Skip to main content

Anti-collision Device of DSTWR and SFKF Hybrid Positioning Vehicle

  • Conference paper
  • First Online:
Book cover Green Energy and Networking (GreeNets 2020)

Abstract

In order to suppress the hidden danger brought by the blind area of construction vehicles, a vehicle collision prevention device is designed. The realization method is introduced in the paper. Combined with DSTWR and SFKF algorithm, UWB detection technology is applied to achieve reliable ranging and positioning. It is found through one-to-many ranging experiment that the maximum static absolute error is 0.093 m, the average static error is 0.37 m, and the maximum static relative error is 0.0106; the maximum dynamic absolute error is 0.15 m, the average dynamic error is 0.073 m, and the maximum dynamic relative error is 0.0174. The positioning experiment shows that the maximum errors along the direction of the three axes are 0.17 m, 0.29 m, and 0.45 m, and the average position error of the node is about 0.241 m. The experimental results show that the proposed method satisfies the actual functional requirements, and can ensure stable detection with high speed and accuracy. The large error and track discontinuity under the action of motion and vibration factors can be effectively suppressed by the method, which has application value.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Angelis, G.D., Moschitta, A., Carbone, P.: Positioning techniques in indoor environments based on stochastic modeling of UWB round-trip-time measurements. IEEE Trans. Intell. Transp. Syst. 17(8), 2272–2281 (2016)

    Article  Google Scholar 

  2. Abdulrahman, A., et al.: Ultra wideband indoor positioning technologies: analysis and recent advances. Sensors 16(5), 1–36 (2016)

    Article  Google Scholar 

  3. Mikhaylov, K., Petäjäjärvi, J., Hämäläinen, M., Tikanmäki, A., Kohno, R.: Impact of IEEE 802.15.4 communication settings on performance in asynchronous two way UWB ranging. Int. J. Wirel. Inf. Netw. 24(2), 124–139 (2017). https://doi.org/10.1007/s10776-017-0340-9

  4. Luo, Q., Han, B.: Distance and Azimuth testing system based on ultrasonic and infrared detecting technology. Comput. Autom. Meas. Control. 13(4), 304–306+334 (2005)

    Google Scholar 

  5. Bartoletti, S., Giorgetti, A., Win, M.Z., Conti, A.: Blind selection of representative observations for sensor radar networks. IEEE Trans. Veh. Technol. 64(4), 1388–1400 (2015)

    Article  Google Scholar 

  6. Wang, D.Y., Zhao, C.F., Peng, J.Y., Li, M.: Error factors impact analysis of microwave range finder ranging accuracy. Electron. Meas. Technol. 4, 42–44 (2010)

    Google Scholar 

  7. Bartoletti, S., Dai, W., Conti, A., Win, M.Z.: A mathematical model for wideband ranging. IEEE J. Sel. Top. Sig. Process. 9(2), 216–228 (2015)

    Article  Google Scholar 

  8. Yu, H.L., Guo, A.H., Luo, W.: Method of ranging based on GPS positioning data. Electron. Meas. Technol. 7, 95–98 (2011)

    Google Scholar 

  9. Sangodoyin, S., Niranjan, S., Molisch, A.F.: A measurement-based model for outdoor near-ground ultrawideband channels. IEEE Trans. Antennas Propag. 64(2), 740–751 (2016)

    Article  MathSciNet  Google Scholar 

  10. Wang, L.X., Huang, Z.G., Zhao, Y.: Term design and analysis of user range accuracy in GPS navigation message. J. Nanjing Univ. Sci. Technol. 38(5), 620–625 (2014)

    Google Scholar 

  11. Zhao, X.M., Hui, F., Shi, X., Ma, J.Y., Yang, L.: Concept, architecture and challenging technologies of ubiquitous traffic information service system. J. Traffic Transp. Eng. 14(4), 105–115 (2014)

    Google Scholar 

  12. Movassaghi, S., Abolhasan, M., Lipman, J., Smith, D., Jamalipour, A.: Wireless body area networks: a survey. IEEE Commun. Surv. Tutor. 16(3), 1658–1686 (2014)

    Article  Google Scholar 

  13. Xu, H.T., Chen, B., Lv, Z.G.: Modulation technology and application prospects of UWB. Inf. Technol. 4, 175–178 (2011)

    Google Scholar 

  14. Wen, F., Wan, Q.: Time delay estimation based on entropy estimation. J. Electron. Sci. Technol. 11(3), 258–263 (2013)

    Google Scholar 

  15. Giorgetti, A., Chiani, M.: Time-of-arrival estimation based on information theoretic criteria. IEEE Trans. Sig. Process. 61(5–8), 1869–1879 (2013)

    Article  MathSciNet  Google Scholar 

  16. Wu, S., Li, J., Liu, S.: Single threshold optimization and a novel double threshold scheme for non-line-of-sight identification. Int. J. Commun. Syst. 27(10), 2156–2165 (2014)

    Article  Google Scholar 

  17. Fu, S.C., Li, Y.M., Zong, K., Zhang, M.J., Wu, M.: Accuracy analysis of UWB pose detection system for road-header. Chin. J. Sci. Instrument. 38(8), 1978–1987 (2017)

    Google Scholar 

  18. Han, Z., He, J., Geng, Y., Xu, C., Xu, L., Duan, S.: CRLB for TOA based near-ground swarm robotic localization. In: Ubiquitous Intelligence and Computing and 2015 IEEE 12th Intl Conf on Autonomic and Trusted Computing and 2015 IEEE 15th Intl Conf on Scalable Computing and Communications and Its Associated Workshops (UIC-ATC-ScalCom), pp. 1853–1858 (2015)

