Skip to main content

A Pattern–Driven Adaptation in IoT Orchestrations to Guarantee SPDI Properties

  • Conference paper
  • First Online:
Model-driven Simulation and Training Environments for Cybersecurity (MSTEC 2020)

Abstract

The orchestration of heterogeneous IoT devices to enable the provision of IoT applications and services poses numerous challenges, especially in contexts where end-to-end security and privacy guarantees are needed. To tackle these challenges, this paper presents a pattern–driven approach for interacting with IoT systems, whereby the required properties are guaranteed. Patterns are leveraged to represent the relationship between security, privacy, dependability and interoperability (SPDI) properties of specific smart objects and corresponding properties of orchestrations that include said objects. In this way, patterns allow the verification that certain SPDI properties hold for an IoT orchestration, while also enabling the adaptation of IoT orchestrations in ways that allow the given properties to hold.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://www.semiotics-project.eu/.

  2. 2.

    http://www.aal-europe.eu//.

  3. 3.

    http://www.bpmn.org/.

  4. 4.

    https://www.eclipse.org/modeling/emf/.

  5. 5.

    https://nodered.org/.

  6. 6.

    https://nodejs.org/en/.

  7. 7.

    https://mqtt.org/.

  8. 8.

    https://www.json.org/json-en.html.

  9. 9.

    http://www.tosca-open.org/.

References

  1. Miorandi, D., Sicari, S., De Pellegrini, F., Chlamtac, I.: Internet of things: vision, applications and research challenges. Ad Hoc Netw. 10(7), 1497–1516 (2012)

    Article  Google Scholar 

  2. \(\check{\rm C}\)olaković, A., Had\(\check{\rm z}\)ialić, M.: Internet of Things (IoT): a review of enabling technologies, challenges, and open research issues. Comput. Networks 144, 17–39 (2018)

    Google Scholar 

  3. Singh, S., Singh, N.: Internet of Things (IoT): security challenges, business opportunities & reference architecture for E-commerce. In: 2015 International Conference on Green Computing and Internet of Things (ICGCIoT), Noida, pp. 1577–1581. IEEE, (2015). https://doi.org/10.1109/ICGCIoT.2015.7380718

  4. Xu, T., Wendt, J.B., Potkonjak, M.: Security of IoT systems: design challenges and opportunities. In: 2014 IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San Jose, CA, pp. 417–423, IEEE (2014). https://doi.org/10.1109/ICCAD.2014.7001385

  5. Kienzle, D.M., Elder, M.C.: Final Technical Report: Security Patterns for web Application Development. DARPA, Washington DC (2005)

    Google Scholar 

  6. Achtaich, A., Souissi, N., Mazo, R., Salinesi, C., Roudies, O.: Designing a framework for smart IoT adaptations. In: Belqasmi, F., Harroud, H., Agueh, M., Dssouli, R., Kamoun, F. (eds.) AFRICATEK 2017. LNICST, vol. 206, pp. 57–66. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-67837-5_6

    Chapter  Google Scholar 

  7. Arcelli, D.: Exploiting queuing networks to model and assess the performance of self-adaptive software systems: a survey. Procedia Comput. Sci. 170, 498–505 (2020)

    Article  Google Scholar 

  8. Baker, T., Asim, M., Tawfik, H., Aldawsari, B., Buyya, R.: An energy-aware service composition algorithm for multiple cloud-based IoT applications. J. Network Comput. Appl. 89, 96–108 (2017)

    Article  Google Scholar 

  9. Zhou, Z., Zhao, D., Liu, L., Hung, P.C.: Energy-aware composition for wireless sensor networks as a service. Future Gener. Comput. Syst. 80, 299–310 (2018)

    Article  Google Scholar 

  10. Alsaryrah, O., Mashal, I., Chung, T.Y.: Energy-aware services composition for Internet of Things. In: 2018 IEEE 4th World Forum on Internet of Things (WF-IoT), pp. 604–608. IEEE (2018)

    Google Scholar 

  11. Urbieta, A., González-Beltrán, A., Mokhtar, S.B., Hossain, M.A., Capra, L.: Adaptive and context-aware service composition for IoT-based smart cities. Future Gener. Comput. Syst. 76, 262–274 (2017)

    Article  Google Scholar 

  12. Chen, L., Englund, C.: Choreographing services for smart cities: smart traffic demonstration. In: 2017 IEEE 85th Vehicular Technology Conference (VTC Spring), pp. 1–5. IEEE (2017)

    Google Scholar 

  13. Seeger, J., Deshmukh, R.A., Broring, A.: Running distributed and dynamic IOT choreographies. In: 2018 Global Internet of Things Summit (GIoTS), pp. 1–6. IEEE (2018)

    Google Scholar 

  14. Fysarakis, K., Papoutsakis, M., Petroulakis, N., Spanoudakis, G.: Towards IoT orchestrations with security, privacy, dependability and interoperability guarantees. In: Conference: 2019 IEEE Global Communications Conference (GLOBECOM), At Waikoloa, HI, USA (2019). https://doi.org/10.1109/GLOBECOM38437.2019.9013275

  15. Business Rules Management System (BRMS). https://www.drools.org. Accessed 5 Aug 2020

  16. Morrison, J. Paul.: Flow-Based Programming: A new approach to application development. CreateSpace, (2010)

    Google Scholar 

  17. Drools - Business Rules Management System (Java\(^{\rm TM}\), Open Source). https://www.drools.org. Accessed 5 Aug 2020

  18. Forgy, C.L.: Rete: a fast algorithm for the many pattern/many object pattern match problem. In: Readings in Artificial Intelligence and Databases, pp. 547–559. Morgan Kaufmann (1989)

    Google Scholar 

  19. Chapter 5. Hybrid Reasoning. https://docs.jboss.org/drools/release/6.4.0.Final/drools-docs/html/ch05.html. Accessed 5 Aug 2020

  20. Kienzle, D.M., Elder, M.C., Tyree, D., Edwards-Hewitt, J.: Security patterns repository version 1.0. DARPA, Washington DC (2002)

    Google Scholar 

  21. Bröring, A., Seeger, J., Papoutsakis, M., Fysarakis, K.: Networking-aware IoT application development. Sensors 20, 897 (2020). https://doi.org/10.3390/s20030897

    Article  Google Scholar 

  22. Soultatos, O., et al.: Pattern-driven security, privacy, dependability and interoperability management of IoT environments. In: 2019 IEEE 24th International Workshop on Computer Aided Modeling and Design of Communication Links and Networks (CAMAD), Limassol, Cyprus, pp. 1–6 (2019). https://doi.org/10.1109/CAMAD.2019.8858429

  23. Nowak, A., Binz, T., Fehling, C., Kopp, O., Leymann, F., Wagner, S.: Pattern-driven green adaptation of process-based applications and their runtime infrastructure. Computing 94(6), 463–487 (2012)

    Article  Google Scholar 

  24. Döhring, M., Zimmermann, B., Godehardt, E.: Extended workflow flexibility using rule-based adaptation patterns with eventing semantics. INFORMATIK 2010. Service Science–Neue Perspektiven für die Informatik, Band 1 (2010)

    Google Scholar 

  25. El-Maliki, T., Seigne, J.: Efficient security adaptation framework for internet of things. In: 2016 International Conference on Computational Science and Computational Intelligence (CSCI), Las Vegas, NV, pp. 206–211 (2016). https://doi.org/10.1109/CSCI.2016.0046

Download references

Acknowledgments

This work has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreements No. 780315 (SEMIoTICS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Papoutsakis Manos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Manos, P. et al. (2020). A Pattern–Driven Adaptation in IoT Orchestrations to Guarantee SPDI Properties. In: Hatzivasilis, G., Ioannidis, S. (eds) Model-driven Simulation and Training Environments for Cybersecurity. MSTEC 2020. Lecture Notes in Computer Science(), vol 12512. Springer, Cham. https://doi.org/10.1007/978-3-030-62433-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62433-0_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62432-3

  • Online ISBN: 978-3-030-62433-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics