
ar
X

iv
:2

00
7.

00
67

7v
1

 [
qu

an
t-

ph
]

 1
 J

ul
 2

02
0

Dispelling Myths on Superposition Attacks:

Formal Security Model and Attack Analyses

Luka Music1, Céline Chevalier2, Elham Kashefi1,3

1 Département Informatique et Réseaux, CNRS, Sorbonne Université
2 Université Panthéon-Assas Paris 2

3 School of Informatics, University of Edinburgh

Abstract. With the emergence of quantum communication, it is of folk-
loric belief that the security of classical cryptographic protocols is au-
tomatically broken if the Adversary is allowed to perform superposition
queries and the honest players forced to perform actions coherently on
quantum states. Another widely held intuition is that enforcing measure-
ments on the exchanged messages is enough to protect protocols from
these attacks.
However, the reality is much more complex. Security models dealing
with superposition attacks only consider unconditional security. Con-
versely, security models considering computational security assume that
all supposedly classical messages are measured, which forbids by con-
struction the analysis of superposition attacks. To fill in the gap between
those models, Boneh and Zhandry have started to study the quantum
computational security for classical primitives in their seminal work at
Crypto’13, but only in the single-party setting. To the best of our knowl-
edge, an equivalent model in the multiparty setting is still missing.
In this work, we propose the first computational security model consid-
ering superposition attacks for multiparty protocols. We show that our
new security model is satisfiable by proving the security of the well-known
One-Time-Pad protocol and give an attack on a variant of the equally
reputable Yao Protocol for Secure Two-Party Computations. The post-
mortem of this attack reveals the precise points of failure, yielding highly
counter-intuitive results: Adding extra classical communication, which is
harmless for classical security, can make the protocol become subject
to superposition attacks. We use this newly imparted knowledge to con-
struct the first concrete protocol for Secure Two-Party Computation that
is resistant to superposition attacks. Our results show that there is no
straightforward answer to provide for either the vulnerabilities of classi-
cal protocols to superposition attacks or the adapted countermeasures.

1 Introduction

Recent advances in quantum technologies threaten the security of many widely-
deployed cryptographic primitives if we assume that the Adversary has classical
access to the primitive but can locally perform quantum computations. This sce-
nario has led to the emergence of post-quantum cryptography. But the situation is

http://arxiv.org/abs/2007.00677v1

even worse in the fully quantum scenario, if we assume the Adversary further has
quantum access to the primitive and can query the oracle with quantum states in
superposition. Such access can arise in the case where the Adversary has direct
access to the primitive that is being implemented (eg. symmetric encryption,
hash functions), or if a protocol is used as a sub-routine where the Adversary
plays all roles (as in the Fiat-Shamir transform based on Sigma Protocols) and
can therefore implement them all quantumly. In the future, various primitives
might natively be implemented on quantum machines and networks, either to
benefit from speed-ups or because the rest of the protocol is inherently quantum.
In this case, more information could be leaked, leading to new non-trivial at-
tacks, as presented in a series of work initiated in [DFNS14,BZ13,KLLNP16]. A
possible countermeasure against such superposition attacks is to forbid any kind
of quantum access to the oracle through measurements. However, the security
would then rely on the physical implementation of the measurement tool, which
itself could be potentially exploited by a quantum Adversary. Thus, providing
security guarantees in the fully quantum model is crucial. We focus here on the
multiparty (interactive) setting.

Analysis of Existing Security Models. Modelling the security of classical
protocols in a quantum world (especially multiparty protocols) is tricky, since
various arbitrages need to be made concerning the (quantum or classical) access
to channels and primitives.

A first possibility is to consider classical protocols embedded as quantum
protocols, thus allowing the existence of superposition attacks. However, in such
a setting, previous results only consider perfect security, meaning that the mes-
sages received by each player do not contain more information than its input and
output. The seminal papers starting this line of work are those proving the im-
possibility of bit commitment [Lo97,May97]. The perfect security of the protocol
implies that no additional information is stored in the auxiliary quantum regis-
ters of both parties at the end of the protocol and can therefore be traced out,
so that an Adversary can easily produce a superposition of inputs and outputs.

This is for example the approach of [DFNS14], and [SSS15], where the per-
fect correctness requirement is in fact a perfect (unconditional) security require-
ment (the protocol implements the functionality and only the functionality). In
[DFNS14], they consider an even more powerful adversarial scenario where not
only the honest player’s actions are described as unitaries (their inputs are also
in superposition) but the Adversary can corrupt parties in superposition (the
corruption is modelled as an oracle call whose input is a subset of parties and
which outputs the view of the corresponding parties). Both papers show that
protocols are insecure in such a setting: In [DFNS14], they show that in the
case of a multi-party protocol implementing a general functionality (capable of
computing any function), no Simulator can perfectly replicate the superposition
of views of the parties returned by the corruption oracle by using only an oracle
call to an Ideal Functionality. In the case of a deterministic functionality, they
give a necessary and sufficient condition for such a Simulator to exist, but which
cannot be efficiently verified and is not constructive. In [SSS15], they prove that

2

any non-trivial Ideal Functionalities that accept superposition queries (or, equiv-
alently, perfectly-secure protocols emulating them) must leak information to the
Adversary beyond what the classical functionality does (meaning that the Ad-
versary can do better than simply measure in the computational basis the state
that it receives from the superposition oracle). In both cases, they heavily rely
on the assumption of unconditional security to prove strong impossibility results
and their proof techniques cannot be applied to the computational setting.

The second possibility to model the security of classical protocols in a quan-
tum world is to define purely classical security models, in the sense that all sup-
posedly classical messages are measured (Stand-Alone Model of [HSS15] or the
Quantum UC Model of [Unr10]). Some (computationally) secure protocols exist
in this setting, as shown by a series of articles in the literature (eg. [LKHB17]).
However, these models forbid by construction the analysis of superposition at-
tacks, precisely since all classical communications are modelled as measurements.

The missing link. The results of [SSS15,DFNS14] in the unconditional security
setting are not directly applicable to a Computationally-Bounded Adversary.
The premiss to their analyses is that since the perfect execution of non-trivial
functionalities is insecure, any real protocol implementing these functionalities
is also insecure against Adversaries with quantum access (even more since they
are simply computationally secure). However it turns out that, precisely because
the protocol is only computationally-secure, the working registers of the parties
cannot be devoid of information as is the case in the perfectly-secure setting (the
messages contain exactly the same information as the secret inputs of the parties,
but it is hidden to computationally-bounded Adversaries) and the techniques
used for proving the insecurity of protocols in the perfect scenario no longer
work.

This issue has been partially solved for single-party protocols with oracle
queries in the line of work from [BZ13], but never extended fully to the multi-
party setting. The difficulty arises by the interactive property of such protocols.
Indeed, in a real protocol, more care needs to be taken in considering all the reg-
isters that both parties deal with during the execution (auxiliary qubits that can
be entangled due to the interactive nature of the protocols). Furthermore, care
must also be taken in how the various classical operations are modelled quan-
tumly, as choosing standard or minimal oracle representations may influence the
applicability of some attacks [KKVB02]. The naive implementation of superpo-
sition attacks, applied to a real-world protocol, often leads to a joint state of
the form

∑
x,m1,m2

|x〉 |m1〉 |m2〉 |f(x, y)〉 for a given value y of the honest player’s

input, and with the second register (containing the set of messages m1 sent by
the Adversary) being in the hands of the honest player (m2 is the set of messages
sent by the honest player and f(x, y) is the result for input x). This global state
does not allow the known attacks (such as [KLLNP16]) to go through as the
message registers cannot simply be discarded. This shows that the simple anal-
ysis of basic ideal primitives in the superposition attack setting is not sufficient
to conclude on the security of the overall computationally-secure protocol and

3

motivates the search for a framework for proving security of protocols against
such attacks.

Our Contributions. The main purpose of this paper is thus to bridge a gap
between two settings: one considers the security analysis of superposition at-
tacks, but either for perfect security [DFNS14,SSS15] (both works preclude the
existence of secure protocols by being too restrictive) or only for single-party
primitives with oracle access [BZ13], while the other explicitly forbids such at-
tacks by measuring classical messages [Unr10,HSS15]

To our knowledge, our result is the first attempt to formalise a security no-
tion capturing security of two-party protocols against superposition attacks with
computationally-bounded Adversaries as a simulation-based definition. We con-
sider a more realistic scenario where a computational Adversary corrupts a fixed
set of players at the beginning of the protocol and the input of the honest players
are fixed classical values. We suppose that the ideal world trusted third party
always measures its queries (it acts similarly to a classical participant), while
the honest player always performs actions in superposition unless specifically
instructed by the quantum embedding of the protocol (the Adversary and the
Simulator can do whatever they want). Security is then defined by considering
that an attack is successful if an Adversary is able to distinguish between the
real and ideal executions with non-vanishing probability. The reason for adding
a measurement to the functionality is to enforce that the (supposedly classical)
protocol behaves indeed as a classical functionality. This is further motivated
by the results of previous papers proving that functionalities with quantum be-
haviour are inherently broken.

Case Studies. We show that our proposed security model is satisfiable by proving
the superposition-resistance of the classical One-Time-Pad protocol for imple-
menting a Confidential Channel. Conversely, we also present an attack on a
slight variant of the Honest-but-Curious1 version of the classical Yao’s proto-
col [Yao86] for Secure Two-Party Computation. On the other hand, it is secure
against QPPT Adversaries (that have a quantum computer internally but send
classical messages), therefore showing a separation. The variant is presented to
demonstrate unusual and counter-intuitive reasons for which protocols may be
insecure against superposition attacks.

Proof Technique. During the superposition attack, the Adversary essentially
makes the honest player implement the oracle call in Deutsch-Jozsa’s (DJ) algo-
rithm [DJ92] through its actions on a superposition provided by the Adversary.
The binary function for which this oracle query is performed is linked to two
possible outputs of the protocol. The Adversary can then apply the rest of the
DJ algorithm to decide the nature of the function2, which allows it to extract

1 An Adversary is Honest-but-Curious if it acts honestly during the protocol but
performs arbitrary computations later to recover more information about the input
of the honest player.

2 The DJ algorithm decides whether a binary function is balanced or constant

4

the XOR of the two outputs. Similarly to the DJ algorithm where the state
containing the output of the oracle remains in the |−〉 state during the rest of
the algorithm (it is not acted upon by the gates applied after the oracle call),
the Adversary’s actions during the rest of the attack do not affect the output
register. Interestingly, this means that the attack can thus also be performed on
the same protocol but where the Adversary has no output.

Superposition-Secure Two-Party Computation. Counter-intuitively, it is there-
fore not the output that makes the attack possible, but in this case the attack
vector is a message consisting of information that, classically, the Adversary
should already have, along with a partial measurement on the part of the hon-
est player (which is even stranger considering that it is usually thought that
the easiest way to prevent superposition attack is to measure the state). This
shows that adding extra communication, even an exchange of classical infor-
mation which seems meaningless for classical security, can make the protocol
become subject to superposition attacks. Removing the point of failure by never
sending back this information to the Adversary (as is the case in the original
Yao Protocol) makes the protocol very similar in structure to the One-Time-Pad
Protocol, where one party sends everything to the other, who then simply ap-
plies local operations. The proof for the One-Time-Pad works by showing that
there is a violation of the no-signalling condition of quantum mechanics if the
Adversary is able to distinguish between ideal and real scenarios (if it were able
to gain any information, it would be solely from these local operations by the
honest player, which would imply that information has been transferred faster
than the speed of light). This technique can only be reused if the honest party in
Yao’s protocol does not give away the result of the measurement on its state (by
hiding the fact that it either succeeded in completing the protocol or aborted if
it is unable to do so correctly). We show that Yao’s protocol is secure against
superposition attacks if the (honest) Evaluator recovers the output and does not
divulge whether or not it has aborted.

Contribution Summary and Outline. After basic notations in Section 2:

– Section 3 gives a new security model for superposition attacks;
– Section 4 proves the security of a variant of Yao’s protocol against adversaries

exchanging classical messages;
– Section 5.1 demonstrates a superposition attack against this same proto-

col, applied in Appendix E to an Oblivious Transfer protocol with slightly
improved attack success probability;

– Section 5.2 builds a superposition-resistant version of Yao’s protocol by lever-
aging the knowledge acquired through the attack.

Open Questions. An interesting research direction would be to analyse what
functionalities (if any) can be implemented using the “insecure” ideal function-
alities with allowed superposition access described in [SSS15]. Since these func-
tionalities necessarily leak information, they can no longer be universal: if they

5

were, then it would be possible to construct non-leaky functionalities with pro-
tocols only making calls to these leaky functionalities. However, some limited
functionalities may also be useful, as exemplified by the biased coin-toss.

The security model presented in this paper does not support any kind of
composability, as can be shown with rather simple counter-examples. While it
would be ideal to have a simulation-based fully-composable framework for secu-
rity against superposition attacks, we leave this question open for now.

While we prove that Yao’s protocol is secure in our model if the Evalua-
tor does not reveal the outcome of the protocol, it would also be interesting to
analyse the consequence of removing the minimal oracle assumption from the
symmetric encryption scheme and instead use a traditional IND-CPA symmet-
ric encryption with the original Yao garbled table construction (therefore adding
an additional entangled quantum register). The Yao protocol has recently been
studied in [BDK+20] and found secure against Adversaries that do not have
superposition access to the honest party, under the assumption that the encryp-
tion scheme is pq-IND-CPA (the quantum Adversary does not make queries to
the encryption oracle in superposition but has access to a Quantum Random
Oracle).

Finally, this paper show that partial measurements by honest players are not
sufficient to prevent superposition attacks. It would be interesting to find the
minimum requirements for the security of protocols with superposition access
and measurements by honest parties so that they are as secure as classical pro-
tocols. This field of study has been somewhat initiated by the work of [Unr16]
with the collapsing property (measuring one message makes the other message
collapse to a classical value if it passes some form of verification), but the question
of whether there is a minimal amount of information that should be measured
to be superposition-secure remains open.