    Google Scholar 

  19. Liu, T., Xu, A.G., Sui, X.: Adaptive robust Kalman Filtering for UWB indoor positioning. Chin. J. Sens. Actuators 31(4), 678–686 (2018)

    Google Scholar 

  20. Peng, S., Chen, C., Shi, H., et al.: State of charge estimation of battery energy storage systems based on adaptive unscented Kalman Filter with a noise statistics estimator. IEEE Access 5, 13202–13212 (2017)

    Article  Google Scholar 

  21. Mao, K.J., Wu, J.B., Jin, H.B., Miao, C.Y., Xia, M., Chen, Q.Z.: Indoor localization algorithm for NLOS environment. Acta Electronica Sinica 44(5), 1174–1179 (2016)

    Google Scholar 

  22. Liu, T., Xu, A.G., Sui, X.: Application of UWB/INS combination in indoor navigation and positioning. Sci. Surv. Mapp. 41(12), 162–166 (2016)

    Google Scholar 

  23. Gao, W., Chen, G.: Integrated GNSS/INS navigation algorithms combining adaptive filter with neural network. Geomat. Inf. Sci. Wuhan Univ. 39(11), 1323–1328 (2014)

    Google Scholar 

  24. Taran, S., Nitnaware, D.: Performance evaluation of 802.15.3a UWB channel model with antipodal, orthogonal and DPSK modulation scheme. Int. J. Microw. Wirel. Technol. 6(1), 34–42 (2015)

    Google Scholar 

  25. Miao, Y.W., Zhou, W., Tian, L., et al.: Extended robust Calman filtering detection and its application based on innovation x ~ 2. Geomat. Inf. Sci. Wuhan Univ. 41(2), 269–273 (2016)

    Google Scholar 

  26. Kok, M., Hol, J.D., Schön, T.B.: Indoor positioning using ultrawideband and inertial measurements. IEEE Trans. Veh. Technol. 64(4), 1293–1303 (2015)

    Article  Google Scholar 

  27. Zhang, S., Pedersen, G.F.: Mutual coupling reduction for UWB MIMO antennas with a wideband neutralization line. IEEE Antennas Wirel. Propag. Lett. 15, 166–169 (2016)

    Article  Google Scholar 

  28. Ding, H., Liu, W., Huang, X., Zheng, L.: First path detection using rank test in IR UWB ranging with energy detection receiver under harsh environments. IEEE Commun. Lett. 17(4), 761–764 (2013)

    Article  Google Scholar 

  29. Yu, K., Dutkiewicz, E.: NLOS identification and mitigation for mobile tracking. IEEE Trans. Aerosp. Electron. Syst. 49(3), 1438–1452 (2013)

    Article  Google Scholar 

  30. Angelis, A.D., Dwivedi, S., Händel, P.: Characterization of a flexible UWB sensor for indoor localization. IEEE Trans. Instrum. Meas. 62(5), 905–913 (2013)

    Article  Google Scholar 

  31. Okamoto, E., Horiba, M., Nakashima, K., Shinohara, T., Matsumura, K.: Particle swarm optimization-based low-complexity three-dimensional UWB localization scheme. In: Sixth International Conference on Ubiquitous and Future Networks. pp. 120–124 (2014)

    Google Scholar 

  32. Ershadh, M.: Study of the design evolution of an antenna and its performance for UWB communications. Microw. Opt. Technol. Lett. 57(1), 81–84 (2015)

    Article  Google Scholar 

  33. Zhang, Z., Zhu, J., Ruan, J., Song, G.: Distance measurement for the indoor WSN nodes using WTR method. Int. J. Distrib. Sens. Netw. 1, 1–13 (2014)

    Google Scholar 

  34. Ojaroudi, N.: Compact UWB monopole antenna with enhanced bandwidth using rotated L-shaped slots and parasitic structures. Microw. Opt. Technol. Lett. 56(1), 175–178 (2014)

    Article  Google Scholar 

  35. Demir, U., Bas, C.U., Ergen, S.C.: Engine compartment UWB channel model for intravehicular wireless sensor networks. IEEE Trans. Veh. Technol. 63(6), 2497–2505 (2014)

    Article  Google Scholar 

  36. Richardson, P., Xiang, W., Shan, D.: UWB outdoor channel environments: analysis of experimental data collection and comparison to IEEE 802.l5.4a UWB channel model. Int. J. Ultra Wideband Commun. Syst. 3(1), 1–7 (2014)

    Google Scholar 

Download references

Acknowledgment

This work was supported by Harbin Science and Technology Innovation Talents Special Project (NO. 2017RAQXJ031); Heilongjiang Fundamental Research Foundation for the Local Universities in 2018 (2018KYYWF1189); Key project Task of Public Safety Risk Control and Emergency Technical Equipment of National Key R&D Program (NO. 2017YFC0805208); 2017 National Nature Fund, (NO. 51674109).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to AnHua Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, A., Ding, H., Wan, D. (2020). Anti-collision Device of DSTWR and SFKF Hybrid Positioning Vehicle. In: Jiang, X., Li, P. (eds) Green Energy and Networking. GreeNets 2020. Lecture Notes of the Institute for Computer Sciences, Social Informatics and Telecommunications Engineering, vol 333. Springer, Cham. https://doi.org/10.1007/978-3-030-62483-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62483-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62482-8

  • Online ISBN: 978-3-030-62483-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics