of G induced by the set of all strongly interior nodes is called the
strong interior of G.

If v, v′ ∈ V are adjacent to each other, then we shall refer to the intersections of ∂(Z(v)) and
∂(Z(v′)) as their boundary intersections. We shall denote these boundary intersections as CW (v, v′)
and CCW (v, v′) according to the following rule: if one traverses from CCW (v, v′) to CW (v, v′) along
∂(Z(v)) in clockwise direction, it sweeps an angle < π about the center v.

Given a node v, we define a partial order relation �v on N (v) as following: for u, u′ ∈ N (v),
u �v u′ if and only if Z(u) ∩ ∂(Z(v)) ⊆ Z(u′) ∩ ∂(Z(v)). See Fig. 1. A node u ∈ N (v) is said to
be a maximal neighbor of v if it is a maximal element in N (v) with respect to �v, i.e., there is no
u′ ∈ N (v) \ {u}, such that u �v u′.

2.3 Some Results from Graph Rigidity Theory
In this section, we present some basic definitions and results in graph rigidity. For a detailed exposition
on graph rigidity, the readers are referred to [14].

A d-dimensional framework is a pair (G, ρ), where G = (V,E) is a connected simple graph and the
realization ρ is a map ρ : V −→ Rd. Two frameworks (G, ρ1) and (G, ρ2) are said to be equivalent if
d(ρ1(u), ρ1(v)) = d(ρ2(u), ρ2(v)), for all (u, v) ∈ E. Frameworks (G, ρ1) and (G, ρ2) are said to be
congruent if d(ρ1(u), ρ1(v)) = d(ρ2(u), ρ2(v)), for all u, v ∈ V . In other words, two frameworks are
said to be congruent if one can be obtained from another by an isometry of Rd. A realization is generic
if the vertex coordinates are algebraically independent over rationals. The framework (G, ρ) is rigid if ∃
an ε > 0 such that if (G, ρ′) is equivalent to (G, ρ) and d(ρ(u), ρ′(u)) < ε for all u ∈ V , then (G, ρ′) is
congruent to (G, ρ). Intuitively, it means that the framework can not be continuously deformed. (G, ρ)
is said to be globally rigid if every framework which is equivalent to (G, ρ) is congruent to (G, ρ). It is
known [31] that rigidity is a generic property, that is, the rigidity of (G, ρ) depends only on the graph G,
if (G, ρ) is generic. The set of generic realizations is dense in the realization space and thus almost all
realizations of a graph are generic. So, we say that a graph G is rigid in R2 if every generic realization
of G in R2 is rigid.

Theorem 1. [14] A graph G is globally rigid in R2 if and only if either G is a complete graph on at
most three vertices or G is 3-connected, rigid and remains rigid even after deleting an edge.



Theorem 2. [8] If a network has at least 3 anchors and the underlying network graph is globally rigid,
then it is uniquely localizable.

The condition of having at least 3 anchors is also necessary for unique localizability in order to rule
out the trivial transformations. Since we are considering anchor-free localization, some three mutually
adjacent nodes of the network will play the role anchors by fixing their coordinates (respecting their
mutual distances) in some virtual coordinate system. The remaining nodes of the network have to find
their position according to this coordinate system. It should be noted here that for networks that do not
satisfy the condition that two nodes are adjacent if and only if they are within some fixed distance, the
condition of having globally rigid underlying network graph is also necessary. In our model, where two
nodes are adjacent if and only if the distance between them is at most r, the network can be uniquely
localizable even if its underlying network graph is not globally rigid.

3 Construction of a Globally Rigid Subgraph Using Communica-
tion Wheels

In this section, we shall show that if the strong interior is connected, then the network has a globally
rigid subgraph containing all strongly interior nodes, and all non-isolated weakly interior nodes. The
proof is constructive and will lead to our localization algorithm presented in section 4.

We first present some results that will be frequently used in the paper. Lemmas 2-5 follow from
elementary geometric arguments.

Lemma 1. Let v1 be an interior node and v2 ∈ N (v1). Then

1. CCW (v1, v2) ∈ Z(v3) for some v3 ∈ N (v1) \ {v2}, such that CCW (v1, v3) /∈ Z(v2),

2. CW (v1, v2) ∈ Z(v4) for some v4 ∈ N (v1) \ {v2}, such that CW (v1, v4) /∈ Z(v2)

Proof. It is sufficient to prove only the first part. We shall prove by contradiction. So, assume that
there is no such node in N (v1) \ {v2}. Let P = CCW (v1, v2). Let us partition the set of neighbors of
v1 into two sets as: A = {v ∈ N (v1) | P ∈ Z(v)} and B = {v ∈ N (v1) | P /∈ Z(v)}. A 6= ∅, since
v2 ∈ A. B 6= ∅, because the diametrically opposite point of P on ∂(Z(v1)) must be covered by some
node which does not cover P .

Fix the ray −−→v1P as a reference axis. Now for each v ∈ N (v1), shoot rays from v1 passing through
CCW (v1, v) for v ∈ A and CW (v1, v) for v ∈ B. For each v ∈ N (v1), let θv be the angle formed by the
corresponding ray measured counterclockwise from the reference axis −−→v1P . Let θ = min{θv | v ∈ B}.
We must have θ > 0, since for any v ∈ B, θv > 0. Also, it implies from our hypothesis that
max{θv | v ∈ A} = 0. Then clearly any point on ∂(Z(v1)) making an angle in between (0, θ) with
the ray −−→v1P is not covered by any neighbor of v1 (See Fig. 2). This contradicts the fact that v1 is an
interior node.

Lemma 2. If u and u′ are two distinct neighbors of v ∈ V such that u �v u′, then d(u, v) > d(u′, v).

Lemma 3. For distinct v, u, u′ ∈ V, u �v u′ ⇔ v �u u′ .

Lemma 4. For distinct v, u ∈ V, u is a maximal neighbor of v if and only if v is a maximal neighbor
of u.

Lemma 5. For distinct v, u, u′ ∈ V, u �v u′ ⇒ u �u′ v .

A wheel graph [29] of order n or simply an n-wheel, n ≥ 3, is a simple graph which consists of cycle
of order n and another vertex called the hub such that every vertex of the cycle is connected to the
hub. The vertices on the cycle are called the rim vertices. An edge joining a rim vertex and the hub is
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Figure 2: Illustration of the constructions in the proof of Lemma 1. The purple and the orange circles
correspond to the boundaries of the communication zones of the nodes in the set A and B respectively.

called a spoke, and an edge joining two consecutive rim vertices is called a rim edge. By Theorem 1,
it follows that a wheel is globally rigid.

The most crucial part of our algorithm is the construction of a special structure called the com-
munication wheel. The definition of communication wheel closely resembles to that of sensing wheel
used in [23], where the authors devised a wheel based centralized sequential localization algorithm for
a restricted class of sensing covered networks over a convex region.

Communication wheel: For any interior node v ∈ V, we define a communication wheel of v as a
subgraph W of G such that

1. W is a wheel graph with v as the hub and the rim nodes {v1, . . . , vm} being maximal neighbors
of v

2. CCW (v, vi) ∈ Z(vi+1) and CW (v, vi) ∈ Z(vi−1), for i = 1, . . . ,m, where vm+1 means v1 and
v0 means vm.

For a rim node v′ of a communication wheel W of v, we can denote the two neighboring rim
nodes of v′ as CCWW (v′) and CWW (v′) so that CCW (v, v′) ∈ Z(CCWW (v′)) and CW (v, v′) ∈
Z(CWW (v′)).

Lemma 6. If W is a communication wheel of v, then ∂(Z(v)) ⊂
⋃

u∈V(W )\{v}
Z(u).

Proof. Follows immediately from the definition of communication wheel.

Theorem 3. If v ∈ V is an interior node and v1 a maximal neighbor of v, then v has a communication
wheel W having v1 as a rim node.

Proof. First observe that for any maximal neighbor v′ of v, |∂(Z(v)) ∩ ∂(Z(v′))| = 2, i.e., CW (v, v′)
and CCW (v, v′) are distinct points. If not, then suppose that v′ is a maximal neighbor of v such that
∂(Z(v)) and ∂(Z(v′)) intersect at a single point, say P . Then by Lemma 1, there is another neighbor
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Figure 3: A communication wheel of v with rim nodes v1, v2, v3, v4, v5, v6 and v7.

of v, say v′′, such that P ∈ Z(v′′). Hence we have v′′ 6= v′, such that ∂(Z(v)) ∩ Z(v′) = {P} ⊂
∂(Z(v)) ∩ Z(v′′). This contradicts the fact that v′ is a maximal neighbor of v.

Now take any maximal neighbor v1 of v. By Lemma 1, choose a maximal v2 ∈ N (v) \ {v1},
such that CCW (v, v1) ∈ Z(v2) and CCW (v, v2) /∈ Z(v1). Notice that CW (v, v1) /∈ Z(v2), because
otherwise v1 �v v2. Since CCW (v, v2) /∈ Z(v1), by again invoking Lemma 1, we can choose a maximal
v3 ∈ N (v) \ {v1, v2}, such that CCW (v, v2) ∈ Z(v3) and CCW (v, v3) /∈ Z(v2). Continuing in this
manner, after some m steps we shall find vm ∈ N (v) \ {v1, . . . , vm−1}, such that CCW (v, vm−1) ∈
Z(vm) and CW (v, v1) ∈ Z(vm). It is easy to see that a communication wheel of v can be formed
with {v1, . . . , vm} as rim nodes.

Corollary 1. v ∈ V is an interior node if and only if it has a communication wheel.

Lemma 7. Let v ∈ V be an interior node and W be a communication wheel of v. If u ∈ V is a
neighbor of v, then u is either a rim node of W or adjacent to some rim node of W .

Proof. Easy to see.

Lemma 8. Let v ∈ V be an interior node and W be a communication wheel of v. If u ∈ V is a
neighbor of v, which is adjacent to exactly one rim node of W , say u′, then u �v u′.

Proof. Easy to see.

Lemma 9. Let v ∈ V be a strongly interior node and u a neighbor of v. If W1 is a communication
wheel of v, then there is a globally rigid subgraph of G containing v, u and W1.

Proof. If u is a rim node of W1, then we are done, since a wheel graph is globally rigid. So, suppose
that u is not a rim node of W1.

Then by Lemma 7, u is adjacent to a rim node of W1, say vi. If u is adjacent to another rim node,
then u can be added to W1 to form a globally rigid graph. Hence, we assume that u is adjacent to
only one rim node of W1, i.e., vi. Then by Lemma 8, we have u �v vi.



Since v is a strongly interior node and vi is a neighbor of v, vi must be an interior node. Also, since
vi is a maximal neighbor of v, v is also a maximal neighbor of vi, by Lemma 4. Hence, by Theorem 3,
vi has a communication wheel W2 having v as a rim node.

See Fig. 5a. Let vi−1 = CWW1(vi) and vi+1 = CCWW1(vi). Also, let v′i+1 = CWW2(v) and
v′i−1 = CCWW2(v). Now let A = CCW (v, vi) = CW (vi, v) and B = CW (v, vi) = CCW (vi, v). So
we must have A ∈ Z(vi+1) ∩ Z(v′i+1) and B ∈ Z(vi−1) ∩ Z(v′i−1). This implies that vi−1, v

′
i−1 and

vi+1, v
′
i+1 are adjacent. So vi−1 and vi+1 can be added to the list of rim nodes of W2 and construct a

wheel W3 of vi having vi−1, v, vi+1 as rim nodes. Then the two globally rigid graphs W1 and W3 have
three nodes common, namely vi−1, v, vi+1. Hence W1 ∪W3 is globally rigid. See Fig. 5b.
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vi+1 A
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vi−1

v′i−1

vi

(a)

vi+1

v

vi−1

v′i−1

v′i+1

vi

(b)

Figure 4: Illustrations supporting the proof of Lemma 9.

Now it is sufficient to prove that u is adjacent to at least three nodes of W1 ∪W3. Let Rim(W3)
= V(W3) \ {vi} be the set of rim nodes of W3. We have ∂(Z(vi)) ⊂

⋃
w∈Rim(W3)

Z(w). Since u �v vi,

we have u �vi
v, by Lemma 5. In other words, ∂(Z(vi)) ∩ Z(u) * ∂(Z(vi)) ∩ Z(v). Therefore, we

have ∂(Z(vi)) ∩ Z(u) ⊂ ∂(Z(vi)) ⊂
⋃

w∈Rim(W3)
Z(w) ⇒ (∂(Z(vi)) ∩ Z(u))

⋂
(

⋃
w∈Rim(W3)\{v}

Z(w))

6= ∅. This implies that u is adjacent to some rim node of W3 other than v. We already have assumed
that u is adjacent to v and vi. Hence, u is adjacent to at least three nodes of W1 ∪W3.

Theorem 4. If v ∈ V is a strongly interior node, then there is a subgraph Hv of G containing v such
that 1) Hv contains all neighbors of v, 2) Hv is globally rigid.

Proof. Let W1 be a communication wheel of v. Then by Lemma 9, for each neighbor of v not in W1,
we obtain a globally rigid subgraph of G containing the neighbor, v and W1. So any two of these
globally rigid subgraphs have at least three nodes in common. Hence, these graphs constitute to form
the desired globally rigid graph.

Theorem 5. If the strong interior of G is connected, then G has a globally rigid subgraph R which
contains 1) all strongly interior nodes, 2) all non-isolated weakly interior nodes.

Proof. Choose any strongly interior node v. Denote the subgraph of G consisting of only the node v as
R0. Since the strong interior of G is connected, every strongly interior node of G is connected to v by
a path consisting strongly interior nodes. The distance of a strongly interior node from v is defined as



the smallest length of such a path. Let m be the maximum distance of a strongly interior node from
v. We shall prove the theorem by inductively constructing globally rigid subgraphs R0,R1, . . . ,Rm,
where Rj contains all strongly interior nodes at a distance at most j from v. R0 is globally rigid
as it is only a singleton node. R1 is constructed using Theorem 4. Suppose that R0,R1, . . . ,Rj ,
1 ≤ j < m, are already constructed. Now consider a strongly interior node v′ at a distance j + 1
from v. In a smallest path from v to v′, let v′ be adjacent to v′′. Clearly v′′ is in Rj . Since Rj is
globally rigid, v′′ is adjacent to at least three nodes v1, v2, v3 in Rj (Rj has at least four nodes as it
contains the communication wheel of v). By Theorem 4, there is a globally rigid graph containing v′′
and its neighbors v′, v1, v2, v3. Union of this graph and Rj is globally rigid as there are at least three
nodes in common, namely v′′, v1, v2, v3, etc. Similarly for each strongly interior node at a distance
j + 1 from v, we extend the subgraph Rj preserving global rigidity to eventually obtain a globally rigid
graph Rj+1 containing all the strongly interior nodes at a distance at most j+1 from v. The inductive
argument leads to the globally rigid subgraph Rm which contains all strongly interior nodes in G. Each
non-isolated weakly interior node v′′′ is adjacent to some strongly interior node in Rm. For each such
v′′′, again by the same construction, we can extend Rm preserving global rigidity to include v′′′, if it is
not already in Rm. The resulting graph is the desired globally rigid subgraph R.

4 The Localization Algorithm
In the beginning, each node messages its neighbor list along their distances form itself to all its neighbors.
Therefore, every node u ∈ V knows the neighbors of all its neighbors and also if v is a neighbor of u
and w is a neighbor of v, then u knows d(v, w) as well. The three main stages of our algorithm are
1) construction of communication wheel, 2) leader election, and 3) propagation. They are discussed in
detail in the following subsections.

X
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Y

X

w0

w1

CCW

v

(b)

Figure 5: A node v executing Algorithm 1 sets its local coordinate system in such a way that w1 gets
positive Y -coordinate.



Algorithm 1: CommunicationWheel
{The node v constructs a communication wheel. If it successfully constructs a communication wheel, it declares

itself as an interior node, or otherwise a boundary node.}
Procedure CommunicationWheel(v)

1 w = [ ] ;
2 v.position ←− origin;
3 w0 ←− closest neighbor of v ;
4 w0.position ←− on the X-axis according to the distance between v and w0;
5 w1 ←− the common neighbor of v and w0 closest to v that covers a boundary-intersection of v and w0, such

that w1 �v w0 ;
6 if (no such w1 is found) then
7 v.type ←− boundary ;
8 break;
9 else
10 w1.position ←− one of the two possible positions preserving the distances from v and w0 such that w1

has positive Y -coordinate;
11 CCW (v, w0) ←− the boundary-intersection of v and w0 covered w1
12 i = 1 ;
13 do
14 i + +;
15 NextRim(v,wi−1,wi−2);
16 while (wi 6= null & wi does not cover CW (v, w0));
17 if (wi = null) then
18 v.type ←− boundary ;
19 else
20 v.type ←− interior ;

Algorithm 2: NextRim
{Given two consecutive rim nodes wi−1 and wi−2, the node v searches for the next rim node.}
Function NextRim(v,wi−1,wi−2)

1 D ←− r ;
2 for (u ∈ N (wi−1) ∩N (v)) do
3 if (distance between u and v ≤ D) then
4 if (u is adjacent to wi−2) then
5 Find the unique position of u using its distances from v, wi−1 and wi−2;
6 if (u covers CCW (v, wi−1) and CCW (v, u) is not covered by wi−1) then
7 wi ←− u;
8 wi.position←− the unique position of u determined using its distances from v, wi−1 and

wi−2;
9 D ←− the distance between u and v;
10 else
11 Find two possible positions of u using its distances from v and wi−1;
12 if (for any of the two possible positions, u covers CCW (v, wi−1) and CCW (v, u) is not

covered by wi−1) then
13 wi ←− u;
14 wi.position←− the one of the two possible positions of u for which it covers

CCW (v, wi−1);
15 D ←− the distance between u and v;

4.1 Construction of Communication Wheel
Each sensor node v starts off computations by executing the CommunicationWheel algorithm.
The algorithm finds if the node is interior or boundary, and also constructs a communication wheel if
it is interior. A pseudocode description of the procedure is presented in Algorithm 1. The algorithm
CommunicationWheel is similar to the constructions used in the proof of the Theorem 3. To
construct a communication wheel of a node v, if it exists, we first need to find a maximal neighbor.
In view of Lemma 2, the closest neighbor of a node is guaranteed to be a maximal neighbor. After
finding the closest neighbor, call it w0, v assigns its position on the X-axis and itself at the origin.
Then it searches for a common neighbor of v and w0 that covers a boundary-intersection of v and w0.
If no such node is found, then v is a boundary node. If more than one of such nodes are found, the
one closest to v is to be taken. Let us call this node w1. Now the distance of w1 from v and w0 is
known. From this data, there are two possible coordinates for w1, one with positive Y -coordinate and
one with negative Y -coordinate. Choose the position for w1 so that its Y -coordinate is positive. In
other words, v sets its local coordinate system in such a way that w1 gets positive Y -coordinate. Also



set the boundary-intersection of v and w0 that is covered by w1 as CCW (v, w0). In other words v sets
‘counterclockwise’ to be the direction in which if one rotates a ray, from the origin towards the positive
direction of the X-axis, by π

2 , it coincides with the positive direction of the Y -axis. While discussing
Algorithm 1, ‘counterclockwise’ and ‘clockwise’ will always be with respect to the local coordinate
system of node executing the algorithm. Note that since w0 is a maximal neighbor of v, CW (v, w0)
is not covered by w1. After fixing the positions of w0 and w1, the subroutine NextRim is recursively
called to find the subsequent rim nodes of the communication wheel. Given two consecutive rim nodes
wi−1 and wi−2, having positions fixed, NextRim(v,wi−1,wi−2) finds the next rim node wi. The
program terminates when either NextRim reports a failure or returns a node that covers CW (v, w0).
A pseudocode description of the NextRim function is presented in Algorithm 2.

Theorem 6. The algorithm CommunicationWheel is correct, i.e., if v is an interior node then
CommunicationWheel(v) constructs a communication wheel of v and declares it as an interior
node; and otherwise declares it as a boundary node.

Proof. The algorithm replicates the proof of Theorem 3. The algorithm starts off with fixing a maximal
neighbor of v as the first rim node w0. Then it recursively finds the rim nodes wi such that wi covers
CCW (v, wi−1) and CCW (v, wi) is not covered by wi−1. The algorithm terminates when there is no
such wi or when wi covers CW (v, w0). Thus in view of the proof of Theorem 3, we only need to show
that these steps are correctly executed.

Initialization: The closest neighbor of v is set as w0. Hence, w0 is a maximal neighbor of v by
Lemma 2. Note that in order to compute the communication wheel of v, if it exists, first we need to fix
the positions of (i.e., assign virtual coordinates to) at least three nodes of the communication wheel,
preserving their mutual distances. So, first v is assigned with virtual coordinates (0, 0). If the distance
between v and w0 is d, then the coordinates of w0 are set as (d, 0). Now we have to check if there
is a common neighbor w of v and w0 that covers a boundary intersection of v and w0, and such that
w �v w0. For any common neighbor w of v and w0, this can be easily checked from d(v, w0), d(v, w)
and d(w,w0). If no such w is found, then v is obviously a boundary node. Otherwise one such node that
is closest to v is set as the next rim node w1. From d(v, w1) and d(w0, w1), two possible coordinates
of w1 can be found, one with positive Y -coordinate and one with negative Y -coordinate. Then v sets
its local coordinate system in such a way that w1 gets positive Y -coordinate, and hence w1 covers
CCW (v, w0). Recall that here counterclockwise and clockwise is defined with respect to the local
coordinate system of v as described in Section 4.1.

Recursion: After w0 and w1 are fixed, the algorithm will recursively call NextRim(v,wi−1,wi−2) to
find the next rim node wi, if it exists. In the for loop (line 2 in Algorithm 2), the common neighbors of
v and wi−1 are scanned through to find nodes u ∈ N (wi−1)∩N (v) such that u covers CCW (v, wi−1)
and CCW (v, u) is not covered by wi−1. Among these nodes, the one closest to v is set as the next rim
node wi. If no such node is found, then v is a boundary node. Notice that in order to check whether
u covers CCW (v, wi−1) or not, the exact position of u needs to be known. As we scan through
N (wi−1) ∩N (v), there are two cases to consider:

Case 1. Suppose that u is adjacent to wi−2. Now the positions of v, wi−1 and wi−2 are known.
Hence the position of u can ascertained from its distances from v, wi−1 and wi−2. Once the position
of u is found, it can be checked whether it covers CCW (v, wi−1) and also whether wi−1 covers
CCW (v, u).

Case 2. Suppose that u is not adjacent to wi−2. Two possible positions of u can be found from
its distance from v and wi−1. Call these two possible positions U1 and U2. U1 and U2 are mirror
images of each other with respect to the line joining v and wi−1. CCW (v, wi−1) and CW (v, wi−1)
are also mirror images of each other with respect to the line joining v and wi−1. Hence if a node at
U1 covers CCW (v, wi−1), then a node at U2 covers CW (v, wi−1) as well. Similarly if a node at U1
covers neither CCW (v, wi−1) nor CW (v, wi−1), then the same is true for a node at U2. So consider
the following three possibilities:



Case 2a. If for both positions U1 and U2, no boundary intersection between v and wi−1 is covered,
then u does not meet the desired criteria that it is to cover CCW (v, wi−1).

Case 2b. Suppose that for both positions U1 and U2, both of the boundary intersections between v
and wi−1 are covered. This can not happen as this would imply that wi−i �v u and hence is adjacent
to wi−2, contradicting our assumption.

Case 2c. Suppose that u, if situated at U1, covers CCW (v, wi−1) (and not CW (v, wi−1)).
Hence u, if it is at U2, would cover CW (v, wi−1) and would not cover CCW (v, wi−1). In this
case, the algorithm determines the position of u to be U1. We shall prove that U1 is indeed the
correct position of u. Suppose on the contrary that the actual position of u is U2. First observe that
CW (v, wi−1) ∈ Z(wi−2) ∩ ∂(Z(v)). Otherwise, it implies that wi−2 �v wi−1. We argue that this
is impossible. For i = 2, it is obvious since w0 �v w1. Recall that w0 is the closest neighbor, and
hence is a maximal neighbor, of v. For i > 2, we assume as induction hypothesis that rim nodes
wi−1, . . . , w1, w0 are successfully found by the algorithm. Also each wj , for j = 1, . . . , i − 1, must
satisfy the two criteria: 1) wj covers CCW (v, wj−1) and 2) CCW (v, wj) is not covered by wj−1. In
fact, as mentioned earlier, the algorithm chooses as wj the closest among the nodes that satisfy these
two criteria. So in particular, wi−2 is the closest neighbor of v such that 1) wi−2 covers CCW (v, wi−3)
and 2) CCW (v, wi−2) is not covered by wi−3. Clearly if wi−2 �v wi−1, wi−1 also satisfies the two
aforesaid conditions. But by Lemma 2, wi−1 is closer to v than wi−2. This contradicts the fact that
wi−2 is the closest node satisfying the two aforesaid conditions. So we have CW (v, wi−1) ∈ Z(wi−2).
Also CW (v, wi−1) ∈ Z(u) as u is assumed to be at U2. Hence Z(wi−2) ∩ Z(u) 6= ∅. This is a
contradiction as u and wi−2 are not adjacent.

Termination: It is easy to see that the algorithm terminates.

4.2 Leader Election
Once a node identifies itself as interior or boundary, it announces the result to all its neighbors. Hence,
every node can determine if it is a strongly interior node or not. Since the strong interior is connected
and the nodes have unique id’s, the strongly interior nodes can elect a leader among themselves by
executing a leader election protocol [19].

4.3 Propagation
Starting from the leader, different nodes will gradually get localized via message passing. The correctness
of the process will follow from the discussions in this subsection and the proofs of Theorem 4 and 5.
There are five types of messages that a sensor node can send to another node:

1. “I am at . . .”

2. “Y ou are at . . .”

3. “Construct wheel with me at . . . and v at . . .”

4. “Construct wheel with me at . . . , you at . . . , v at . . . and find u”

5. “u is at . . .”.

The nodes of the network will be localized in the local coordinate system of the leader vl set during
its execution of Algorithm 1. Henceforth, this coordinate system will be referred to as the global
coordinate system. So the leader first localizes itself by setting its coordinates to (0, 0). Any non-
leader node u is localized by either receiving a “Y ou are at . . .” message or receiving at least three
“I am at . . .” messages. In the first case, some node has calculated the coordinates of u and has
sent it to u. In the second case, u receives the coordinates of at least three neighbors and therefore,
can calculate its own coordinates. When a node is localized, it announces its coordinates to all its



neighbors. After setting its coordinates to (0, 0) and vl initiates the localization of Hvl
(See Theorem

4). It first announces its coordinates to all its neighbors via the message “I am at (0, 0)”. During the
construction of its communication wheel, vl had assigned coordinates to the rim nodes. So vl sends
these coordinates to the corresponding rim nodes via the message “Y ou are at . . .”. Let us denote
the communication wheel of vl as W(vl) and the set of all rim nodes as Rim(vl). When a rim node
receives this message, it sets its coordinates accordingly and announces it to all its neighbors via the
message “I am at . . .”. Notice that a rim node does not need to send this message to vl. There are
multiple such modifications that can be made to reduce the number of messages used in the algorithm.
But we do not mention them for simplicity of the description. Now if a neighbor of vl is adjacent to
at least two nodes of Rim(vl), then it can localize itself, since it will receive “I am at . . .” messages
from at least three nodes, i.e., one from vl and at least two from Rim(vl). But if a neighbor of vl is
adjacent to only one vertex from Rim(vl), then it may not be localized. To resolve this, vl computes
|N (u)∩Rim(vl)| for all u ∈ N (vl). If it finds a u ∈ N (vl) with N (u)∩Rim(vl) = {vi}, it sends the
message “Construct wheel with me at . . . and vi+1 at . . .” to vi, where vi+1 is a neighboring rim
node of vi inW(vl). When vi receives this message from vl, it does the following. Since vl is a strongly
interior node, vi must be an interior node. Therefore, vi has already computed the communication
wheel W(vi) and coordinates of each of its nodes with respect to its local coordinate system. Since
vl is a maximal neighbor of vi (by Lemma 4), it is adjacent to at least two nodes of Rim(vi) (by
Lemma 8). Hence, vi can compute the coordinates of vl with respect to its local coordinate system.
Let W ′ be the globally rigid graph vl ∪ W(vi). Now, from the proof of Theorem 4, it is known that
vi+1 is adjacent to at least three nodes of W ′. Hence, vi can also compute the coordinates of vi+1
with respect to its local coordinate system. So, vi has the coordinates of all nodes of W ′′ = vi+1 ∪W ′
with respect to its local coordinate system. Now, vi will compute the positions of all nodes ofW ′′ with
respect to the global coordinate system set by vl. Let us call them the true positions of the nodes.
Note that vi knows the true positions of at least three nodes of W ′′, namely, itself, vl, and vi+1. With
this information, vi can determine the formula that transforms its local coordinate system to the global
coordinate system. Hence, vi computes the true positions of all nodes in W ′′ and informs them via
“Y ou are at . . . ” messages. Hence, all nodes inW ′′ will be localized and will announce their locations
to all their neighbors. Since u is adjacent to at least three nodes in W ′′ (from the proof of Theorem
4), it will also get localized. Therefore, we see that every neighbor of vl eventually gets localized.

The localization propagates as each strongly interior node localizes its neighbors. However, a
strongly interior node v can compute the positions of its neighbors only with respect to its local coordi-
nate system. Hence, in order to compute the true positions (i.e., to perform coordinate transformation),
it needs to know its true position and that of at least two neighbors. Hence, when a localized strongly
interior node v receives at least two “I am at . . . ” messages, it starts to localize its neighbors in the
following way. Let u be a neighbor of v. If u is adjacent at least two nodes of Rim(v), then v can
compute the position of u in terms of its local coordinate system. Otherwise, if N (u)∩Rim(v) = {vi},
then v sends the message “Construct wheel with me at . . . , you at . . . , vi+1 at . . . and find u”
to vi, where vi+1 is a neighboring rim node to vi in W(v), and positions mentioned in the message are
given in local coordinates of v. Again, as vi is a maximal neighbor of v, by Lemma 4 and 8, v is either in
W(vi) or adjacent to at least three nodes inW(vi). Also, vi+1 is either inW ′ =W(vi)∪v or adjacent
to at least three nodes in W ′ (from the proof of Theorem 4). Hence, from the data received from v, vi
can compute the positions of all the nodes in W ′′ =W ′ ∪ vi+1 in terms of the local coordinates of v.
From the proof of Theorem 4, u is either in W ′′ or adjacent to at least three nodes in W ′′. So vi can
compute the position of u in terms of the local coordinate system of v, and then sends the information
back to v via the message “u is at . . .”. Hence, v computes the positions of all its neighbors in its local
coordinate system. So, v now knows the positions of three nodes (namely, itself and the two nodes
from which it has received “I am at . . . ” message) with respect to both its local coordinate system
and the global coordinate system set by the leader. Hence, v can find the formula that transformations
its local coordinate system to the global coordinate system. Hence, v computes the true positions of all
its neighbors and then informs them via “Y ou are at . . . ” messages. However, it still remains to prove
that every non-leader localized strongly interior node v always receives at least two “I am at . . . ”



Figure 6: The red, green and blue nodes are respectively boundary, weakly interior and strongly interior
nodes. It is easy to see that trilateration does not progress beyond the base step for any choice of the
initial triangle. However, our algorithm always localizes all the nodes of the network from any initial
strongly interior node. This structure can be extended arbitrarily. Hence for any n ∈ N, we have a
network of size ≥ n, such that 1) it is always entirely localized by our algorithm, 2) but trilateration
fails to localize more than 3 nodes for any choice of the initial triangle.

messages, that triggers the propagation. Since v is localized, either it has received three “I am at . . . ”
messages or one “Y ou are at . . . ” message. If it is the first case, then we are done. In the later case,
v receives the “Y ou are at . . . ” message from a localized interior node, say v′. Then by Lemma 7, v
is either in the communication wheel of v′, or adjacent to at least one of its rim nodes. Observe that
v′ is localized and has also localized all its rim nodes. So, v will get least two “I am at . . . ” messages,
as all localized nodes announce their positions. Therefore, all strongly interior and non-isolated weakly
interior nodes get localized, while some some boundary nodes and isolated weakly interior nodes may
not get localized. Therefore, all strongly interior and non-isolated weakly interior nodes get localized.
Also, if a localized weakly interior node receives “I am at . . . ” messages from at least two nodes, it
can localize all the rim nodes and also neighbors that are adjacent to at least two rim nodes.

5 Concluding Remarks
Our algorithm works under the condition that the strong interior of the network is connected. Relaxing
this condition, it would be interesting to characterize the conditions under which localization starting
from different components of the strong interior can be stitched together. It would be also interesting
to study impact noisy distance measurement on our algorithm. Our algorithm also works under the
strong assumption of uniform communication range. An important direction of future research would
be to see if our approach can be extend to networks with sensors having irregular communication range,
e.g., quasi unit disk networks [16]. Another problem is to compare the class of networks that are fully
localized by our algorithm to those that are fully localized by trilateration. The example in Fig. 6 shows



a class of network in which trilateration does not progress beyond the base step for any choice of the
initial triangle, but our algorithm always localizes all the nodes from any initial strongly interior node.
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A Appendix: Simulation Results

(a) (b)

(c) (d)

Figure 7: a) A random network of 350 sensor nodes. The red, green and deep blue nodes are respectively
boundary, weakly interior and strongly interior nodes. Disks of radii r2 around each node is shown in
pale blue. b) The network being dense, all 350 nodes are successfully localized by our algorithm.
c) A relatively sparse and irregular network of 160 sensor nodes. d) Despite having only 5 strongly
interior nodes, our algorithm successfully localizes 132 nodes, and thus achieves the maximum number
of nodes localized by trilateration starting from any possible triangle (See Fig.8a). The blue nodes are
successfully localized, and the black nodes are not localized.



(a) (b)

(c) (d)

Figure 8: The same network from Fig. 7c is consider and trilateration is attempted from different
initial triangles. a) In the overall best result, 132 nodes are localized b) In this case, only 19 nodes are
localized. c) In the worst case, trilateration does not progress beyond the initial triangle. d) A closer
view of Fig. 8c.
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