
SHACL Satisfiability and Containment

Paolo Pareti1 , George Konstantinidis1 , Fabio Mogavero2 , and
Timothy J. Norman1

1 University of Southampton, Southampton, United Kingdom
{pp1v17,g.konstantinidis,t.j.norman}@soton.ac.uk
2 Università degli Studi di Napoli Federico II, Napoli, Italy

fabio.mogavero@unina.it

Abstract. The Shapes Constraint Language (SHACL) is a recent W3C recom-
mendation language for validating RDF data. Specifically, SHACL documents
are collections of constraints that enforce particular shapes on an RDF graph.
Previous work on the topic has provided theoretical and practical results for the
validation problem, but did not consider the standard decision problems of sat-
isfiability and containment, which are crucial for verifying the feasibility of the
constraints and important for design and optimization purposes. In this paper, we
undertake a thorough study of the different features of SHACL by providing a
translation to a new first-order language, called SCL, that precisely captures the
semantics of SHACL w.r.t. satisfiability and containment. We study the interaction
of SHACL features in this logic and provide the detailed map of decidability and
complexity results of the aforementioned decision problems for different SHACL
sublanguages. Notably, we prove that both problems are undecidable for the full
language, but we present decidable combinations of interesting features.

1 Introduction

The Shapes Constraint Language (SHACL) has been recently introduced as a W3C
recommendation language for the validation of RDF graphs. A SHACL document is
a collection of shapes which define particular constraints and specify which nodes in
a graph should be validated against these constraints. The ability to validate data with
respect to a set of constraints is of particular importance for RDF graphs, as they are
schemaless by design. Validation can be used to detect problems in a dataset and it can
provide data quality guarantees for the purpose of data exchange and interoperability.

Recent work has focused on defining precise semantics and implementations for
validation of SHACL documents, in particular for the case of recursion [8]. In this
paper, instead, we focus on the decision problems of satisfiability and containment for
SHACL documents; problems which have not been previously investigated. Given a
particular SHACL document, satisfiability is the problem of deciding whether there is an
RDF graph which is validated by the document; we also investigate finite satisfiability,
that is, whether there exists a valid graph of finite size. Containment studies whether a
particular SHACL document is subsumed by a second one; that is, whether all graphs
that are validated by the first are also validated by the second. We investigate whether
these decision problems can be decided not only at the level of documents, but also for
individual shapes (i.e. sets of constraints) within documents.

http://orcid.org/0000-0002-2502-0011
http://orcid.org/0000-0002-3962-9303
http://orcid.org/0000-0002-5140-5783
http://orcid.org/0000-0002-6387-4034

2 P. Pareti et al.

Satisfiability and containment are standard decision problems that have important
applications in optimization and design. When integrating two datasets subject to two
different SHACL documents, for example, it is important to know whether the two
SHACL documents are in conflict with each other, or if one of them is subsumed by
the other. At the level of shapes, an unsatisfiable shape constraint might not necessarily
cause the unsatisfiability of a whole SHACL document, but it is likely an indication of a
design error. Being able to decide containment for individual shapes offers more design
choices to the author of a SHACL document, and it is a venue for optimization.

In this paper we focus on the core constraint components of SHACL [16] and we
do not consider recursion. Validation under recursion is left unspecified in SHACL
and, while different semantics have been proposed [8], we already show that even
without it the language has undecidable satisfiability and containment. For a subset of the
core constraint components and a restricted form of recursion (à la stratified negation),
containment of individual shape constraints is shown to be decidable in [17]. This is
achieved via reduction to description logic reasoning [3], reminiscent to our Thm 5.

One of our main contributions is a comprehensive translation of SHACL into SCL, a
new fragment of first-order logic extended with counting quantifiers and the transitive
closure operator. To the best of our knowledge such a translation has not been attempted
before. Our approach translates a SHACL document to an SCL equisatisfiable sentence,
i.e., there is a valid RDF graph for the first iff there is a model for the second.

Distinct SHACL constructs translate to particular SCL features of different expres-
siveness. We identify eight such prominent features (such as counting quantifiers or
transitive closure) that can be used on top of a base logic and study their interactions. On
one hand, the full language is undecidable and, in fact, so are most fragments with just
three or four features. On the other hand, our base language has decidable satisfiability
and containment, and it is ExpTime-complete. We create a detailed map, in between
these extremes, proving positive and negative results for many interesting combinations.

2 Background and Problem Definition

The core structure of the RDF data model is a graph whose nodes and edges are defined
by a set of triples. A triple 〈s, p, o〉 identifies an edge with label p, called predicate, from
a node s, called subject, to a node o, called object. The main type of entities that act as
nodes and edges in RDF graphs are IRIs. We represent RDF graphs in Turtle syntax and
by abbreviating IRIs using XML namespaces; the namespace sh refers to SHACL terms.

In an RDF graph, literal constants (representing datatype values) can only appear
in the object position of a triple, while in generalized RDF [9] they can appear in any
position. We will use the generalised model for simplicity. Most of our results apply
to both data models and we will state clearly when this is not the case. We do not use
variables in the predicate position in this paper and so we represent triples as binary
relations in FOL. We use the atom R(s, o) as a shorthand for 〈s,R, o〉. We use a minus
sign to identify the inverse atom, namely R−(s, o) = R(o, s). We use the binary relation
name isA to represent class membership triples 〈s, rdf:type, o〉 as isA(s, o).

SHACL defines constraints that can validate RDF graphs [16]. A SHACL document
is a set of shapes. A shape, denoted s:〈t, d〉, has three main components: (1) a set of

SHACL Satisfiability and Containment 3

:studentShape a sh:NodeShape ;
sh:targetClass :Student ;
sh:not :disjFacultyShape .

:disjFacultyShape a sh:PropertyShape ;
sh:path (:hasSupervisor :hasFaculty);
sh:disjoint :hasFaculty .

:Alex a :Student ;
:hasFaculty :CS ;
:hasSupervisor :Jane .

:Jane :hasFaculty :CS .

Fig. 1: A SHACL document (left) and a graph that validates it (right).

constraints which are used in conjunction, and hence referred to as a single constraint d;
(2) a set of target declarations, referred to as target definition t, which provides a set of
RDF nodes that are validated against d; and (3) a shape name s. One can think of t and
d as unary queries over the nodes of G. Given a node n in a graph G, and a shape s:〈t,
d〉, we denote with G |= t(n) the fact that node n that satisfies definition t, and G |= d(n)
denotes that a node n validates d in G. A graph G validates a shape s:〈t, d〉, formally
G |= s:〈t, d〉, iff every node in the target t validates the constraints d, that is, iff for all
n ∈ G, if G |= t(n) then G |= d(n). An empty target definition is never satisfied while
an empty constraint definition is always satisfied. A graph G validates a set of shape
definitions, i.e. a SHACL document, M, formally G |= M, iff G validates all the shapes
in M. Constraints might refer to other shapes. When a shape is referenced by another
shape it can be handed down a set of focus nodes to validate, in addition to those from its
own target definition. A shape is recursive when it references itself (directly or through
other shapes). As mentioned, we focus on non-recursive SHACL documents using the
SHACL core constraint components. Without loss of generality, we assume that shape
names in a SHACL document do not occur in other SHACL documents or graphs.

The example SHACL document in Figure 1 defines the constraint that, intuitively,
all students must have at least one supervisor from the same faculty. The shape with
name :studentShape has class :Student as a target, meaning that all members of
this class must satisfy the constraint of the shape. The constraint definition of :stu-
dentShape requires the non-satisfaction of shape :disjFacultyShape, i.e., a node
satisfies :studentShape if it does not satisfy :disjFacultyShape. The :disjFac-
ultyShape shape states that an entity has no faculty in common with any of their
supervisors (the sh:path term defines a property chain, i.e., a composition of roles
:hasSupervisor and :hasFaculty). A graph that validates these shapes is provided
in Figure 1. It can be made invalid by changing the faculty of :Jane in the last triple.

We now define the SHACL satisfiability and containment problems.

(i) SHACL Satisfiability: A SHACL document M is satisfiable iff there exists a graph
G such that G |= M.

(ii) Constraint Satisfiability: A SHACL constraint d is satisfiable iff there exists a
graph G and a node n such that G |= d(n).

(iii) SHACL Containment: For all SHACL documents M1, M2, we say that M1 is
contained in M2, denoted M1 ⊆ M2, iff for all graphs G, if G |= M1 then G |= M2.

(iv) Constraint Containment: For all SHACL constraints d1 and d2 we say that d1 is
contained in d2, denoted by d1,⊆ d2 iff for all graphs G and nodes n, if G |= d1(n)
then G |= d2(n).

4 P. Pareti et al.

The satisfiability and containment problems for constraints can be reduced to SHACL
satisfiability, as follows. A constraint d is satisfiable iff there exists a constant c, either
occurring in d or a fresh one, such that the SHACL document corresponding to shape
s:〈tc, d〉 is satisfiable, where tc is the target definition that targets node c. Similarly,
constraint d1 is not contained in d2 iff there exists a constant c, occurring in d1, d2
or a fresh one, such that the SHACL document corresponding to shape s:〈tc, d′〉 is
satisfiable; d′(x) is true whenever d1(x) is true and d2(x) if false. Thus, satisfiability and
containment of constraints in a given SHACL fragment are decidable whenever SHACL
satisfiability of that fragment is decidable, and have the same complexity upper bound.
However, undecidability of SHACL satisfiability in a fragment does not necessarily
imply undecidability for the two constraint problems; we leave this as an open problem.

3 A First Order Language for SHACL Documents

In this section we present a translation of SHACL into an equisatisfiable fragment of
FOL extended with counting quantifiers and the transitive closure operator, called SCL.
As discussed before, for a shape s:〈t, d〉 in a SHACL document M, t and d can be seen
as unary queries. Intuitively, given a suitable translation q from SHACL into FOL, M is
satisfiable iff the sentence

∧
s:〈t,d〉∈M ∀ x. q(t(x))→ q(d(x)) is satisfiable, i.e., a node

in the target definition of a shape needs to satisfy its constraint, for every shape. We
subsequently present an approach that constructs such a sentence. This is reminiscent
of [7], where a SHACL document M is translated into a SPARQL query that is true
on graphs which however violate M. Intuitively, this query corresponds to sentence∨

s:〈t,d〉∈M ∃ x.q(t(x)) ∧ ¬q(d(x)), i.e. the negation of the sentence above. Nevertheless,
several assumptions made in [7], such that ordering two values is not more complex than
checking their equivalence, do not hold for the purposes of satisfiability and containment.
We will use τ to denote the translation function from a SHACL document M to an SCL
sentence τ(M), which is polynomial in the size of M and computable in polynomial
time. We refer to our appendix3 for the complete translations of τ and its inverse τ−.

Next, we present our grammar of SCL in Def. 1. For simplicity, we assume that target
definitions contain at most one target declaration, and that shapes referenced by other
shapes have an empty target definition. This does not affect generality, as any shape
can be trivially split in multiple copies: one per target declaration and one without any.
Letters in square brackets in Def. 1 are annotations naming SCL features and thus are not
part of the grammar. The top-level symbol ϕ in SCL corresponds to a SHACL document.
This could be empty (>), a conjunction of documents, or the translation of an individual
shape. A sentence that corresponds to a single shape could have five different forms in
SCL, depending on the target definition of the translated shape. These are summarized
in Table 1, where τd(x) is the SCL translation of the constraint of the shape. In SHACL
only four types of target declarations are allowed: (1) a particular constant c (node
target), (2) instances of class c (class target), or (3)/(4) subjects/objects of a triple with
predicate R (subject-of/object-of target). Our translation function gives explicit names
to referenced shapes using the hasShape relation. We refer to the last component of

3 http://w3id.org/asset/ISWC2020

http://w3id.org/asset/ISWC2020

SHACL Satisfiability and Containment 5

Table 1: Translation of shape s:〈t, d〉 in SCL with respect to its target definition t.
Target declaration in t Translation τ(s:〈t, d〉)
Node target (node c) τd(c) (equivalent form of: ∀ x. x = c → τd(x))
Class target (class c) ∀ x.isA(x,c)→ τd(x)
Subjects-of target (relation R) ∀ x, y.R(x, y)→ τd(x)
Objects-of target (relation R) ∀ x, y.R−(x, y)→ τd(x)
No target declaration ∀ x. hasShape(x, s)↔ τd(x)

the ϕ rule (i.e., ∀ x. hasShape(x, s)↔ ψ(x)) as a referenced shape definition and to its
internal constant s as referenced shape.

The non terminal symbol ψ(x) corresponds to the subgrammar of the SHACL
constraints. Within this subgrammar, > identifies an empty constraint, x = c a constant
equivalence constraint and F a monadic filter relation (e.g. FIRI(x), true iff x is an
IRI). By filters we refer to the SHACL constraints about ordering, node-type, datatype,
language tag, regular expressions and string length. Filters are captured by F(x) and the
O component. The C component captures qualified value shape cardinality constraints.
The E, D and O components capture the equality, disjointedness and order property
pair components. The π(x, y) subgrammar models SHACL property paths. Within this
subgrammar S denotes sequence paths, A denotes alternate paths, Z denotes a zero-or-one
path and T denotes a zero-or-more path.

Definition 1. The SHACL first-order language (SCL, for short) is the set of sentences (ϕ)
and one-variable formulas (ψ(x)) built according to the following context-free grammar,
where c and s are constants (from disjoint domains), F is a monadic-filter name, R is a
binary-relation name, ? indicates the transitive closure of the relation induced by π(x, y),
the superscript ± refers to a relation or its inverse, and n ∈ N:

ϕ := > | ψ(c) | ∀ x . isA(x, c)→ ψ(x) | ∀ x, y .R±(x, y)→ ψ(x) | ϕ ∧ ϕ; |
∀ x. hasShape(x, s)↔ ψ(x) ;

ψ(x) := > | x = c | F(x) | hasShape(x, s) | ¬ψ(x) | ψ(x) ∧ ψ(x) |
∃ y. π(x, y) ∧ ψ(y) | ¬ ∃ y. π(x, y) ∧ R(x, y) [D] | ∀ y. π(x, y)↔ R(x, y) [E] |

∀ y, z . π(x, y) ∧ R(x, z)→ σ(y, z) [O] | ∃≥n y . π(x, y) ∧ ψ(y) [C];

π(x, y) := R±(x, y) | ∃ z . π(x, z)∧π(z, y) [S] | x=y∨π(x, y) [Z] | π(x, y)∨π(x, y) [A] |
(π(x, y))? [T];

σ(x, y) := x <± y | x ≤± y.

To enhance readability, we define the following syntactic shortcuts:

(i) ψ1(x) ∨ ψ2(x)
.
= ¬(¬ψ1(x) ∧ ¬ψ2(x));

(ii) π(x, c) .= ∃ y.π(x, y) ∧ y = c;
(iii) ∀ y . π(x, y)→ ψ(y) .= ¬∃ y . π(x, y) ∧ ¬ψ(y).

Our translation τ results in a subset of SCL sentences, called well-formed. An SCL
sentence is well-formed if for every occurrence of a referenced shape s there is a

6 P. Pareti et al.

select ?x where {
?x rdf:type :Student .
filter not exists {

?x :hasSupervisor ?z .
?z :hasFaculty ?y .
?x :hasFaculty ?y . } }

(∀ x. isA(x, :Student)→
¬hasShape(x, :disjFacultyShape)) ∧

(∀ x. hasShape(x, :disjFacultyShape)↔
¬∃ y. (∃ z. R:hasSupervisor(x, z) ∧

R:hasFaculty(z, y) ∧
R:hasFaculty(x, y)))

Fig. 2: Translation of the SHACL document from Fig. 1 into the SPARQL query that looks for
violations (left) and into an SCL sentence (right).

Table 2: Relation between prominent SHACL components and SCL expressions.
Abbr. Name SHACL component Corresponding expression
S Sequence Paths Sequence Paths ∃ z . π(x, z) ∧ π(z, y)
Z Zero-or-one Paths sh:zeroOrOnePath x = y ∨ π(x, y)
A Alternative Paths sh:alternativePath π(x, y) ∨ π(x, y)

T Transitive Paths
sh:zeroOrMorePath
sh:oneOrMorePath

(π(x, y))?

D Property Pair Disjointness sh:disjoint ¬∃ y.π(x, y) ∧ R(x, y)
E Property Pair Equality sh:equals ∀ y . π(x, y)↔ R(x, y)
O Property Pair Order sh:lessThanOrEquals x ≤± y and x <± y

C Cardinality Constraints
sh:qualifiedValueShape
sh:qualifiedMinCount
sh:qualifiedMaxCount

∃≥n y . π(x, y) ∧ ψ(y)
with n 6= 1

corresponding referenced shape definition sentence with the same s, and no referenced
shape definitions are recursively defined. Fig. 2 shows the translation of the document
from Fig. 1, into a SPARQL query, via [7], and a well-formed SCL sentence, via τ .

To distinguish different fragments of SCL, Table 2 lists a number of prominent
SHACL components, that is, important for the purpose of satisfiability. The language
defined without any of these constructs is our base language, denoted ∅. When using
such an abbreviation of a prominent feature, we refer to the fragment of our logic that
includes the base language together with that feature enabled. For example, SA identifies
the fragment that only allows the base language, sequence paths and alternate paths.

The SHACL specification presents an unusual asymmetry in the fact that equality,
disjointedness and order components forces one of their two path expressions to be
an atomic relation. This can result in situations where the order constraints can be
defined in just one direction, since only the less-than and less-than-or-equal property
pair constraints are defined in SHACL. Our O fragment models a more natural order
comparison that includes the > and ≥ components. We instead denote with O’ the
fragment where the order relations in the σ(x, y) subgrammar cannot be inverted.

Relying on the standard FOL semantics, we define the satisfiability and containment
for SCL sentences, as well as the closely related finite-model property, in the natural way.

SHACL Satisfiability and Containment 7

SCL Sentence Satisfiability An SCL sentence φ is satisfiable iff there exists a first-order
structure Ω such that Ω |= φ.

SCL Sentence Containment For all SCL sentences φ1, φ2, we say that φ1 is contained
in φ1, denoted φ1 ⊆ φ2, iff, for all first-order structures Ω, if Ω |= φ1 then Ω |= φ2.

SCL Finite-model Property An SCL sentence φ (resp. formula ψ(x)) enjoys the finite-
model property iff whenever φ is satisfiable, it is so on a finite model.

In the following two subsections, we discuss SHACL-to-SCL satisfiability and con-
tainment. In this respect, we assume that filters are interpreted relations. In particular,
we prove equisatisfiability of SHACL and SCL on models that we call canonical, that is,
having the following properties: (1) the domain of the model is the set of RDF terms, (2)
such a model contains built-in interpreted relations for filters, and (3) ordering relations
<± and ≤± are the disjoint union of the total orders of the different comparison types
allowed in SPARQL. In Sec. 3.3, we discuss an explicit axiomatization of the seman-
tics of a particular set of filters in order to prove decidability of the satisfiability and
containment problems for several SCL fragments in the face of these filters.

3.1 SHACL Satisfiability

A fine-grained analysis of the bidirectional translation between our grammar and SHACL,
provided in the appendix, can lead to an inductive proof of equisatisfiability between the
two languages. In particular, given a satisfiable SHACL document M which validates
an RDF graph G, we can translate G and M into a canonical first-order structure I
which models τ(M), thus proving the latter satisfiable, and vice versa. Intuitively, the
structure I is composed of two substructures, ΩG which corresponds to the translation of
triples from G, and ΩG,M which interprets the hasShape relation. These substructures,
as explained below, have disjoint interpretations and we write I = ΩG ∪ΩG,M to denote
that I is the structure that considers the union of their domains and of their interpretations.

For any RDF predicate R in G, the structureΩG is a canonical structure that interprets
the binary relation R as the set of all pairs 〈s, o〉 for which 〈s,R, o〉 is in G. The struc-
ture ΩG,M interprets hasShape as the binary relation which, for all referenced shape
definitions ∀ x. hasShape(x, s)↔ ψ(x) in τ(M), it contains a pair 〈c, s〉 whenever ΩG
satisfies ψ(c). We will call ΩG,M the shape definition model of G and M. Since we do
not address recursive shape definitions, this model always exists (corresponding to the
faithful total assignment from [8]). Inversely, given a well-formed SCL sentence φ that is
satisfiable and has a model I, by eliminating from I all references of hasShape and then
transforming the elements of the relations to triples we get an RDF graph G that is valid
w.r.t. the SHACL document τ−(φ).

Theorem 1. For all SHACL documents M: (1) τ(M) is polynomially computable; (2) M
is (finitely) satisfiable iff τ(M) is (finitely) satisfiable on a canonical model.
For all well-formed SCL sentences φ: (1) τ−(φ) is polynomially computable; (2) φ is
(finitely) satisfiable on canonical models iff τ−(φ) is (finitely) satisfiable.

3.2 SHACL Containment

Containment of two SHACL documents does not immediately correspond to the con-
tainment of their SCL translations. Given two SHACL documents M1 and M2 where

8 P. Pareti et al.

M1 is contained in M2, there might exist a first-order structure I that models τ(M1) but
not τ(M2). Notice, in fact, that structure I = ΩG ∪ΩG,M1 models M1, but that ΩG,M1

does not necessarily model the referenced shape definitions of τ(M2). Let δ(φ) be the
definitions of referenced shapes in an SCL sentence φ. Note that for a graph G and a
SHACL document M the shape definition model ΩG,M models δ(τ(M)). The reduction
of SHACL containment into SCL is, therefore, as follows. This result also applies for
containment over finite structures.

Theorem 2. For all SHACL documents M1 and M2: (1) δ(τ(M2)) is polynomially
computable; (2) M1 ⊆ M2 iff τ(M1) ∧ δ(τ(M2)) ⊆ τ(M2) on all canonical models.

Proof. (⇒) Let M1 ⊆ M2. If M1 is not satisfiable the theorem holds. If M1 is satisfiable,
let G be any graph that validates M1, and thus M2. It holds that ΩG ∪ ΩG,M1 models
τ(M1) per Sec. 3.1, and ΩG ∪ΩG,M2 models τ(M2). It is easy to see that if ΩG ∪ΩG,M1

models τ(M1) the union of another hasShape interpretation over a disjoint set of shape
names, i.e., ΩG ∪ΩG,M1 ∪ΩG,M2 also models τ(M1). Similarly ΩG ∪ΩG,M1 ∪ΩG,M2

models τ(M2) as well.
(⇐) If M1 is not contained in M2, then there is a graph G that models M1 but not

M2. Thus, ΩG ∪ΩG,M1 models τ(M1) but ΩG ∪ΩG,M2 does not model τ(M2). So we
have that ΩG ∪ΩG,M1 ∪ΩG,M2 models τ(M1) ∪ δ(τ(M2)) but not τ(M2).

Since our grammar is not closed under negation we cannot trivially reduce (finite)
SCL containment to (finite) SCL satisfiability. Nevertheless, all positive (decidability
and complexity) results are obtained by exhibiting inclusion of some SCL fragment
into a particular (extension of a) fragment of first-order logic already studied in the
literature that is closed under negation. Thus we can always solve the (finite) SCL
containment problem for sentences φ1 ⊆ φ2 by deciding (finite) unsatisfiability of a
sentence φ1 ∧ ¬φ2. Dually, the unsatisfiability of an SCL sentence φ is equivalent to
φ ⊆ ⊥. Hence, containment and unsatisfiability have the same complexity.

3.3 Filter Axiomatization

Decidability of SCL satisfiability depends on the decidability of filters. In this section we
present a decidable axiomatization that allows us to treat some filters as simple relations
instead of interpreted ones. In particular, we do not consider sh:pattern which supports
complex regular expressions, and the sh:lessThanOrEquals or sh:lessThan that are
binary relations (the O and O’ components of our grammar). All other features defined as
filters in Sec. 3 are represented by monadic relations F(x) of the SCL grammar.

The actual problem imposed by filters w.r.t. deciding satisfiability and containment is
that each combination of filters might be satisfied by a limited number of elements (zero,
if the combination is unsatisfiable). For example, the number of elements of datatype
boolean is two, the number of elements that are literals is infinite and the number of
elements of datatype integer that are greater than 0 and lesser than 5 is four.

Let a filter combination F(x) denote a conjunction of atoms of the form x = c,
x 6= c, F(x) or ¬F(x), where c is a constant and F is a filter predicate. Given a filter
combination, it is possible to compute the number of elements that can satisfy it. Let γ be

SHACL Satisfiability and Containment 9

the function from filter combinations to naturals returning this number. The computation
of γ(F(x)) for the monadic filters we consider is trivial as it boils down to determining:
(1) the lexical space and compatibility of datatypes and node types (including those
implied by language tag and order constraints); (2) the cardinality of intervals defined
by order or string-length constraints; and (3) simple RDF-specific restrictions, e.g., the
fact that each node has at most one datatype and language tag. Combinations of the
previous three points are equally computable. Let Fϕ be the set of filter combinations
that can be constructed with the filters and constants occurring in a sentence ϕ. The
filter axiomatization α(ϕ) of a sentence ϕ is the following conjunction (conjuncts where
γ(F(x)) is infinite are trivially simplified to >).

α(ϕ) =
∧
F(x)∈Fϕ ∃≤γ(F(x)) x. F(x)

Theorem 3. An SCL sentence φ is satisfiable on a canonical model iff φ ∧ α(φ) is
satisfiable on an uninterpreted model. Containment φ1 ⊆ φ2 of two SCL sentences on
all canonical models holds iff φ1 ∧ α(φ1 ∧ φ2) ⊆ φ2 holds on all uninterpreted models.

Proof sketch. We focus on satisfiability, since the proof for containment is similar. First
notice that every canonical model I of ϕ is necessarily a model of φ ∧ α(φ). Indeed, by
definition of the function γ, given a filter combination F(x), there cannot be more than
γ(F(x)) elements satisfying F(x), independently of the underlying canonical model.
Thus, I satisfies α(φ). Consider now a model I of φ ∧ α(φ) and let I? be the structure
obtained from I by replacing the interpretations of the monadic filter relations with their
canonical ones. Obviously, for any filter combination F(x), there are exactly γ(F(x))
elements in I? satisfying F(x), since I? is canonical. As a consequence, there exists a
injection ι between the elements satisfying F(x) in I and those satisfying F(x) in I?. At
this point, one can prove that I? satisfies ϕ. Indeed, every time a value x, satisfying F(x)
in I, is used to verify a subformula ψ of ϕ in I, one can use the value ι(x) to verify the
same subformula ψ in I?.

4 SCL Satisfiability

In this section we embark on a detailed analysis of the satisfiability problem for different
fragments of SCL. Some of the proven and derived results are visualized in Figure 3.
The decidability results are proved via embedding into known decidable (extensions
of) fragments of first-order logic, while the undecidability ones are obtained through
reductions from the domino problem. Since we are not considering filters explicitly, but
via axiomatization, the only interpreted relations are the equality and the orderings.

For the sake of space and readability, the map depicted in the figure is not complete
w.r.t. two aspects. First, it misses few fragments whose decidability can be immedi-
ately derived via inclusion into a more expressive decidable fragment, e.g., Z A D E C or
S Z A T D. Second, the rest of the missing cases have an open decidability problem. In
particular, while there are several decidable fragments containing the T feature we do
not know any decidable fragment with the O or O’ feature. Notice that the undecidability
results making use of the last two are only applicable to generalized RDF.

10 P. Pareti et al.

∅

AOS C E

S EA OS CS OS A A C E O E C A E

S A ES E OS A CS A O S E C A E O A E C

S Z A ES Z A D S A D E Z A D E

S Z A D ES A E OS Z A D CS Z A D O S A E C Z A D E O Z A D E C

S Z A T ES Z A T D S A T D E Z A T D E

S Z A T D ES Z A T D O S Z A T D C Z A T D E CZ A T D E O

S Z A T D E OS Z A T D O C S Z A T D E C Z A T D E O C

Fig. 3: Decidability and complexity map of SCL. Round (blue) and square (red) nodes denote
decidable and undecidable fragments, respectively. Solid borders on nodes correspond to theorems
in this paper, while dashed borders are implied results. Directed edges indicate inclusion of
fragments, while bidirectional edges denote polynomial-time reducibility. Solid edges are preferred
derivations to obtain tight results, while dotted ones leads to worst upper-bounds or model-theoretic
properties. Finally, a light blue background indicates that the fragment enjoys the finite-model
property, while those with a light red background do not satisfy this property.

As first result, we show that the base language ∅ is already powerful enough to
express properties writable by combining the S, Z, and A features. In particular, the latter
one does not augment the expressiveness when the D and O features are considered alone.

Theorem 4. There are semantic-preserving and polynomial-time finite-model-invariant
satisfiability-preserving translations between the following SCL fragments: 1. ∅ ≡ S ≡
Z ≡ A ≡ S Z ≡ S A ≡ Z A ≡ S Z A; 2. D ≡ A D; 3. O ≡ A O; 4. D O ≡ A D O.

Proof. To show the equivalences between the fourteen SCL fragments mentioned in
the thesis, we consider the following first-order formula equivalences that represent
few distributive properties enjoyed by the S, Z, and A features w.r.t. some of the other
language constructs. The verification of their correctness only requires the application of
standard properties of Boolean connectives and first-order quantifiers.

– [S]. The sequence combination of two path formulas π1 and π2 in the body of an
existential quantification is removed by nesting two quantifications, one for each πi:

∃ y . (∃ z . π1(x, z) ∧ π2(z, y)) ∧ ψ(y) ≡ ∃ z . π1(x, z) ∧ (∃ y . π2(z, y) ∧ ψ(y)).

SHACL Satisfiability and Containment 11

– [Z]. The Z path construct can be removed from the body of an existential quantifica-
tion on a free variable x by verifying whether the formula ψ in its scope is already
satisfied by the value bound to x itself:

∃ y . (x = y ∨ π(x, y)) ∧ ψ(y) ≡ ψ(x) ∨ ∃ y . π(x, y) ∧ ψ(y).

– [A]. The removal of the A path construct from the body of an existential quantifier or
of the D and O constructs can be done by exploiting the following equivalences:

∃ y . (π1(x, y) ∨ π2(x, y)) ∧ ψ(y) ≡ (∃ y . π1(x, y) ∧ ψ(y)) ∨ (∃ y . π2(x, y) ∧ ψ(y));
¬∃ y. (π1(x, y) ∨ π2(x, y)) ∧ R(x, y) ≡ (¬∃ y. π1(x, y) ∧ R(x, y))∧(¬∃ y. π2(x, y) ∧ R(x, y));

∀ y, z . (π1(x, y) ∨ π2(x, y)) ∧ R(x, z)→ σ(y, z) ≡ (∀ y, z . π1(x, y) ∧ R(x, z)→ σ(y, z))

∧ (∀ y, z . π2(x, y) ∧ R(x, z)→ σ(y, z)).

At this point, the equivalences between the fragments naturally follow by iteratively
applying the discussed equivalences.

The removal of the Z and A constructs from an existential quantification might lead,
however, to an exponential blow-up in the size of the formula due to the duplication
of the body ψ of the quantification. To obtain polynomial-time finite-model-invariant
satisfiability-preserving translations, we first construct from the given sentence ϕ a
finite-model-invariant equisatisfiable sentence ϕ?. The latter has a linear size in the
original one and all the bodies of its quantifications are just plain relations. Then, we
apply the above described semantic-preserving translations to ϕ? that, in the worst case,
only leads to a doubling in the size. The sentence ϕ? is obtained by iteratively applying
to ϕ the following two rewriting operations, until no complex formula appears in the
scope of an existential quantification. Let ψ′(x) = ∃ y . π(x, y) ∧ ψ(y) be a subformula,
where ψ(y) does not contain quantifiers other than possibly those of the S, D, and O
features. Then: (i) replace ψ′(x) with ∃ y . π(x, y) ∧ hasShape(y, s), where s is a fresh
constant; (ii) conjoin the resulting sentence with ∀ x. hasShape(x, s)↔ ψ(x). The two
rewriting operations only lead to a constant increase of the size and are applied only a
linear number of times.

It turns out that the base language ∅ resembles the description logic A LC extended
with universal roles, inverse roles, and nominals [3]. This resemblance is exploited as
the key observation at the core of the following result.

Theorem 5. All SCL subfragments of S Z A enjoy the finite-model property. Moreover,
the satisfiability problem is ExpTime-complete.

Proof. The finite-model property follows from the fact that Theorem 8 states the same
property for the subsuming language S Z A D. As far as the satisfiability problem is
concerned, thanks to Item 1 of Theorem 4, we can focus on the base language ∅. It can
be observed that the description logic A LC extended with inverse roles and nominals [3]
and the language ∅ deprived of the universal quantifications at the level of sentences are
linearly interreducible. Indeed, every existential modality ∃R.C (resp., ∃R−.C) precisely
corresponds to the SCL construct ∃ y .R(x, y) ∧ ψC(y) (resp., ∃ y .R−(x, y) ∧ ψC(y)),
where ψC(y) represents the concept C. Moreover, every nominal n corresponds to the

12 P. Pareti et al.

equality construct x = cn, where a natural bijection between nominals and constants
is considered. Since the aforementioned description logic has an ExpTime-complete
satisfiability problem [24,11], it holds that the same problem for all subfragments of S Z A
is ExpTime-hard. Completeness follows by observing that the universal quantifications at
the level of sentences can be encoded in the further extension of A LC with the universal
roles [24], which has an ExpTime-complete satisfiability problem [23].

To derive properties of the Z A D E fragment, together with its sub-fragments (two of
those – E and A E – are shown in Figure 3), we leverage on the syntactic embedding into
the two-variable fragment of first-order logic.

Theorem 6. The Z A D E fragment of SCL enjoys the finite-model property. Moreover,
the associated satisfiability problem is solvable in NExpTime.

Proof. Via inspection of the SCL grammar one can notice that, by avoiding the S and
O features of the language it is only possible to write formulas with at most two free
variables [19]. For this reason, every Z A D E formula belongs to the two-variable frag-
ment of first-order logic which is known to enjoy both the finite-model property and a
NExpTime satisfiability problem [13].

The embedding used in the previous theorem can be generalized when the C feature
is added to the picture. However, this additional expressive power does not come without
a price since the complexity increases and the finite-model property is lost.

Theorem 7. The C fragment of SCL does not enjoy the finite-model property and has a
NExpTime-hard satisfiability problem. Nevertheless, the finite and unrestricted satisfia-
bility problems for Z A D E C are NExpTime-complete.

Proof. As for the proof of Theorem 6, one can observe that every Z A D E C formula be-
longs to the two-variable fragment of first-order logic extended with counting quantifiers.
Such a logic does not enjoy the finite-model property [14], since it syntactically contains
a sentence that encodes the existence of an injective non-surjective function from the
domain of the model to itself. The C fragment of SCL allows us to express the same
property via the following sentence ϕ, thus implying the first part of the thesis:

ϕ
.
= isA(0, c) ∧ ¬∃ x .R−(0, x) ∧ ∀ x . isA(x, c)→ ψ(x);

ψ(x) .= ∃=1 y . (R(x, y) ∧ isA(y, c)) ∧ ¬∃≥2 y .R−(x, y).

Intuitively, the first two conjuncts of ϕ force every model of the sentence to contain an
element 0 that does not have any R-predecessor and that is related to c in the isA relation.
In other words, 0 is not contained in the image of the relation R. The third conjunct of
ϕ ensures that every element related to c w.r.t. isA has exactly one R-successor, also
related to c in the same way, and at most one R-predecessor. Thus, a model of ϕ must
contain an infinite chain of elements pairwise connected by the functional relation R.

By generalizing the proof of Theorem 5, one can notice that the C fragment of
SCL semantically subsumes the description logic A LC extended with inverse roles,
nominals, and cardinality restrictions [3]. Indeed, every qualified cardinality restriction
(≥ n R.C) (resp., (≤ n R.C)) precisely corresponds to the SCL construct ∃≥n y .R(x, y)∧

SHACL Satisfiability and Containment 13

ψC(y) (resp., ¬∃≥n+1 y .R(x, y) ∧ ψC(y)), where ψC(y) represents the concept C. Thus,
the hardness result for C follows by recalling that the specific A LC language has a
NExpTime-hard satisfiability problem [25,18]. On the positive side, however, the ex-
tension of the two-variable fragment of first-order logic with counting quantifiers has
decidable finite and unrestricted satisfiability problems. Specifically, both can be solved
in NExpTime, even in the case of binary encoding of the cardinality constants [20,21].
Hence, the second part of the thesis follows as well.

Thanks to the axiomatization of (the subset of) filters given in Sec. 3.3, it is immediate
to see that the ZADEC fragment extended with these filters is decidable as well. Indeed,
although the sentence α(ϕ) is not immediately expressible in SCL it belongs to the two-
variable fragment of FOL extended with counting quantifiers. Notice however that, since
α(ϕ) might be exponential in the size of ϕ, this approach only leads to a (potentially)
coarse upper bound. An attempt to prove a tight complexity result might exploit the
SMT-like approach described in [2] for the LTL part of Strategy Logic. Indeed, one
could think to extend the decision procedure for the above FOL fragment in such a way
that the filter axiomatization is implicitly considered during the check for satisfiability.

For the S Z A D fragment, we obtain model-theoretic and complexity results via an
embedding into the unary-negation fragment of first-order logic. When the T feature is
considered, the same embedding can be adapted to rewrite S Z A T D into the extension
of the above first-order fragment with regular path expressions. Unfortunately, as for the
addition of the C feature to Z A D E, we pay the price of losing the finite-model property.
In this case, however, no increase of the complexity of the satisfiability problem occurs.

Theorem 8. The S Z A D fragment of SCL enjoys the finite-model property. The S T D
fragment does not enjoy the finite-model property. However, the finite and unrestricted
satisfiability problems for S Z A T D are solvable in 2ExpTime.

Proof. By inspecting the SCL grammar, one can notice that every formula that does not
make use of the T, E, O, and C constructs can be translated into the standard first-order
logic syntax, with conjunctions and disjunctions as unique binary Boolean connectives,
where negation is only applied to formulas with at most one free variable. For this reason,
every S Z A D formula semantically belongs to the unary-negation fragment of first-order
logic, which is known to enjoy the finite-model property [5,6].

Similarly every S Z A T D formula belongs to the unary-negation fragment of first-
order logic extended with regular path expressions [15]. Indeed, the grammar rule
π(x, y) of SCL, precisely resembles the way the regular path expressions are constructed
in the considered logic, when one avoids the test construct. Unfortunately, as for the
two-variable fragment with counting quantifiers, this logic also fails to satisfy the finite-
model property since it is able to encode the existence of a non-terminating path without
cycles. The S T D fragment of SCL allows us to express the same property, as described
in the following. First of all, consider the S T path formula π(x, y) .

= ∃ z . (R−(x, z) ∧
(R−(z, y))?). Obviously, π(x, y) holds between two elements x and y of a model if and
only if there exists a non-trivial R-path (of arbitrary positive length) that, starting in
y, leads to x. Now, by writing the S T D formula ψ(x) .

= ¬∃ y . (π(x, y) ∧ R(x, y)), we
express the fact that an element x does not belong to any R-cycle since, otherwise, there
would be an R-successor y able to reach x itself. Thus, by ensuring that every element in

14 P. Pareti et al.

the model has an R-successor, but does not belong to any R-cycle, we can enforce the
existence of an infinite R-path. The S T D sentence ϕ expresses exactly this property:

ϕ
.
= isA(0, c) ∧ ∀ x . isA(x, c)→ (ψ(x) ∧ ∃ y . (R(x, y) ∧ isA(y, c))).

On the positive side, however, the extension of the unary-negation fragment of
first-order logic with arbitrary transitive relations or, more generally, with regular path
expressions has decidable finite and unrestricted satisfiability problems. Specifically,
both can be solved in 2ExpTime [1,15,10].

At this point, it is interesting to observe that the O feature allows us to express a
very weak form of counting restriction which is, however, powerful enough to lose the
finite-model property. For the proof of the following we refer to our appendix.

Theorem 9. SCL fragments O and E O’ do not satisfy the finite-model property.

In the remaining part of this section, we show the undecidability of the satisfiability
problem for five fragments of SCL through a semi-conservative reduction from the
standard domino problem [26,4,22], whose solution is known to be Π1

0 -complete. A
N× N tiling system (T,H,V) is a structure built on a non-empty set T of domino types,
a.k.a. tiles, and two horizontal and vertical matching relations H,V ⊆ T×T . The domino
problem asks for a compatible tiling of the first quadrant N×N of the plane, i.e., a solution
mapping ð : N× N→ T such that, for all x, y ∈ N, both (ð(x, y),ð(x + 1, y)) ∈ H and
(ð(x, y),ð(x, y + 1)) ∈ V hold true.

Theorem 10. The satisfiability problems of the S O, S A C, S E C, S E O’, and S Z A E frag-
ments of SCL are undecidable.

Proof. The main idea behind the proof is to embed a tiling system into a model of
a particular SCL sentence that is satisfiable if and only if the tiling system allows for
an admissible tiling. The hardest part in the reduction consists in the definition of a
satisfiable sentence all of whose models homomorphically contain the infinite grid of the
tiling problem. In other words, this sentence should admit an infinite square grid graph
as a minor of the model unwinding. Given that, the remaining part of the reduction can
be completed in the base language ∅.

Independently of the fragment we are proving undecidable, consider the sentence

ϕ
.
=
∨

t∈T isA(0, t) ∧
∧

t∈T ∀ x . isA(x, t)→ (ψt
T(x) ∧ ψG(x)).

Intuitively, this first states the existence of the point 0, the origin of the grid, labeled
by some tile and then ensures the fact that all points x, that are labeled by some tile t,
need to satisfy the two formulas ψt

T(x) and ψG(x). The first formula is used to ensure
the admissibility of the tiling, while the second one forces the model to embed a grid.

ψt
T(x)

.
=

t′ 6=t∧
t′∈T

¬isA(x, t′)

∧

∀ y .H(x, y)→
∨

(t,t′)∈H

isA(y, t′)

 ∧
∀ y .V(x, y)→

∨
(t,t′)∈V

isA(y, t′)



SHACL Satisfiability and Containment 15

The first conjunct of the ∅ formula ψt
T(x) verifies that the point x is labeled by no other

tile than t. The second part, instead, ensures that the points y on the right or above of x
are labeled by some tile t′ which is compatible with t, w.r.t. the constraints imposed by
the horizontal H and vertical V relations, respectively.

At this point, we can focus on the formula ψG(x) defined as follows:

ψG(x)
.
= (∃ y .H(x, y)) ∧ (∃ y .V(x, y)) ∧ γ(x).

The first two conjuncts guarantee the existence of an horizontal and vertical adjacent
of the point x, while the subformula γ(x), whose definition depends on the considered
fragment of SCL, needs to enforce the fact that x is the origin of a square. That is, that
going horizontally and then vertically or, vice versa, vertically and then horizontally
the same point is reached. In order to do this, we make use of the two S path formulas
πHV(x, y)

.
= ∃ z . (H(x, z) ∧ V(z, y)) and πVH(x, y)

.
= ∃ z . (V(x, z) ∧ H(z, y)). In some

cases, we also use the S A path formula πD(x, y)
.
= πHV(x, y) ∨ πVH(x, y) combining the

previous ones. We now proceed by a case analysis on the specific fragments.

– [S O] By assuming the existence of a non-empty relation D connecting a point with
its opposite in the square, i.e., the diagonal point, we can say that all points reachable
through πHV or πVH are, actually, the same unique point:

γ(x) .= ∃ y .D(x, y)

∧ ∀ y, z. πHV(x, y) ∧ D(x, z)→ y ≤ z ∧ ∀ y, z. πHV(x, y) ∧ D(x, z)→ y ≥ z

∧ ∀ y, z. πVH(x, y) ∧ D(x, z)→ y ≤ z ∧ ∀ y, z. πVH(x, y) ∧ D(x, z)→ y ≥ z.

The S O formula γ(x) ensures that relation D is non-empty and functional and that
all points reachable via πHV or πVH are necessarily the one reachable through D.

– [S A C] By applying a counting quantifier to the formula πD encoding the union of
the points reachable through πHV or πVH , we can ensure the existence of a single
diagonal point: γ(x) .= ¬∃≥2 y . πD(x, y).

– [S E C] As for the S O fragment, here we use a diagonal relation D, which needs to
contain all and only the points reachable via πHV or πVH . By means of the counting
quantifier, we ensure its functionality:

γ(x) .= ¬∃≥2 y.D(x, y) ∧ ∀ y.πHV(x, y)↔ D(x, y) ∧ ∀ y.πVH(x, y)↔ D(x, y).

– [S E O’] This case is similar to the previous one, where the functionality of D is
obtained by means of the O construct:

γ(x) .= ∀ y, z .D(x, y) ∧ D(x, z)→ y ≤ z

∧ ∀ y . πHV(x, y)↔ D(x, y) ∧ ∀ y . πVH(x, y)↔ D(x, y).

– [S Z A E] This proof is inspired by the one used for the undecidability of the guarded
fragment extended with transitive closure [12]. This time, the functionality of the
diagonal relation D is indirectly ensured by the conjunction of the four formulas
γ1(x), γ2(x), γ3(x), and γ4(x) that exploit all the features of the fragment:

γ(x) .= γ1(x) ∧ γ2(x) ∧ γ3(x) ∧ γ4(x) ∧ ∀ y . πD(x, y)↔ D(x, y), where

16 P. Pareti et al.

γ1(x)
.
= ∀ y .

 ∨
i∈{0,1}

Di(x, y)

↔ D(x, y),

γ2(x)
.
=

 ∨
i∈{0,1}

¬∃ y.Di(x, y)

∧
 ∧

i∈{0,1}
∀ y.Di(x, y)→ ∃ z.D1−i(y, z)

,
γ3(x)

.
=

∧
i∈{0,1}

∀ y .
(
x = y ∨ Di(x, y) ∨ D−i (x, y)

)
↔ Ei(x, y), and

γ4(x)
.
=

∧
i∈{0,1}

∀ y . (∃ z.(Ei(x, z) ∧ Ei(z, y)))↔ Ei(x, y).

Intuitively, γ1 asserts that D is the union of the two accessory relations D0 and D1,
while γ2 guarantees that a point can only have adjacents w.r.t. just one relation Di
and that these adjacents can only appear as first argument of the opposite relation
D1−i. In addition, γ3 ensures that the additional relation Ei is the reflexive symmetric
closure of Di and γ4 forces Ei to be transitive as well.
We can now prove that the relation D is functional. Suppose by contradiction that
this is not case, i.e., there exist values a, b, and c in the domain of the model of
the sentence ϕ, with b 6= c such that both D(a, b) and D(a, c) hold true. By the
formula γ1 and the first conjunct of γ2, we have that Di(a, b) and Di(a, c) hold for
exactly one index i ∈ {0, 1}. Thanks to the full γ2, we surely know that a 6= b,
a 6= c, and neither Di(b, c) nor Di(c, b) can hold. Indeed, if a = b then Di(a, a).
This in turn implies D1−i(a, d) for some value d due to the second conjunct of γ2.
Hence, there would be pairs with the same first element in both relations, trivially
violating the first conjunct of γ2. Similarly, if Di(b, c) holds, then D1−i(c, d) needs
to hold as well, for some value d, leading again to a contradiction. Now, by the
formula γ3, both Ei(b, a) and Ei(a, c) hold, but Ei(b, c) does not. However, this
clearly contradicts γ4. As a consequence, D is necessarily functional.

Now, it is not hard to see that the above sentence ϕ (one for each fragment) is satisfiable
if and only if the domino instance on which the reduction is based on is solvable.

5 Conclusion

In this paper we define and study the decision problems of satisfiability and containment
for SHACL documents and shape constraints. In order to do so, we introduce a com-
plete translation between SHACL and SCL, a fragment of FOL extended with counting
quantifiers and a transitive closure operator. Using these translations we lay out a map of
SHACL fragments for which we are able to prove undecidability or decidability along
with complexity results, for the satisfiability and containment problems. We also expose
semantic properties and asymmetries within SHACL which might inform a future update
of the specification. The satisfiability and containment problems are undecidable for the
full SHACL specification. However, decidability can be achieved by restricting the usage
of certain SHACL components, such as cardinality restrictions over property shapes or
property paths. Nevertheless, the decidability of some fragments of SHACL remains an
open question, worthy of further investigation.

SHACL Satisfiability and Containment 17

References

1. A. Amarilli and M. Benedikt and P. Bourhis and M. Vanden Boom: Query Answering with
Transitive and Linear-Ordered Data. In: IJCAI’16. pp. 893–899 (2016)

2. Acar, E., Benerecetti, M., Mogavero, F.: Satisfiability in Strategy Logic can be Easier than
Model Checking. In: AAAI’19. pp. 2638–2645 (2019)

3. Baader, F., Calvanese, D., McGuinness, D., Nardim, D., Patel-Scheider, P.: The Description
Logic Handbook: Theory, Implementation, and Applications. Cambridge University Press
(2003)

4. Berger, R.: The Undecidability of the Domino Problem. MAMS 66, 1–72 (1966)
5. ten Cate, B., Segoufin, L.: Unary Negation. In: STACS’11. pp. 344–355. LIPIcs 9, Leibniz-

Zentrum fuer Informatik (2011)
6. ten Cate, B., Segoufin, L.: Unary Negation. LMCS 9(3), 1–46 (2013)
7. Corman, J., Florenzano, F., Reutter, J.L., Savković, O.: Validating SHACL Constraints over a

Sparql Endpoint. In: The Semantic Web – ISWC 2019. pp. 145–163 (2019)
8. Corman, J., Reutter, J.L., Savković, O.: Semantics and Validation of Recursive SHACL. In:

The Semantic Web – ISWC 2018. pp. 318–336 (2018)
9. Cyganiak, R., Wood, D., Markus Lanthaler, G.: RDF 1.1 Concepts and Ab-

stract Syntax. W3C Recommendation, W3C (2014), http://www.w3.org/TR/2014/
REC-rdf11-concepts-20140225/

10. Danielski, D., Kieronski, E.: Finite Satisfiability of Unary Negation Fragment with Transitivity.
In: MFCS’19. pp. 17:1–15. LIPIcs 138, Leibniz-Zentrum fuer Informatik (2019)

11. Donini, F., Massacci, F.: ExpTime Tableaux for A LC . AI 124(1), 87–138 (2000)
12. Grädel, E.: On The Restraining Power of Guards. JSL 64(4), 1719–1742 (1999)
13. Grädel, E., Kolaitis, P., Vardi, M.: On the Decision Problem for Two-Variable First-Order

Logic. BSL 3(1), 53–69 (1997)
14. Grädel, E., Otto, M., Rosen, E.: Two-Variable Logic with Counting is Decidable. In: LICS’97.

pp. 306–317. IEEECS (1997)
15. Jung, J., Lutz, C., Martel, M., Schneider, T.: Querying the Unary Negation Fragment with

Regular Path Expressions. In: ICDT’18. pp. 15:1–18. OpenProceedings.org (2018)
16. Knublauch, H., Kontokostas, D.: Shapes constraint language (SHACL). W3C Recommenda-

tion, W3C (2017), https://www.w3.org/TR/shacl/
17. Leinberger, M., Seifer, P., Rienstra, T., Lämmel, R., Staab, S.: Deciding SHACL Shape

Containment through Description Logics Reasoning. In: The Semantic Web – ISWC 2020.
Springer International Publishing (2020), (this volume)

18. Lutz, C.: An Improved NExpTime-Hardness Result for Description Logic A LC Extended with
Inverse Roles, Nominals, and Counting. Tech. Rep. 05-05, Dresden University of Technology,
Dresden, Germany (2005)

19. Mortimer, M.: On Languages with Two Variables. MLQ 21(1), 135–140 (1975)
20. Pratt-Hartmann, I.: Complexity of the Two-Variable Fragment with Counting Quantifiers.

JLLI 14(3), 369–395 (2005)
21. Pratt-Hartmann, I.: The Two-Variable Fragment with Counting Revisited. In: WOLLIC’10.

pp. 42–54. LNCS 6188 (2010)
22. Robinson, R.: Undecidability and Nonperiodicity for Tilings of the Plane. IM 12, 177–209

(1971)
23. Sattler, U., Vardi, M.: The Hybrid µ-Calculus. In: IJCAR’01. pp. 76–91. LNCS 2083 (2001)
24. Schild, K.: A Correspondence Theory for Terminological Logics: Preliminary Report. In:

IJCAI’91. pp. 466–471 (1991)
25. Tobies, S.: The Complexity of Reasoning with Cardinality Restrictions and Nominals in

Expressive Description Logics. JAIR 12, 199–217 (2000)
26. Wang, H.: Proving Theorems by Pattern Recognition II. BSTJ 40, 1–41 (1961)

http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
http://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/
https://www.w3.org/TR/shacl/

	SHACL Satisfiability and Containment

