Skip to main content

Semi-supervised Virtual Regression of Aortic Dissections Using 3D Generative Inpainting

  • Conference paper
  • First Online:
Thoracic Image Analysis (TIA 2020)

Abstract

Aortic dissection (AD) is a condition of the main artery of the human body, resulting in the formation of a new flow channel, or false lumen (FL). The disease is usually diagnosed with a computed tomography angiography (CTA) scan during the acute phase. A better understanding of the causes of AD requires knowledge of aortic geometry prior to the event, which is available only in very rare circumstances. In this work, we propose an approach to reconstruct the aorta before the formation of a dissection by performing 3D inpainting with a two-stage generative adversarial network (GAN). In the first stage of our two-stage GAN, a network is trained on the 3D edge information of the healthy aorta to reconstruct the aortic wall. The second stage infers the image information of the aorta to reconstruct the entire dataset. We train our two-stage GAN with 3D patches from 55 non-dissected aortic datasets and evaluate it on 20 more non-dissected datasets, demonstrating that our proposed 3D architecture outperforms its 2D counterpart. To obtain pre-dissection aortae, we mask the entire FL in AD datasets. Finally, we provide qualitative feedback from a renown expert on the obtained pre-dissection cases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Deep Learning Inpainting of Aortic Dissections with Studierfenster: https://www.youtube.com/watch?v=c85qV-CDOX4.

References

  1. ImageNet. www.image-net.org. Accessed 10 July 2020 07:10:23

  2. Armanious, K., Mecky, Y., Gatidis, S., Yang, B.: Adversarial inpainting of medical imaging modalities. In: Proceedings of International Conference on Acoustics, Speech and Signal Processing (2019). https://doi.org/10.1109/ICASSP.2019.8682677

  3. Bäumler, K., Vedula, V., Sailer, A.M., et al.: Fluid-structure interaction simulations of patient-specific aortic dissection. Biomech. Model. Mechanobiol. (2020). https://doi.org/10.1007/s10237-020-01294-8

    Article  Google Scholar 

  4. Daily, P.O., Trueblood, H.W., Stinson, E.B., et al.: Management of acute aortic dissections. Ann. Thoracic Surg. 10(3), 237–247 (1970). https://doi.org/10.1016/S0003-4975(10)65594-4

    Article  Google Scholar 

  5. Egger, J., Gunacker, S., Pepe, A., et al.: A comprehensive workflow and framework for immersive virtual endoscopy of dissected aortae from CTA data. In: SPIE Medical Imaging 1131531 (2020). https://doi.org/10.1117/12.2559239

  6. Goodfellow, I., Pouget-Abadie, J., Mirza, M., et al.: Generative adversarial nets. In: Proceedings of Advances in Neural Information Processing Systems, vol. 27, pp. 2672–2680 (2014). https://doi.org/10.5555/2969033.2969125

  7. Hahn, L.D., Mistelbauer, G., Higashigaito, K., et al.: Ct-based true- and false-lumen segmentation in type b aortic dissection using machine learning. Radiol. Cardiothor. Imaging 2(3), 1–10 (2020)

    Article  Google Scholar 

  8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997). https://doi.org/10.1162/neco.1997.9.8.1735

    Article  Google Scholar 

  9. Howard, D.P., Banerjee, A., Fairhead, J.F., et al.: Population-based study of incidence and outcome of acute aortic dissection and premorbid risk factor control: 10-year results from the oxford vascular study. Circulation 127(20), 2031–2037 (2013). https://doi.org/10.1161/circulationaha.112.000483

    Article  Google Scholar 

  10. Johnson, J., Alahi, A., Fei-Fei, L.: Perceptual losses for real-time style transfer and super-resolution. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9906, pp. 694–711. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46475-6_43

    Chapter  Google Scholar 

  11. LeMaire, S.A., Russell, L.: Epidemiology of thoracic aortic dissection. Nat. Rev. Cardiol. Nat. Publ. Group 8(2), 103–113 (2011). https://doi.org/10.1038/nrcardio.2010.187

    Article  Google Scholar 

  12. Liu, G., Reda, F.A., Shih, K.J., Wang, T.-C., Tao, A., Catanzaro, B.: Image inpainting for irregular holes using partial convolutions. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11215, pp. 89–105. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01252-6_6

    Chapter  Google Scholar 

  13. Masoudi, M., Pourreza, H.R., Saadatmand-Tarzjan, M., et al.: A new dataset of computed-tomography angiography images for computer-aided detection of pulmonary embolism. Sci. Data 5, 180180 (2018). https://doi.org/10.1038/sdata.2018.180

    Article  Google Scholar 

  14. Mirsky, Y., Mahler, T., Shelef, I., Elovici, Y.: CT-GAN: Malicious tampering of 3D medical imagery using deep learning. In: Proceedings of the 28th USENIX Security Symposium (2019). https://doi.org/10.5555/3361338.3361371

  15. Mistelbauer, G., Schmidt, J., Sailer, A.M., et al.: Aortic dissection maps: comprehensive visualization of aortic dissections for risk assessment. In: Proceedings of Eurographics Workshop on Visual Computing for Biology and Medicine, pp. 143–152 (2016). https://doi.org/10.2312/vcbm.20161282

  16. Miyato, T., Kataoka, T., Koyama, M., et al.: Spectral normalization for generative adversarial networks. In: Proceedings of International Conference on Learning Representations (2018)

    Google Scholar 

  17. Nazeri, K., Ng, E., Joseph, T., et al.: Edgeconnect: generative image inpainting with adversarial edge learning. In: Proceedings of International Conference on Computer Vision Workshops (2019)

    Google Scholar 

  18. Pepe, A., Fleischmann, D., Schmalstieg, D., Egger, J.: Visual computing of dissected aortae. In: Technical Report for the Austrian Marshall Plan Foundation, pp. 1–32 (2020, to appear)

    Google Scholar 

  19. Pepe, A., Li, J., Rolf-Pissarczyk, M., et al.: Detection, segmentation, simulation and visualization of aortic dissections: a review. Med. Image Anal. (2020). https://doi.org/10.1016/j.media.2020.101773

    Article  Google Scholar 

  20. Pepe, A., Schussnig, R., Li, J., et al.: Iris: interactive real-time feedback image segmentation with deep learning. In: Medical Imaging 2020: Biomedical Applications in Molecular, Structural, and Functional Imaging, vol. 11317 (2020). https://doi.org/10.1117/12.2551354

  21. Prutsch, A., Pepe, A., Egger, J.: Design and development of a web-based tool for inpainting of dissected aortae in angiography images. In: Proceedings of Central European Seminar on Computer Graphics, pp. 1–8 (2020)

    Google Scholar 

  22. Sherifova, S., Holzapfel, G.A.: Biomechanics of aortic wall failure with a focus on dissection and aneurysm: a review. Acta Biomaterialia 99, 1–17 (2019). https://doi.org/10.1016/j.actbio.2019.08.017

    Article  Google Scholar 

  23. Sun, W., Su, F., Wang, L.: Improving deep neural networks with multi-layer maxout networks and a novel initialization method. Neurocomputing 278, 34–40 (2018). https://doi.org/10.1016/j.neucom.2017.05.103

    Article  Google Scholar 

  24. Wang, J., Zhao, Y., Noble, J.H., Dawant, B.M.: Conditional generative adversarial networks for metal artifact reduction in CT Images of the Ear. In: Frangi, A.F., Schnabel, J.A., Davatzikos, C., Alberola-López, C., Fichtinger, G. (eds.) MICCAI 2018. LNCS, vol. 11070, pp. 3–11. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-00928-1_1

    Chapter  Google Scholar 

  25. Wild, D., Weber, M., Egger, J.: Client/server based online environment for manual segmentation of medical images. In: 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 3463–3467. IEEE (2019). https://doi.org/10.1109/EMBC.2019.8856481

  26. Yu, J., Lin, Z., Yang, J., et al.: Free-form image inpainting with gated convolution. In: Proceedings of International Conference on Computer Vision (2019). https://doi.org/10.1109/ICCV.2019.00457

Download references

Acknowledgement

This work received fundings from the TU Graz LEAD Project Mechanics, Modeling and Simulation of Aortic Dissection (https://www.tugraz.at/projekte/biomechaorta/BioMechAorta), the Austrian Science Fund (FWF) KLI 678-B31 enFaced and the COMET K-Project 871132 CAMed of the Austrian Research Promotion Agency (FFG). Antonio Pepe was also supported by an Austrian Marshall Plan Foundation Scholarship (Scholarship n. 942121022222019)  [18]. Additionally, the authors would like to thank Professor Dr. Gerhard A. Holzapfel (Graz University of Technology) for his advice.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Antonio Pepe or Jan Egger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pepe, A. et al. (2020). Semi-supervised Virtual Regression of Aortic Dissections Using 3D Generative Inpainting. In: Petersen, J., et al. Thoracic Image Analysis. TIA 2020. Lecture Notes in Computer Science(), vol 12502. Springer, Cham. https://doi.org/10.1007/978-3-030-62469-9_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62469-9_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62468-2

  • Online ISBN: 978-3-030-62469-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics