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Abstract. We consider the problem of filling an unknown area repre-
sented by an arbitrary connected graph of n vertices by mobile luminous
robots. In this problem, the robots enter the graph one-by-one through
a specific vertex, called the Door, and they eventually have to cover all
vertices of the graph while avoiding collisions. The robots are anonymous
and make decisions driven by the same local rule of behavior. They have
limited persistent memory and limited visibility range. We investigate
the Filling problem in the asynchronous model.
We assume that the robots know an upper bound ∆ on the maximum
degree of the graph before entering. We present an algorithm solving
the asynchronous Filling problem with robots having 1 hop visibility
range, O(log∆) bits of persistent storage, and ∆ + 4 colors, including
the color when the light is off. We analyze the algorithm in terms of
asynchronous rounds, where a round means the smallest time interval
in which each robot, which has not yet finished the algorithm, has been
activated at least once. We show that this algorithm needs O(n2) asyn-
chronous rounds. Our analysis provides the first asymptotic upper bound
on the running time in terms of asynchronous rounds.
Then we show how the number of colors can be reduced to O(1) at
the cost of the running time. The algorithm with 1 hop visibility range,
O(log∆) bits of persistent memory, and O(1) colors needs O(n2 log∆)
rounds. We show how the running time can be improved by robots with
a visibility range of 2 hops, O(log∆) bits of persistent memory, and
∆ + 4 colors (including the color when the light is off). We show that
the algorithm needs O(n) asynchronous rounds. Finally, we show how to
extend our solution to the k-Door case, k ≥ 2, by using ∆+ k+ 4 colors,
including the color when the light is off.

1 Introduction

In swarm robotics, a large number of autonomous mobile robots cooperate to
achieve a complex goal. The robots of the swarm are simple, cheap, and compu-
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tationally limited. They act according to local rules of behavior. Robot swarms
can achieve high scalability, fault tolerance, and cost-efficiency.

The robots can cooperatively solve different problems, as gathering, flocking,
pattern formation, dispersing, filling, coverage, and exploration (e.g. [1,3,4,5,6,9,12,18,20].

The Filling (or, Uniform Dispersal) problem was introduced by Hsiang et al.
[18], where the robots enter an a priori unknown but connected area and have
to disperse. The area is subdivided into pixels, and at the end of the dispersion,
each pixel has to be occupied by exactly one robot.

Model: We consider the Filling problem, where the area is represented by a
connected graph, which is unknown for the robots. The robots enter the graph
one-by-one through a specific vertex, which is called the Door and have to dis-
perse to cover all vertices of the graph while avoiding collision, i.e. two or more
robots can not be at the same vertex. At the end of the dispersion, each vertex
of the graph has to be occupied by exactly one robot. When the Door vertex
becomes empty, a new robot is placed there immediately. We assume that the
robots know an upper bound ∆ on the maximum degree of the graph.

For simplicity, we assume that the degree of the Door vertex is 1. Otherwise,
we introduce an auxiliary vertex of degree 1 connected only to the Door, which
takes the role of the original Door (this models the two sides of a doorstep).
We assume that, for each vertex v, the adjacent vertices are arranged in a fixed
cyclic order. This cyclic order is only visible for robots at v, and it does not
change during the dispersion. When a robot r arrives at vertex v from a vertex
u, then the cyclic order of neighbors is used by r as a linear order of deg(v)− 1
neighbors by cutting and removing u.

The robots act according to the Look-Compute-Move (LCM) model. In this
model, their actions are decomposed into three phases: In the Look phase, a robot
takes a snapshot of its surroundings, i.e. the vertices and the robots within its
visibility range. In the Compute phase, it performs calculations based on the
surrounding and determines a neighboring vertex as target vertex, or decide to
stay at place. In the Move phase, if necessary, it moves to the target vertex. The
next LCM cycle starts when the target is reached.

Based on the activation times of the robots, there are three main synchro-
nization models studied in the literature: the fully synchronous (FSYNC), the
semi-synchronous (SSYNC), and the asynchronous (ASYNC). In the FSYNC
model, all robots are activated at the same time, and they perform their Look,
Compute, and Move phases synchronously at the same time, which is ensured by
a global clock. In the SSYNC model, some robots might skip an LCM cycle and
stay inactive. In the ASYNC model, there is no common notion of time avail-
able: the robots activate independently after a finite but arbitrary long time,
and perform their LCM cycles. Moreover, their LCM cycle length is not fixed;
it also can be arbitrarily long.

The robots are autonomous, i.e. no central coordination is present, homoge-
neous, i.e. all the robots have the same capabilities and behaviors, anonymous,
i.e. they cannot distinguish each other, myopic, i.e. they have limited visibil-
ity range, and silent, i.e. they have no communication capabilities and cannot
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directly talk to one another. However, luminous robots can communicate in-
directly by using a light. Such robots have a light attached to them, which is
externally visible by every robot in their visibility range. They can use a finite
set of colors (including the color when the light is off) representing the value
of a state variable. The robots are allowed to change these colors in their Com-
pute phase. We denote the availability of lights using a superscript representing
the number of colors. In particular, we denote by Xi the model X ∈ {ASYNC,
SSYNC, FSYNC} when every robot is enhanced by a light with i > 1 colors.
In the ASYNCO(1) model, the robots use a constant number of colors (see, e.g.
[10]).

Related Work: The Filling (or, Uniform Dispersal) problem was introduced by
Hsiang et al. [18], where the robots enter an unknown but connected orthogonal
area and have to disperse. The area is subdivided into pixels, and at the end of
the dispersion, each pixel has to be occupied by exactly one robot. Hsiang et al.
[18] considered this problem in the FSYNC model. They assumed that robots
have a limited ability to communicate with nearby robots. They proposed two
solutions, BFLF and DFLF, both modeling generally known algorithms: BFS
and DFS. DFLF required a visibility range of 2 hops. It was assumed that
the robots are able to detect the orientation of each other. Barrameda et al.
[5,6] investigated the asynchronous case. In [5] the authors assumed common
top-down and left-right directions for the robots and showed that robots with
visibility range of 1 hop and 2 bits of persistent memory could solve the problem
in an orthogonal area if the area does not contain holes, without using explicit
communication in finite time. In [6] Barrameda et al. presented two methods
for filling an unknown orthogonal area in presence of obstacles (holes) in the
ASYNC model. Their first method, called TALK, requires a visibility range of
2 hops3 if the robots have explicit communication. The other method, called
MUTE, does not use explicit communication between the robots, but it requires
a visibility range of 6. Both methods need O(1) bits of persistent memory and
terminate in finite time.

In [16,17] the Filling problem has been investigated in the FSYNC model.
In [16] the authors gave a solution for the orthogonal Filling problem by using
robots with 1 hop visibility range and O(1) bits of persistent memory for both the
Single and Multiple Door cases. In [17] a method for a general Filling problem has
been presented, where the area is represented by an arbitrary connected graph.
The robots require 1 hop visibility range and O(∆) bits of persistent memory,
where ∆ is the degree of the graph. For the k-Door case, the memory requirement
is O(∆ · log k). The general method is called the Virtual Chain Method (VCM),
which is a leader-follower method. In the VCM, the robots form a chain and fill
the area mimicking a DFS-like traversal of the graph. The algorithms presented

3 In [6] it is assumed that the robot sees all eight sourrounding cells and able to
communicate with robots at that eight cells. Assuming orthogonal movements, a
cell sharing only one corner with the current cell of the robot are reachable in two
hops.
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in [16] and [17] are intensively utilizing the synchronous nature of the model to
avoid collisions and backtracking.

The model of luminous robots was introduced by Peleg [23]. Subsequently,
significant amount of research has been carried for a plenty of problems us-
ing this model (e.g. [2,7,8,14,15,19,21,22,25,24,26]). Das et al. [10,11] considered
the model, where the robots can move in the continuous Euclidean plane, and
they proved that the asynchronous model with a constant number of colors
ASYNCO(1) is strictly more powerful than the semi-synchronous model SSYNC,
i.e. ASYNCO(1) > SSYNC. Das et al. [11] also prove that there are problems
that robots cannot solve without lights, even if they are fully synchronous, but
can be solved by asynchronous luminous robots with O(1) colors.

D’Emidio et al. [13] have shown that on graphs one task can be solved in the
fully synchronous model FSYNC but not in the asynchronous lights-enhanced
model, while for other tasks, the converse holds. In this work, we show that the
Filling problem can be solved in both models by robots with 1 hop visibility
range and O(1) bits of persistent memory.

Our Contribution: In this work, we present solutions for the Filling problem
by luminous robots on graphs in the ASYNCO(1) model.

First, we describe a method, called PACK, which solves the problem by
robots with 1 hop visibility range, O(log∆) bits of persistent memory, and ∆+4
colors for the single Door case, including the color when the light is off. We an-
alyze the algorithm in terms of asynchronous rounds, where a round means the
smallest time interval in which each robot, which has not yet finished the al-
gorithm, has been activated at least once. We show that this algorithm needs
O(n2) asynchronous rounds. Regarding asynchronous algorithms for the Filling
problem, former works only guarantee termination within finite time. Our anal-
ysis provides the first asymptotic upper bound on the running time in terms of
asynchronous rounds.

Then we show how the number of colors can be reduced to O(1) at the cost
of running time. The algorithm with 1 hop visibility range, O(log∆) bits of
persistent memory, and O(1) colors needs O(n2 log∆) rounds.

After this, we show how the running time can be significantly improved by
robots with a visibility range of 2 hops, with no communication, O(log∆) bits of
persistent memory, and ∆+4 colors, by presenting the algorithm called BLOCK.
This algorithm needs O(n) rounds.

Then we extend the BLOCK algorithm for solving the k-Door Filling prob-
lem, k ≥ 2, by using O(log∆) bits of memory and ∆ + k + 4 colors, including
the color when the light is off. The visibility range of 2 hops is optimal for the k-
Door case (a counterexample when this problem cannot be solved in the ASYNC
model with a visibility range of 1 hop was presented in [5], also holds for the
ASYNCO(1) model).
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2 PACK Algorithm

Now we describe the PACK algorithm to solve the Filling problem for an area
represented by a connected graph of n vertices. PACK is based on the Virtual
Chain Method described in [17], in which the robots filled the area in a DFS-like
dispersion.

The robots are allowed to be in one of the following states: None, Follower,
Leader, Finished. They are initialized with None state when placed at the Door.
The first robot becomes the Leader and moves to a vertex that has never been
occupied before (these vertices are called unvisited vertices). The rest of the
robots will become Followers and follow the Leader, until the Leader becomes
stuck (i.e. no unvisited neighbors available). Then the robot behind the Leader,
called the successor robot, becomes a new Leader and moves if possible. The
previous Leader switches to Finished state. The algorithm terminates when each
robot is in Finished state.

The name Virtual Chain comes from the fact that all active robots (i.e. the
Leader and the Followers) are on the path traversed by the current Leader from
the Door. This path is called the chain. The chain contains only visited vertices,
which can be occupied by the Followers. Each Follower follows its predecessor,
which is the previously placed robot. The difficulty is to select the next target
vertex for the Leader with a visibility range of 1 hop by ensuring that no other
robot can move to that vertex because the Leader can not see all adjacent vertices
of the target and robots on those vertices do not see the Leader.

We define the state Packed for the chain. The chain is in Packed state, when
each Follower is immediately behind its predecessor, i.e. each vertex on the path
traversed by the current Leader from the Door is occupied by a Follower robot.
In this state none of the robots can move except the Leader. Therefore, only the
Leader has to know this state.

The concept: The Leader moves to unvisited vertices until there is no such
neighboring vertex. Before each movement, the Leader waits for Packed state;
thus, it cannot collide with other robots, and the Leader can decide which vertex
is unvisited. When the Leader has no neighboring unvisited vertex, it switches
to Finished state and does not move anymore. Its successor then becomes the
Leader and the new Leader moves to other unvisited vertices. The robots use
∆+4 colors, including the color, when the light is off. The first ∆ colors show the
direction of the target vertex (for each vertex, the adjacent vertices are arranged
in a fixed cyclic order), we refer to them as DIR colors. Furthermore, we use two
colors, denoted by CONF and CONF2 colors, for confirming that a robot has
seen a DIR color of the predecessor, which allows the predecessor to move. For
this purpose, the CONF color is sufficient, when the predecessor is a Follower
robot. However, when the predecessor robot is the Leader, and it must change
the target vertex after the Packed state is reached (details are provided later) or
the predecessor becomes the Leader and it chooses an unvisited target vertex,
it indicates the new direction with a new DIR color. Then the CONF2 color
is needed for ensuring that the successor has seen the lastly shown DIR color.
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Furthermore, we use an additional color, called MOV color to indicate that a
robot is on the way to its target vertex.

Now we describe the rules followed by the robots in different states.

Leader: Can only move to an unvisited vertex. When it wants to move, it
shows the direction it wants to go to by setting the corresponding DIR color, and
then it waits until its successor gives a confirmation that it can move by setting
its CONF color. During the movement, the Leader shows the MOV color. When
its successor sets its CONF color, the chain is in Packed state. This means each
not occupied vertex is also an unvisited vertex (as each vertex in the path of the
Leader is occupied by a robot). If the Leader is still on the Door vertex, therefore,
it does not have a successor, it can move without waiting for the CONF color.

Follower: Follows its predecessor. The Follower robot r sets the CONF color if
and only if i) the predecessor of r is showing its direction, and ii) the successor of
r – if exists – have set its CONF color (i.e. the successor knows in which direction
r will move). This allows the predecessor r′ of r to move to its destination
knowing: i) all the robots behind r′ have set CONF color, and ii) the robots
behind r′ will not move until the predecessor of r moved. When r′ is the Leader,
the chain is in Packed state.

None: The robots are initialized with None state when they are placed at
the Door. If the robot r in None state has no neighboring robot, then r changes
its state to Leader, chooses the unique neighboring vertex as target vertex, sets
the MOV color, and starts moving there. Otherwise, if the robot r in None state
has one neighboring robot, then r becomes a Follower and sets the neighbor to
its predecessor.

There are three special situations where we need the following additional
rules:

Leader target change: It might happen that the Leader r chooses a target
vertex v, which is unoccupied at the moment when r performs its Look operation,
however, when the successor of r sets the CONF color and r could start to move
to v, another robot already moved to v. In such case, the Leader r has to choose
a new target, and the successor of r has to know about this choice. Assume first
that r has an unvisited neighboring vertex. Then r sets the corresponding DIR
color and waits until its successor sets the CONF2 color. Finally, the Leader
moves to the target.

Note that the chain is in Packed state when the successor of the Leader r
sets the CONF color. If the Leader changes the target, no other robot can move
until r sets the CONF2 color, and the Leader moves to the target. Consequently,
the Leader can change the target vertex only once between two movements.

If r does not have any unvisited neighboring vertex after r sees the CONF
color of the successor, then r can not move anymore and the successor must take
the leadership (see the rule below). The robot r sets the ∆ direction color, which
has special meaning. The successor r′ confirms this by setting the CONF2 color.
Then r turn off its light r′ becomes the Leader. (Note that it would be possible
to omit the Leader target change rule by introducing a new color for signaling
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the Packed state. Then the Leader would only show its direction once the Packed
state is achieved, which could be acknowledged with the CONF color.)

Taking the leadership: When the Leader r cannot move anymore, its successor
has to become the new Leader. The Leader r indicates that it does not have any
unvisited neighboring vertex by setting its direction color to ∆. I.e. this color has
a special meaning: it indicates that the Leader cannot move anymore and wants
to switch to Finished state, and the leadership must be taken by its successor.
When this is detected by the successor r′, it sets its CONF color, waits for the
previous Leader to turn off its light, then r′ becomes the Leader. Afterwards, r′

tries to move to an unvisited vertex.
Setting movement color : Before performing the movement, the robots have

to set their color to MOV. Keeping the old color could lead to an error. E.g.,
consider the following situation. 1. The Leader sets a DIR color. 2: The Follower
confirms it by the CONF color. 3: The Leader moves by keeping the DIR color. 4:
The Follower shows the corresponding DIR color, receives a CONF, and follows
the Leader. 5: The Follower reaches its target, sees the old DIR color of the
Leader and sets the CONF color, before the Leader chooses the new target. In
order to prevent such situations, the moving robots set their color to MOV and
keep this color until the target is reached, and a new target is determined. After
the movement, the robot sets the previous position as its Entry vertex

Pseudocode of the PACK algorithm is provided in the Appendix.

2.1 Analysis

Lemma 1. Leader only moves to unvisited vertices.

Proof. An unvisited vertex means no robot has occupied it before. As the Leader
can only move when the chain is in Packed state, each vertex not occupied by
a robot is an unvisited vertex. Therefore, each unoccupied vertex, which can be
chosen by the Leader, is an unvisited vertex. ut

Lemma 2. There can be at most one Leader at any time.

Proof. Recall the rule taking the leadership. When a Leader r becomes stuck,
r signals this with a special color ∆ and switches to Finished state after the
successor r′ sets the CONF color. Then r′ becomes the new Leader, and acts
accordingly.

The first robot placed becomes the Leader, and from that time, each robot
can become a Leader after the previous one became Finished. Therefore, at most
one Leader can exist at any time during the dispersion. ut

Lemma 3. Robots cannot collide.

Proof. When placed, except for the first robot, each robot has only one neighbor
robot. That will be its predecessor, which the robot will follow during the al-
gorithm. Before the predecessor moves away, it shows which direction it moves.
Therefore, the Follower can always follow it. As each Follower robot has one
predecessor, they cannot collide with each other.
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However, the Leader does not follow its predecessor (as it does not have
any). It is required to move to unvisited vertices in order to avoid collisions with
Followers (which only move to already visited vertices). As there is only one
Leader and it always moves to unvisited vertices, collisions are not possible. ut

Lemma 4. PACK fills the area represented by a connected graph.

Proof. For contradiction, assume the area is not filled when the algorithm termi-
nates. As the area is connected, there is a vertex v that is not occupied and has
a neighboring robot in Finished state. If v is unvisited, let r be the last neigh-
boring robot of v, which became Finished. However, r cannot switch to Finished
state since there is an unvisited vertex neighboring to it. This contradicts the
assumption that v remains unoccupied.

Assume now v is unoccupied, but it has been visited during the algorithm.
Let t be the last time v was occupied by a robot r. After r moves from v, its
successor will occupy v. This contradicts the assumption that t was the last time
of occupation of v. This proves the claim the area is filled when the algorithm
terminates. ut

Theorem 1. Algorithm PACK fills an area represented by a connected graph in
the ASYNC model by robots having a visibility range of 1 hop, O(log∆) bits of
persistent storage, and ∆+ 4 colors, including the color when the light is off.

Proof. As the area is filled (by Lemma 4), and collisions are not possible (by
Lemma 3), the area will be filled without collisions. The robots require O(log∆)
bits of memory to store the following: State (4 states: 2 bits), Target (direction of
the target vertex: dlog∆e bits), NextTarget (direction of the vertex, where the
robot needs to move after the vertex Target is reached: dlog∆e bits). Regarding
the number of colors, the robots use ∆ colors to show the direction where the
target of the robot is. There are two additional colors (CONF and CONF2) for
confirming the robot saw the signaled direction of the predecessor and one color
(MOV) during the movement. ut

Now we analyze the running time of the algorithm in terms of asynchronous
rounds. An asynchronous round means the shortest time in which each robot,
which is not in Finished state yet, has been activated at least once and performed
an LCM cycle.

Theorem 2. The algorithm PACK runs in O(n2) asynchronous rounds.

Proof. Assume a chain containing r1, r2, . . ., ri (where r1 is the active Leader,
and r2, . . ., ri are on the path from the Leader to the Door), and assume that
the chain is in Packed state.

Assume first that the Leader r1 has an unoccupied neighboring vertex. De-
note by T the time between two consecutive movements of the Leader. We divide
T into three time intervals: T = T1 + T2 + T3. T1 starts with the movement of
the Leader, it includes the time, when all robots in the chain, making one step
forwards. T2 starts with placing a new robot at the Door. In T2 the robots,



Asynchronous Filling by Myopic Luminous Robots 9

starting from the Door, set their CONF color one by one. This CONF color is
’propagated’ to the Leader, meaning that the Packed state is reached. T3 starts
when the Leader recognizes the CONF color of the successor, i.e. after achieving
the Packed state. Then the Leader might find its target occupied by another
robot. In this case, the Leader target change rule will be used.

Let t be the first asynchronous round of T1, i.e. in round t the Leader r1
moves to its target and sets its direction color. At the latest in round t+ 1 the
robot r2 detects that r1 left its previous vertex v and in that round r2 moves to
v and sets its direction color. This argument can be repeated to all robots until
the last one ri moves at the latest in round t+ i− 1. Therefore, T1 ≤ i.

Now the second phase T2 starts with the placing of a new robot ri+1 at the
latest in the round t + i. In that round, the new robot ri+1 sets its color to
CONF. The robot ri sees this color at the latest in the next round ti+1 and
sets its color to CONF in that round. Repeating this argument for ri−1, . . . , r2,
we obtain that r2 sets the CONF color at the latest in round t2i−1. Therefore,
T2 ≤ i.

Now T3 starts. The Leader r1 recognizes the CONF color of its successor at
the latest in round t2i. Then Leader knows that the chain is in Packed state. If the
target vertex v of the Leader is unoccupied, the Leader can move immediately,
since in Packed state each unoccupied vertex is unvisited. Otherwise, if v is
occupied, the Leader target change protocol is performed, i.e. 1: the Leader
chooses a new unoccupied neighboring vertex and shows the corresponding DIR
color (in round t2i at the latest), 2: then its successor sets its color to CONF2 (in
round t2i+1 at the latest). At the latest in the round t2i+2 the Leader recognizes
this and can move. Then T = T1 + T2 + T3 ≤ 2i+ 2 ≤ 2n rounds.

Assume now that the Leader r1 has no unoccupied neighboring vertex. If
r1 is at the Door, then it turns the light off and switches to Finished state;
the graph is filled. Otherwise, ri sees the CONF color of r2 and recognizes the
Packed state in the round t2i at the latest. Then r1 sets its ∆ color in that
round. The robot r2 recognizes it in round t2i+1 at the latest and sets its CONF
color. The robot r1 sees the CONF color in round t2i+2 at the latest, r1 turns
its light off and switches to Finished state. The robot r2 sees it in round t2i+3

at the latest, r2 becomes the new Leader in that round, and checks if there is an
unoccupied neighboring vertex. If so, r2 sets the corresponding DIR color in the
same round and waits for the CONF2 color from the successor. The successor
sets the CONF2 color in round t2i+4 at the latest, and r2 sees the CONF2 color
at the latest in round t2i+5. Since the chain is already in Packed state, the robot
r2 can move in the same round (in round t2i+5 at the latest). Otherwise, if r2
has no unoccupied neighboring vertex, then the leadership has to be taken by
its successor when the successor exists, i.e. r2 is not at the Door. If r2 is at the
Door, then r2 turns the light off and switches to Finished state; the graph is
filled.

When a Leader can move, it occupies an unvisited vertex within 2n asyn-
chronous rounds. Otherwise, its successor takes the leadership and performs
a target change. Taking the leadership and the target change need at most 5



10 A. Hideg and T. Lukovszki

rounds. Since the leadership is taken at most once by each robot during the
whole algorithm, and there are n robots in the filled graph, at most 5n time is
used for all leadership taking with target change altogether. Therefore, after at
most 2n2 + 5n = O(n2) rounds all vertices of the graph become filled. ut
Remark: In the ASYNC model, a robot can be inactive between two LCM
cycles. Since the inactive phase allowed to be finite but arbitrarily long, an
asynchronous round and the runtime of the algorithm can also be arbitrarily
long. In the case where we do not allow inactive intervals between the LCM
cycles and every LCM cycle of every robot takes at most tmax time then we can
upper bound the time of an asynchronous round by 2 · tmax.

Corollary 1. (i) Assume that every LCM cycle of every robot takes at most
tmax time and there are no inactive intervals between the LCM cycles. Then the
running time of the PACK algorithm is O(n2tmax). (ii) In the FSYNC model
the PACK algorithm needs O(n2) LCM cycles.

2.2 Filling of graphs using constant number of colors

The PACK algorithm uses ∆ + 4 colors (including the color when the light is
off). We can reduce the number of colors to O(1) at the cost of the running time,
as follows. We encode the L = ∆ + 4 colors by a sequence of dlogLe bits and
transmit this sequence by emulating the Alternating Bit Protocol (ABP), also
referred to as Stop-and-wait ARQ (see, e.g. [27]). This protocol uses a sequence
number from {0, 1} alternately to transmit the bits. The sender has four states
corresponding to the transmitted bit b ∈ {0, 1} and the sequence number. The
receiver has two states that represent which sequence number is awaited. The
data bits are accepted with alternating sequence numbers. This protocol ensures
the correct transmission of the bit sequence without duplicates.

We emulate the ABP by using six different colors, one for each of the four
states of the sender and one for each of the two states of the receiver. Seeing the
current color of the sender, the receiver can decode the sequence number and the
data bit. When a color corresponding to the correct sequence number is seen,
the receiver sets its color, indicating that it waits for the next bit. When the
sender sees the changed color of the receiver, it sets its color corresponding to
the next data bit and the next sequence number. Therefore, encoding an original
color in a sequence of dlogLe = O(log∆) bits and transmitting this sequence
takes O(log∆) rounds. This leads to the following Theorem.

Theorem 3. The modified Algorithm PACK fills an area represented by a con-
nected graph in the ASYNC model by robots having a visibility range of 1,
O(log∆) bits of persistent storage and O(1) colors. The algorithm needs O(n2 log∆)
asynchronous rounds.

3 BLOCK Algorithm

The PACK algorithm solves the Filling problem in arbitrary connected graphs
by robots with a visibility range of 1 hop. An important property of the PACK
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algorithm is that the Leader can only move when the chain has reached the
Packed state. Now we consider robots with a visibility range of 2 hops. Then
the robots see each robot, that potentially could choose the same target vertex.
The idea is that the Leader only chooses a vertex v as the target, if the 1 hop
neighborhood of v does not contain any other robot with the light turned on,
except when the light showing direction ∆ (i.e. the robot will not move anymore,
it wants to switch to Finished state, and waiting for the confirmation of the
successor). A vertex neighboring to a robot with its light on (except the color
∆) is considered as blocked vertex for the Leader.

We introduce the following additional rules for the robots:
Leader : The Leader must not choose a blocked vertex as the target. As the

visibility range of the robots is 2 hops, the Leader can identify the blocked neigh-
bors. When only blocked or occupied vertices surround the Leader, it chooses to
terminate its actions (sets the color ∆ and after the confirmation of the successor
it switches to Finished state), and the leadership will be taken by its successor.

Follower : Follower robots ’block’ all their unoccupied neighboring vertices.
As a result, all unoccupied vertices that are part of the chain are blocked: Before
a Follower r would move from a vertex v, it sets the DIR color corresponding to
the target and blocks all of its unoccupied neighboring vertices. In particular, it
blocks the target vertex. Thus the Leader cannot choose the same target. Then
r waits until the successor r′ sets its CONF color and r moves from v. During
the movement, the MOV color is set, which keeps the same unoccupied vertices
blocked. When r leaves v, the vertex v is blocked by r′.

These rules ensure that each vertex on the chain is either occupied or blocked.
Consequently, the Leader only moves to unvisited vertices. The pseudocode of
the BLOCK algorithm is provided in the Appendix.

3.1 Analysis

Lemma 5. Leader only moves to unvisited vertices.

Proof. Consider a visited vertex v neighboring to the Leader. Let r be the last
robot, that occupied v. When r left v, the successor of r blocks v. Thus, the
Leader cannot move to v. ut

Lemma 6. There can be at most one Leader at a time.

Proof. The arguments of Lemma 2 can be repeated as the rule for taking of the
leadership did not change. ut

Lemma 7. Robots cannot collide.

Proof. The arguments of Lemma 3 can be repeated as Lemma 6 only allows one
Leader, which only can move to unvisited vertices (Lemma 5). ut

Lemma 8. BLOCK fills the area represented by a connected graph.
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Proof. We use similar arguments to those in the proof of Lemma 4. Assume that
all the robots are in Finished state, and there is an unoccupied vertex v, such
that v has at least one occupied neighbor. Additionally, to the cases considered
in the proof of Lemma 4, we have to consider the case when v is blocked, and
all neighboring robots become Finished. Let t be last time when a robot r,
neighboring to v, switches to Finished state. Since all other neighboring robots
of v are in Finished state at time t, they do not block v. Therefore, at time t
the robot r can move to v instead of switching to Finished. Thus, we have a
contradiction. ut

Theorem 4. Algorithm BLOCK fills the area represented by a connected graph
in the ASYNC model by robots having a visibility range of 2 hops, O(log∆) bits
of persistent storage, and using ∆+ 4 colors, including the color when the light
is off.

Proof. We can use the arguments of the proof of Theorem 1 as the area is
filled (by Lemma 8), and collisions are not possible (by Lemma 7), the area will
be filled without collisions. The robots store the same data in their persistent
storage as in Theorem 1 and use the same set of colors. ut

Now we provide runtime analysis of the BLOCK algorithm in the fully syn-
chronous model.

Theorem 5. In the ASYNC model, the BLOCK algorithm fills the area repre-
sented by a connected graph in O(n) asynchronous rounds.

Proof. Assume that the chain contains the robots r1, r2, . . ., rj , where r1 is the
current Leader and r2, . . ., rj are on the path from the Leader to the Door, and
assume that the Leader r1 occupied its position and its successor r2 has arrived
at the previous position of r1. When the first robot r1 is placed at the Door (i.e.
j = 1), it detects in the first asynchronous round, whether it is a Leader or a
Follower. If the only neighbor is unoccupied, it becomes a Leader and moves in
the first round. The first round ends. After r1 left the Door, the next robot is
placed there.

Assume now that j ≥ 2. Let ri, i < j be a robot (ri is either a Leader or a
Follower) and assume that its successor ri+1 at its previous vertex. Let t be the
current asynchronous round. If ri is Leader, i.e. i = 1, we additionally assume
that it has an unblocked and unoccupied neighboring vertex v. Otherwise, if ri
is not the Leader, assume that the target vertex of v of ri is unoccupied, i.e.
the predecessor ri−1 left v already. Then ri sets the corresponding DIR color in
round t. At the latest in round t+ 1 the robot ri+1 sees the DIR color and sets
its color to the CONF, allowing ri to move. At the latest in round t+2 the robot
ri detects this and moves to its target v and at the end of that round ri and
ri−1 become neighbors again. Then, at the latest in round t + 3 the robot ri+1

detects that ri left the neighboring vertex v′. If ri+1 is at the Door it moves at
the latest in round t+ 3. Otherwise, if ri+1 is not at the Door, and therefore, a
successor robot ri+2 exists, ri+1 has to wait for the confirmation of ri+2 before



Asynchronous Filling by Myopic Luminous Robots 13

the movement. We will show that ri+2 must be at the neighbor vertex behind
ri+1 in round t+ 4 at the latest. At the latest in round t+ 4 the robot ri+2 sets
its CONF color. Therefore, ri+1 can move to v′ at the latest in round t+ 5 and
at the end of that round ri+1 and ri become neighbors again. At the latest in
round t+ 6 we have the same situation regarding ri and ri + 1 as in round t, i.e.
ri−1 shows its DIR color and ri confirms it.

It remains to show that in round t + 4 at the latest ri+2 must be on the
neighbor vertex of ri+1. If ri+2 is at the Door, then it appeared there after ri+1

left the Door, i.e. before round t and ri+1 did not move; therefore they must be
neighbors in round t + 4. Otherwise, let t′ be the latest round before t, where
ri+1 and ri+2 were neighbors and the robot ri+1 detects that its predecessor ri
moved from the neighboring vertex and ri+1 sets the DIR color. Then we can
repeat the arguments with robots ri+1, ri+2, and round t′ described above, and
we obtain that (i) ri+1 moves in round t′′ ≤ t′+ 2 and at the end of round t′+ 2
the robots ri and ri+1 become neighbors again, and (ii) ri+2 can move again at
the latest in round t′′ + 3 and in round t′′ + 4 at the latest ri+2 and ri+1 must
be neighbors. Since t′′ ≤ t, in round t + 4 at the latest ri+2 and ri+1 must be
neighbors.

Summarizing the above description, the robot ri moves at the latest in every
6th round if ri is a Follower or it is a Leader with an unblocked and unoccupied
neighbor.

Assume now that ri is Leader, its successor ri+1 is at its previous vertex, and
all neighboring vertices of ri are blocked or occupied in round t. Then ri sets
its ∆ color to show the successor that it has to switch to Finished state. The
successor ri+1 confirms it at the latest in round t+1. At the latest in round t+2
the robot ri becomes Finished and turns the light off. At the latest in round
t+ 3 the robot ri+1 becomes the new Leader. Therefore, the leadership is taken
within 4 rounds. At the latest in round t+ 3 the new Leader ri+1 shows its new
target if there is an unblocked and unoccupied neighboring vertex, or it sets the
∆ to show the successor that it has to switch to Finished state.

When a Leader can move, it occupies an unvisited unblocked vertex in every
6th round. Otherwise, its successor takes the leadership. Since the leadership is
taken at most once by each robot during the whole algorithm, and there are
n robots in the filled graph, at most 4n rounds used for all ’leadership taking’.
Therefore, after 6n+4n = 10n rounds, all vertices of the graph become filled. ut

4 Multiple Doors

We now consider the case in which there are k ≥ 2 Doors. For the k-Door Filling,
there is a situation that cannot be solved by the above methods: Let v be an
unvisited vertex, which is neighboring to (at least) two Leaders r1 and r2. In
order to fill the graph, exactly one of the Leaders, r1 or r2, has to move to
vertex v. If one of the robots, say r1, has been activated earlier, then r1 sets the
direction color corresponding to v, and it prevents r2 to move to v (r1 blocks
v from r2). However, if the activation times of r1 and r2 are exactly the same,
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then they would set the direction color at the same time, meaning they mutually
block each other from moving to v. If r1 or r2 has no other unvisited vertex in
their neighborhood, then none of them could move, and particularly, none of
them would occupy v.

We propose a protocol, which uses a strict priority order between the Leaders
originating from different Doors. We use the concept from [5] and assume that
robots entering from different doors have distinct colors.

Priority protocol: The robots have k additional different colors correspond-
ing to the Door they used for entering the area, where k is the number of Doors.
We define a strict total order between these colors, called priority order. We
call these k colors priority colors. After showing the direction to the successor
and after the successor has confirmed it, the Leader sets its color to its prior-
ity color (instead of the MOV color) and starts its movement. It arrives to its
target showing its priority color. We modify the blocking rule for the Leader as
follows: If there is a robot with a direction color (except the special color ∆), or
confirmation color, or MOV color, or priority color with higher priority than r,
then its neighbors are considered as blocked. Since there is a strict total order
between the priority colors, in such a situation exactly one of them is allowed to
move there.

We modify the rule taking the leadership: when the successor robot r notices
that the Leader is switching to Finished state (by setting the direction color to
∆), r confirms it by setting its color to the priority color of the old Leader.

Lemma 9. Priority protocol does not allow collisions.

Proof. Assume v is an unvisited vertex that is neighboring to two Leaders r1 and
r2, i.e. both r1 and r2 could move to v. Let t1 (resp. t2) be the first activation
time of r1 (resp. r2) after it has arrived at its current position.

If t1 6= t2, then one of them, which was activated before the other one, will
block the other one, and they cannot collide. If t1 = t2, then they will see each
other’s priority color. Then they can decide which robot has a higher priority.
The robot with higher priority will block the other one. Consequently, Leaders
cannot collide with each other.

Now we show that the collision with a Follower is also not possible. When
the Follower r would move to a vertex v it has its CONF color set allowing the
predecessor r′ to leave v. This blocks v for all Leaders. The predecessor r′ also
blocks v until r occupies it. Therefore, r cannot collide with a Leader. ut

Lemma 10. The BLOCK algorithm extended with the Priority protocol fills the
connected graph.

Proof. We can repeat the arguments of the proof of Lemma 8. ut

Theorem 6. Algorithm BLOCK extended with the Priority protocol solves the
k-Door Filling problem, k ≥ 2, in the ASYNC model in finite time, with 2 hops
of visibility, O(log∆) bits of memory and using ∆ + k + 4 colors including the
color when the light is off.
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Proof. We can use the arguments of the proof of Theorem 1 as the area is filled
(by Lemma 10), and collisions are not possible (by Lemma 9), the area will
be filled without collisions. The robots store the same data in their persistent
storage as in Theorem 1 and use ∆+ k + 4 colors. ut

5 Summary

In this work, we have presented solutions for the Filling problem by luminous
robots in the ASYNCO(1) model. We have presented a method, called PACK,
which solves the problem by robots with 1 hop visibility range, O(log∆) bits
of persistent memory, and ∆ + 4 colors for the single Door case, including the
color when the light is off. We have shown that this algorithm needs O(n2)
asynchronous rounds. Regarding asynchronous algorithms for the Filling prob-
lem, former works only guarantee termination within finite time. Our analysis
provides the first asymptotic upper bound on the running time in terms of asyn-
chronous rounds.

Then we have shown how the number of colors can be reduced to O(1) at
the cost of running time. The algorithm with 1 hop visibility range, O(log∆)
bits of persistent memory, and O(1) colors needs O(n2 log∆) rounds.

After this, we have shown how the running time can be significantly improved
by robots with a visibility range of 2 hops, with no communication, O(log∆)
bits of persistent memory, and ∆+ 4 colors, by presenting the algorithm called
BLOCK. This algorithm needs O(n) rounds.

Then we have extended the BLOCK algorithm for solving the k-Door Filling
problem, k ≥ 2, by using O(log∆) bits of memory, and ∆+k+4 colors, including
the color when the light is off. The visibility range of 2 hops is optimal for the k-
Door case (a counterexample when this problem cannot be solved in the ASYNC
model with a visibility range of 1 hop was presented in [5], also holds for the
ASYNCO(1) model).
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Appendix

A Algorithms PACK and BLOCK

Algorithm 1 (PACK): Rules followed by robot r.

1: If r.State is Follower:
If r.NextTarget is not set:

If r.Predecessor shows DIR color:
Store shown DIR as r.NextTarget

Else If r.Predecessor shows DIR color ∆:
r switches to Leader state

Else:
If r.Color is not set to CONF:

If r.Entry is not set:
Set r:Color to CONF

Else If r.Entry is occupied and r.Successor has light set to a CONF
color:

Set r:Color to CONF
Else If r.Target is unoccupied:

r sets r.Color to MOV
r moves to r.Target and
r sets r.Color to match r.NextTarget
r sets r.Target to r.NextTarget
r clears r.NextTarget

Else If r.Predecessor shows DIR color ∆:
r switches to Leader state

Else If r.NextTarget has been set:
If r.Predecessor shows different direction:
r sets r.NextTarget to new shown direction
r sets light to CONF2 color

2: If r.State is Leader:
If r.Target is not set:
r sets r.Target to first empty neighbor
If r.Target is not set (no empty neighbor found):
r sets DIR color ∆ and becomes Finished

Else:
If r is waiting for CONF:

If r.Successor has light set to a CONF color:
If r.Target is unoccupied:
r sets r.Color to MOV
r moves to r.Target
r clears r.Target

Else If r has unoccupied neighbor v:
r sets r.Target and set DIR color to match the direction of v
r is now waiting for CONF2
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Else:
r sets DIR color ∆ and becomes Finished

Else:
Waits for r.Successors to set CONF color

Else If r is waiting for CONF2:
If r.Successor has light set to a CONF2 color:
r sets r.Color to MOV
r moves to r.Target
r clears r.Target

Else:
Waits for r.Successors to set CONF color

3: If r.State is None:
r sets r.Target to neighbor
If r.Target does not contain robot:
r becomes the Leader
r sets r.Color to MOV
r moves to r.Target
r clears r.Target

Else:
r becomes a Follower

Algorithm 2 (BLOCK): Rules followed by robot r.

1: If r.State is Follower:
If r.NextTarget is not set:

If r.Predecessor shows DIR color:
Store shown DIR as r.NextTarget
Set r.Color to CONF

If r.Predecessor shows DIR color ∆:
r switches to Leader state

Else:
If r.Color is set to CONF or CONF2:

If r.Target is unoccupied:
Set r.Color to DIR to match r.Target

Else:
If r.Predecessor shows DIR color ∆:
r switches to Leader state

Else If r.NextTarget has been set:
If r.Predecessor shows different direction:
r sets r.NextTarget to new shown direction
r sets light to CONF2 color

Else:
If r.Entry is not set or r.Entry is occupied
and r.Successor has light set to a CONF color:

Else If r.Target is unoccupied:
r sets r.Color to MOV
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r moves to r.Target
sets light to match r.NextTarget
r sets r.Target to r.NextTarget

Else If r.Predecessor shows DIR color ∆:
r switches to Leader state
r is now waiting for CONF2

2: If r.State is Leader:
If r.Target is not set:
r sets r.Target to first empty and not blocked neighbor
If r.Target is not set (no empty neighbor found):

r sets DIR color ∆ and becomes Finished
Else:

If r is waiting for CONF:
If r.Entry is not set:
r sets r.Target to first empty and not blocked neighbor
If r.Target is not set (no empty neighbor found):
r sets DIR color ∆ and becomes Finished

Else:
r sets r.Color to MOV
r moves to r.Target
r clears r.Target

If r.Entry is occupied
If r.Successor has light set to a CONF or CONF2 color:

If r.Target is occupied:
r sets r.Target to first empty and not blocked neighbor
If r.Target is not set (no empty neighbor found):
r sets DIR color ∆ and becomes Finished

Else:
r sets r.Color to MOV
r moves to r.Target
r clears r.Target

Else:
r sets r.Target to first empty and not blocked neighbor
If r.Target is not set (no empty neighbor found):
r sets DIR color ∆ and becomes Finished

Else If r is waiting for CONF2:
If r.Successor has light set to a CONF2 color:
r sets r.Color to MOV
r moves to r.Target
r clears r.Target

Else:
Waits for r.Successors to set CONF2 color

3: If r.State is None:
r sets r.Target to neighbor
If r.Target does not contain robot:
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r becomes the Leader
r sets light to MOV
r moves to r.Target
r clears r.Target

Else:
r becomes a Follower

B Simulation Results

We have implemented our algorithms and conducted simulations on different
graph topologies. The tested topologies are Line graphs, Stars, and Delaunay
triangulations with vertices uniformly randomly distributed in a square area.
For the runtime, we assumed the FSYNC model (i.e. all robots are active in
every LCM-cycle), therefore the runtimes are better comparable.

B.1 Single Door

Line graph A line graph consist of n ≥ 1 vertices V = {v1, ..., vn} and edges
E = {(vi, vi+1) : 1 ≤ i < n}. The Door vertex is at v1 in the end of the line. In
this case there are no branching vertices, and the robots move on a unique path.
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Fig. 1. Simulation results for Line graphs. The x-axis represents the number of nodes,
y-axis represents the number of required LCM-cycles to finish the filling. The runtime
of the PACK algorithm is displayed with blue color, and of the BLOCK algorithm with
red.

The line graph exhibits a worst-case input for the PACK algorithm, since
one Leader traverse the whole line, and between two consecutive steps of the
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Leader all robots must form a Packed chain. This results in quadratic running
time. The BLOCK algorithm runs in linear time, which is also confirmed by the
simulations. (Figure 1).

Star graph A star graph of n ≥ 1 consists of one central vertex v1, which is
connected to all other vertices {v2, ..., vn} by an edge. All vertices in {v2, ..., vn}
are only connected to v1 by an edge. The Door is placed at one of the degree 1
vertices. In this topology, the Leader first moves to the central vertex, then to
one of the degree 1 nodes, and becomes Finished. The leadership is taken by its
Follower occupying v1. Then the new Leader moves to one of the leaves, and the
leadership is taken by its Follower occupying v1, etc... In this case, the lenght
of the chain behind the current Leader is at most 2, and the Packed state is
achieved in a constant number of LCM-cycles. Therefore, the PACK algorithm
runs in linear time on the star.

5 10 15 20

20

40

60

80

# vertices

#
L

C
M

-c
y
cl

es

Fig. 2. Simulation results for Star graphs. The x-axis represents the number of nodes,
the y-axis represents the number of required LCM-cycles to finish the filling. Blue shows
the runtime of the PACK algorithm; red shows the runtime of the BLOCK algorithm.

The results can be seen in Fig. 2, which shows that the runtime of the PACK
and the BLOCK algorithm is exactly the same in both cases, both runtimes are
linear in the number of vertices.

Random Delaunay triangulation The graphs are generated by using the
following method. i) In a square area we select n points independently, uniformly
at random, where n is the size of the graph. ii) Using the first n − 1 points we
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compute a Delaunay triangulation. Then we add n-th point as Door vertex as
an auxiliary vertex to the closest random vertex.
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Fig. 3. Simulation results for Delaunay triangulations. The x-axis represents the num-
ber of vertices, the y-axis represents the number of required LCM-cycles to finish the
filling. The red curve shows the runtime of the BLOCK algorithm; the blue curve shows
the runtime of the PACK algorithm.

For this simulation, we generated 50 random Delaunay graphs using the
described method for each vertex set size, n = 3, . . . , 200. Then, for each input
graph, we measured the number of LCM-cycles performed by both the PACK
and the BLOCK algorithms. Then we computed the average runtimes of the 50
runs of both algorithms for each input size, n = 3, . . . , 200. Figure 3 shows the
simulation results. The simulations are backing up the linear runtime for the
BLOCK algorithm. For the PACK algorithm, the simulations suggest quadratic
runtime.

B.2 Multiple Doors

For this simulation, for n = 1000 vertices and k = 1, . . . , 200 Doors, we generate
50 random Delaunay graphs as follows: i) In a square area, we select n points
independently, uniformly at random, where n is the size of the graph. ii) Using
the first n − k points, we compute a Delaunay triangulation. Then we add the
remaining k points as Door vertices and join each of them with the closest
Delaunay vertex. The purpose of this simulation was to test the speed-up of the
algorithm in case there are multiple Doors. For each k = 1, . . . , 200, we plotted
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the average runtime on the 50 randomly generated Delaunay triangulations.
The simulation results in Figure 4 indicate that runtime of the k-Door BLOCK
algorithm is proportional to n/k for this simulation setting.
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Fig. 4. Multiple Doors BLOCK algorithm on random Delaunay triangulations with
n = 1000 vertices. The x-axis represents the number of Doors; the y-axis represents
the number of required LCM-cycles to finish the filling. Both axes are log-scaled.
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