2 Preliminaries

All protocols will be two-party protocols (between parties P1 and P2). P1 will be
considered as the Adversary (written P ∗

1 when corrupted), while P2 is honest.
Although we consider purely classical protocol, in order to be able to execute su-
perposition attacks, both parties will have access to multiple quantum registers,
respectively denoted collectively X and Y.

All communications are considered as quantum unless specified and we call
quantum operations any completely positive and trace non-decreasing super-
operator acting on quantum registers (see [NC00] and Appendix A for more
details), with 1A being identity operator on register A.

The principle of superposition attacks is to consider that a player, otherwise
honestly behaving, performs all of its operations on quantum states rather than
on classical states. In fact, any classical operation defined as a binary circuit
with bit-strings as inputs can be transformed into a unitary operation that has
the same effect on each bit-string (now considered a basis state in the compu-
tational basis) as the original operation by using Toffoli gates. Although any

6

quantum computation can be turned into a unitary operation (using a large
enough ancillary quantum register to purify it), it may be that the honest player
may have to take a decision based on the value of its internal computations.
This is more naturally defined as a measurement, and therefore such operations
will be allowed but only when required by the protocol (in particular, when the
protocol branches out depending on the result of some computation being cor-
rect). The rest of the protocol (in the honest case) will be modelled as unitary
operations on the quantum registers of the players (see Appendix D.1.1 for the
precise description of the quantum embedding of a classical protocol).

There are two ways to represent a classical function f : {0, 1}n ← {0, 1}m
as a unitary operation. The most general way (called standard oracle of f) is
defined on basis state |x〉 |y〉 (where x ∈ {0, 1}n and y ∈ {0, 1}m) by Uf |x〉 |y〉 =
|x〉 |y ⊕ f(x)〉, where ⊕ corresponds to the bit-wise XOR operation. On the other
hand, if n = m and f is a permutation over {0, 1}n, then it is possible (although
in general inefficient) to represent f as a minimal oracle by Mf |x〉 = |f(x)〉.
Note that this representation is in general more powerful than the standard
representation of classical functions as quantum unitaries (see [KKVB02] for
more information).

The security parameter will be noted η throughout the paper (it is passed im-
plicitly as 1η to all participants in the protocol and we omit when unambiguous).
A function µ is negligible in η if, for every polynomial p, for η sufficiently large
it holds that µ(η) < 1

p(η) . For any positive integer N ∈ N, let [N] := {1, . . . , N}.
For any element X , #X corresponds to the number of parts in X (eg. size of a
string, number of qubits in a register). The special symbols Abort will be used
to indicate that a party in a protocol has aborted.

3 New Security Model for Superposition Attacks

General Protocol Model. We assume that the input of the honest player
is classical, meaning it is a pure state in the computational basis, unentangled
from the rest of the input state (which corresponds to the Adversary’s input).
This is in stark contrast with other papers considering superposition attacks
[SSS15,DFNS14] where the input of the honest players is always a uniform su-
perposition over all possible inputs. We also consider that the corrupted party is
chosen and fixed from the beginning of the protocol. We will often abuse notation
and consider the corrupted party and the Adversary as one entity.

The security of protocols will be defined using the real/ideal simulation
paradigm, adapted from the Stand-Alone Model of [HSS15]. The parties involved
are: an Environment Z, the parties participating in the protocol, a Real-World
Adversary A and an Ideal-World Adversary also called Simulator S that runs A
internally and interacts with an Ideal Functionality (that the protocol strives
to emulates). An execution of the protocol (in the real or ideal case) works as
follows:

7

1. The Environment Z produces the input y of P2, the auxiliary input state ρA
of the Adversary (containing an input for corrupted party P ∗

1 , possibly in
superposition).

2. The Adversary interacts with either the honest player performing the pro-
tocol or a Simulator with single-query access to an Ideal Functionality.

3. Based on its internal state, it outputs a bit corresponding to its guess about
whether the execution was real or ideal. If secure, no Adversary should be
able to distinguish with high probability the two scenarios.

Adversarial Model. To capture both the security against Adversaries with
and without superposition (so that we may compare both securities for a given
protocol), we parametrise the security Definition 2 below with a class of Ad-
versaries X. This class X can be either BQP or QPPT and the Simulator is of
the same class as the Adversary. A BQP machine is also called a polynomial
quantum Turing machine and recognises languages in the BQP class of complex-
ity [Chi93,NC00]. They can perform any polynomial-sized family of quantum
circuits and interact quantumly with other participants (by sending quantum
states which may or may not be in superposition). A QPPT machine on the
other hand is a classical machine which can perform the same computations as
a quantum computer (and therefore it is not required to terminate in classical
polynomial-time). More formally, no party interacting classically with a machine
should be able to distinguish whether it is a BQP or a QPPT machine. The for-
mal definition of complexity class BQP (and by extension of efficient quantum
machines) is given in Definition 6 [Chi93], while that of a QPPT machine [Unr10]
is given in Definition 7, both in Appendix B.1.

The case where both Adversary and Simulator are QPPT is called classical-
style security (as it is simply a weaker variant of Stand-Alone Security in the
usual sense of [HSS15]), while a protocol that remains secure when both are BQP
is said to be superposition-resistant. This allows us to demonstrate a separation
between Adversaries with and without superposition access (machines in QPPT

have the same computing power as BQP-machines but operate solely on classical
input and output data). Note that QPPT-machines can be seen as restricted
BQP-machines and so superposition-resistance implies classical-style security.

Quantifying Definition 2 over a subset of Adversaries in each class yields
flavours such as Honest-but-Curious or Malicious. The behaviour of an Honest-
but-Curious QPPT Adversary is the same as a classical Honest-but-Curious Ad-
versary during the protocol but it may use its quantum capabilities in the post-
processing phase of its attack. We define an extension of these Adversaries in
Definition 1: they are almost Honest-but-Curious in that there is an Honest-
but-Curious Adversary whose Simulator also works for the initial Adversary
(therefore satisfying the security Definition 2). This is required as the adversar-
ial behaviour of our attack is not strictly Honest-but-Curious when translated
to classical messages, but it does follow this new definition.

Definition 1 (Extended Honest-but-Curious Adversaries). Let Π be a
protocol that is secure according to Definition 2 against Honest-but-Curious

8

QPPT Adversaries. We say that an Adversary A is Extended Honest-but-Curious
if there exists an Honest-but-Curious Adversary A′ such that the associated Sim-
ulator S ′ satisfies Definition 2 for A if we allow it to output Abort when the
honest party would abort as well.

Ideal Functionality Behaviour and Formal Security Definition. This
section differs crucially from previous models of security. The Two-Party Com-
putation Ideal Functionality implementing a binary function f , formally defined
as Ideal Functionality 1 (Appendix B), takes as input a quantum state from
each party, measures it in the computational basis, applies the function f to
the classical measurement results and returns the classical inputs to each party
while one of them also receives the output. 3

While it can seem highly counter-intuitive to consider an ideal scenario where
a measurement is performed (since it is not present in the real scenario), this
measurement by the Ideal Functionality is necessary in order to have a mean-
ingful definition of security. It is only if the protocol with superposition access
behaves similarly to a classical protocol that it can be considered as resistant to
superposition attacks. It is therefore precisely because we wish to capture the
security against superposition attack, that we define the Ideal Functionality as
purely classical (hence the measurement). If the Ideal Adversary (a Simulator in-
teracting classically with the Ideal Functionality) and the Real Adversary (which
can interact in superposition with the honest player) are indistinguishable, only
then is the protocol superposition-secure.

Furthermore, as argued briefly in the Introduction, Ideal Functionalities which
do not measure the inputs of both parties when they receive them as they al-
ways allow superposition attacks, which then extract more information than the
classical case (as proven in [SSS15]). A superposition attack against a protocol
implementing such a functionality is therefore not considered an attack since it
is by definition a tolerated behaviour in the ideal scenario.

We can now give our security Definition 2. A protocol between parties P1

and P2 is said to securely compute two-party functions of a given set F against
corrupted party P ∗

1 if, for all functions f : {0, 1}nX ×{0, 1}nY −→ {0, 1}nZ with
f ∈ F, no Adversary controlling P ∗

1 can distinguish between the real and ideal
executions with high probability.

Definition 2 (Computational Security against Adversary Class X). Let
ǫ(η) = o(1) be a function of the security parameter η. Let f ∈ F be the function to
be computed by protocol Π between parties P1 and P2. We say that a protocol Π
ǫ(η)-securely emulates Ideal Functionality F computing functions from set F

against X-adversarial P ∗
1 (with X ∈ {QPPT,BQP}) if for all Adversaries A

in class X controlling the corrupted party P ∗
1 and all quantum polynomial-time

Environments Z, there exists a Simulator SP∗

1
in class X such that:

∣∣∣P
[
b = 0 | b← A

(
vA(SP∗

1
, ρA)

)]
− P

[
b = 0 | b← A

(
vA(P2, ρA)

)]∣∣∣ ≤ ǫ(η)
3 This is wlog. classically, see Appendix B and Section 5.2.

9

In the equation above, the variable vA(SP∗

1
, ρA) corresponds to the final state

(or view) of the Adversary in the ideal execution when interacting with Simula-
tor SP∗

1
with Ideal Functionality F and vA(P2, ρA) corresponds to the final state

of the Adversary when interacting with honest party P2 in the real protocol Π.
The probability is taken over all executions of protocol Π.

In the case where one party does not receive an output, it is possible to reduce
the security property to input-indistinguishability, defined below in Definition 3.

Definition 3 (Input-Indistinguishability). Let Π be protocol between par-
ties P1 and P2 with input space {0, 1}nY for P2. We say that the execution
of Π is ǫ-input-indistinguishable for P ∗

1 if there exists an ǫ(η) = o(1) such that,
for all computationally-bounded quantum Distinguishers D and any two inputs
y1, y2 ∈ {0, 1}nY :

∣∣∣P
[
b = 0 | b← D

(
vA(P2(y1), ρA)

)]
−P

[
b = 0 | b← D

(
vA(P2(y2), ρA)

)]∣∣∣ ≤ ǫ(η)

In the equation above, the variable vA(P2(yi), ρA) corresponds to the final state
of the Adversary when interacting with honest party P2 (with input yi) in the
real protocol Π. The probability is taken over all executions of protocol Π.

We can now state Lemma 1 (its proof can be found in Appendix B).

Lemma 1 (Input-Indistinguishability to Security). Let f ∈ F be the func-
tion to be computed by protocol Π between parties P1 and P2, where F is the set of
functions taking as input (x, y) ∈ {0, 1}nY ×{0, 1}nX and outputting z ∈ {0, 1}nZ

to P2 (and no output to P1). If the protocol is input-indistinguishable for adver-
sarial P ∗

1 in class X (Definition 3) then it is secure against adversarial P ∗
1 in

class X (Definition 2) with identical bounds.

Comments on the Security Model. We show that Definition 2 is achievable
by giving a proof that the Classical One-Time Pad is secure against superposi-
tion attacks (see Appendix B). In our security model, both the Adversary and
Simulator can have superpositions of states as input. The only differences is that,
if the Simulator chooses to send a state to the Ideal Functionality, it knows that
this third party will perform on it a measurement in the computational basis.
Note that in any security proof, the Simulator may choose not to perform the
call to the Ideal Functionality. This is because the security definition does not
force the Simulator to reproduce faithfully the output of the honest Client, as
the distinguishing is done only by the Adversary and not a global distinguisher
as in [HSS15]. This also means that sequential composability explicitly does not
hold with such a definition, even with the most basic functionalities (whereas
the Stand-Alone Framework of [HSS15] guarantees it). An interesting research
direction would be to find a composable framework for proving security against
superposition attacks and we leave this as an open question.

10

4 The Modified Honest-but-Curious Yao Protocol

In order to demonstrate the capabilities of our new model in the case of more
complex two-party scenarios, we will analyse the security of the well-known Yao
Protocol, the pioneer in Secure Two-Party Computation, against QPPT and
BQP Adversaries.

Its purpose is to allow two Parties, the Garbler and the Evaluator, to compute
a joint function on their two classical inputs. The Garbler starts by preparing
an encrypted version of the function and then the Evaluator decrypts it using
keys that correspond to the two players’ inputs, the resulting decrypted value
being the final output.

The Original Yao Protocol secure against Honest-but-Curious classical Ad-
versaries has first been described by Yao in the oral presentation for [Yao86], but
a rigorous formal proof was only presented in [LP04]. It has been proven secure
against quantum Adversaries with no superposition access to the honest player
in [BDK+20] (for a quantum version of IND-CPA that only allows random oracle
query to be in superposition).

We start by presenting informal definitions for symmetric encryption schemes
in Section 4.1(the formal definitions are presented in Appendix C.1). We then
present in Section 4.2 the garbled table construction which is the main building
block of Yao’s Protocol and give an informal description of the Original Yao Pro-
tocol. Then in Section 4.3 we give a description of a slight variant of the original
protocol, resulting in the Modified Yao Protocol. The proofs of correctness and
QPPT-security are given in Appendix C.2 and show that the modifications do not
make the protocol less secure in the classical case or against QPPT Adversaries,
but will make superposition attacks possible as presented in Section 5.

4.1 Definitions For Symmetric Encryption Schemes

An encryption scheme consists of two classical efficiently computable determinis-
tic functions Enc : K×A×M→ K×A×C and Dec : K×A×C→ K×A×M (where
K is the set of valid keys, A the set of auxiliary inputs,M the set of plaintext mes-
sages and C the set of ciphertexts, which is supposed equal to M). We suppose
that for all (k, aux,m) ∈ K×A×M, we have that Deck(aux,Enck(aux,m)) = m.

We will use a symmetric encryption scheme with slightly different properties
compared to the original protocol of [Yao86] or [LP04]. The purpose of these
modifications is to make it possible to later represent the action of the honest
player (the decryption of garbled values) using a minimal oracle representation
when embedded as a quantum protocol (as described in Lemma 4). We give
in Appendix C.1 sufficient conditions implying this definition and a concrete
instantiation of a symmetric encryption scheme that satisfies them.

Definition 4 (Minimal Oracle Representation). Let (Enc,Dec) be an en-
cryption scheme defined as above, we say that it has a Minimal Oracle Represen-
tation if there exists efficiently computable unitaries MEnc and MDec, called min-
imal oracles, such that for all k ∈ K, aux ∈ A and m ∈M, MEnc |k〉 |aux〉 |m〉 =

11

|eK(k)〉 |eA(aux)〉 |Enck(aux,m)〉 (in which case M
†
Enc

= MDec), where eK and eA
are efficiently invertible permutations of the key and auxiliary value.

The requirement above forces us to define the symmetric encryption scheme
as secure if it is a quantum-secure pseudo-random permutation. We give an infor-
mal definition, the formalised version can be found as Definition 12 in Appendix
C.1. For a discussion on this choice of security definitions, see Appendix D.1.3.

Definition 5 (Real-or-Permutation Security of Symmetric Encryption
(Informal)). A symmetric encryption scheme is said to be secure against quan-
tum Adversaries if the distinguishing advantage of a computationally-bounded
quantum Adversary in the following game is negligible in the security parameter:

1. The Challenger chooses either uniformly at random a permutation over the
plaintext message space M or samples a key uniformly at random from K.

2. For all encryption queries, the Adversary sends a state ρi of its choice to the
Challenger.

3. The Challenger responds by applying the minimal oracle defined in the first
step and sending the result back to the Adversary.

4. The Adversary guesses whether it interacted with the real encryption function
or a random permutation.

4.2 The Original Yao Protocol

The protocol will be presented in a hybrid model where both players have ac-
cess to a trusted third party implementing a 1-out-of-2 String Oblivious Transfer
(Ideal Functionality 2). The Garbler plays the role of the Sender of the OT while
the Evaluator is the Receiver. The attack presented further below does not rely
on an insecurity from the OT, which will be supposed to be perfectly imple-
mented and, as all Ideal Functionalities in this model, without superposition
access. As a consequence of the non-composability of our framework, replacing
an Ideal Functionality with a protocol that constructs it does not guarantee that
the global construction is secure. It deserves to be noted that our attack does
not rely on anything but the classical correctness of the Oblivious Transfer, so
this is not relevant to our study.

We focus on the case where the output is a single bit. Suppose that the
Garbler and Evaluator have agreed on the binary function to be evaluated f :
{0, 1}nX × {0, 1}nY −→ {0, 1}, with the Garbler’s input being x ∈ {0, 1}nX

and the Evaluator’s input being y ∈ {0, 1}nY . The protocol can be summarised
as follows. The Garbler G generates a garbled circuit GC f (defined below),

along with keys
{
kG,i0 , kG,i1

}
i∈[nX]

and
{
kE,i0 , kE,i1

}
i∈[nY]

for the Garbler’s and

Evaluator’s input respectively. To each bit of input correspond two keys, one
(lower-indexed with 0) if the player chooses the value 0 for this bit-input and
the other if it chooses the value 1. They invoke nY instances of a 1-out-of-2
String OT Ideal Functionality, the Evaluator’s input (as Receiver of the OT) to

these is yi for i ∈ [nY], while the Garbler inputs (as Sender) the keys (kE,i0 , kE,i1)

12

corresponding to input i of the Evaluator. The Evaluator therefore recovers
kE,iyi

at the end of each activation of the OT. The Garbler then sends the keys{
kG,ixi

}
i∈[nX]

corresponding to its own input along with the garbled circuit which

is constructed as follows.
Let (Enc,Dec) be a symmetric encryption scheme. To construct the garbled

table for a gate computing a two-bit function g, with inputs wires labelled a
and b and output wire z, the Garbler first chooses keys (ka0 , k

a
1 , k

b
0, k

b
1) ∈ K4

for the input wires and kz ∈ {0, 1} for the output4. Let auxa and auxb be two
auxiliary values for the encryption scheme. It then iterates over all possible values
ã, b̃ ∈ {0, 1} to compute the garbled table values Ek

z

ã,b̃
defined as (with padding

length p = nM − 1, where nM is the bit-length of the messages of the encryption
scheme and ‖ represents string concatenation):

Ek
z

ã,b̃
:= Encka

ã

(
auxa,Enckb

b̃

(auxb, g(ã, b̃)⊕ kz ‖ 0p)
)

The ordered list thus obtained is called the initial garbled table. The Garbler
then chooses a random permutation π ∈ S4 and applies it to this list, yielding
the final garbled table GT (a,b,z)

g . For gates with fan-in l, the only difference is

that the number of values in the table will be 2l, the rest may be computed in a
similar way (by iterating over all possible values of the function’s inputs). The
keys are always used in an fixed order which is known to both players at time of
execution (we suppose for example that, during encryption, all the keys of the
Evaluator are applied first, followed by the keys of the Garbler).

Finally, after receiving the keys (through the OT protocols for its own, and
via direct communication for the Garbler’s) and garbled table, the Evaluator
uses them to decrypt sequentially each entry of the table and considers it a
success if the last p bits are equal to 0 (except with probability negligible in p,
the decryption of a ciphertext with the wrong keys will not yield p bits set to 0,
see Lemma 1). It then returns the corresponding register to the Garbler.

4.3 Presentation of the Modified Yao Protocol

Differences with the Original Yao Protocol. There are four main differences be-
tween our Modified Yao Protocol 2 and the well-known protocol from [Yao86]
recalled above. The first two are trivially just as secure in the classical case (as
they give no more power to either player): the Garbler sends one copy of its keys
to the Evaluator for each entry in the garbled table and instructs it to use a
“fresh” copy for each decryption; and the Evaluator returns to the Garbler the
copy of the Garbler’s keys that were used in the successful decryption. Notice
also that there is only one garbled table for the whole function instead of a series
of garbled tables corresponding to gates in the function’s decomposition. This is
less efficient but no less secure than the original design in the classical case (and

4 The value kz is used to One-Time-Pad the outputs, preserving security for the Gar-
bler after decryption as only one value from the garbled table can be decrypted
correctly.

13

quantum case without superposition access), as a player breaking the scheme for
this configuration would only have more power if it has access to intermediate
keys as well. The last difference is the use of a weaker security assumption for
the symmetric encryption function (indistinguishability from a random permu-
tation instead of the quantum equivalents to IND-CPA security developed in
[BZ13,GHS16,MS16]). This lower security requirement is imposed in order to
model the honest player’s actions using the minimal oracle representation. This
property influences the security against an adversarial Evaluator, but Theorem 2
shows that this assumption is sufficient for security in our scenario. The reasons
for these modifications, related to our attack, are developed in Appendix D.1.3.

The full protocol for a single bit of output is described in Protocol 2. The
correctness and security againstQPPT-Adversaries of this Modified Yao Protocol
are captured by Theorems 1 and 2 (see Appendix C.2 for proofs), showing that
the modifications above have no impact against these Adversaries.

Theorem 1 (Correctness of the Modified Yao Protocol). Let (Enc,Dec)
be a symmetric encryption scheme with a Minimal Oracle Representation (Def-
inition 4). Protocol 2 is correct with probability exponentially close to 1 in η for
p = poly(η).

Theorem 2 (QPPT-Security of the Modified Yao Protocol). Consider a
hybrid execution where the Oblivious Transfer is handled by a classical trusted
third party. Let (Enc,Dec) be a symmetric encryption scheme that is ǫSym-
real-or-permutation-secure (Definition 12). Then Protocol 2 is perfectly-secure
against a QPPT adversarial Garbler (the Adversary’s advantage is 0) and (2nX+nY −
1)ǫSym-secure against QPPT adversarial Evaluator according to Definition 2.

5 Analysis of Yao’s Protocol with Superposition Access

Section 5.1 presents a superposition attack on the Modified Yao Protocol (Pro-
tocol 2). The formal version of the Attacks are found in Appendix D.1 and the
proofs of the accompanying Theorems in Appendix D.2. The attack is further op-
timised in Appendix E using the free-XOR technique, and applied to an instance
of Yao’s Protocol computing an Oblivious Transfer. Section 5.2 then analyses it
post-mortem to build a Superposition-Resistant Yao Protocol.

Note that this attack does not simply distinguish between the ideal and real
executions, but allows the Adversary to extract one bit of information from
the honest player’s input. It is therefore a concrete attack on the Modified Yao
Protocol 2 (as opposed to a weaker statement about not being able to perform
an indistinguishable simulation in our model).

5.1 Attacking the Modified Yao Protocol via Superpositions

In the following, the classical protocol is embedded in a quantum framework, all
message are stored in quantum registers as quantum states that can be in su-
perposition. The encryption and decryption procedures are performed using the

14

Minimal Oracle Representation from Definition 4. The OT Ideal Functionality 2
from Appendix B measures the inputs and outputs states in the computational
basis. The checks of the Evaluator on the padding for successful decryption are
modelled as a quantum measurement of the corresponding register.

We start by presenting the action of the adversarial Garbler during the exe-
cution of Protocol 2 (its later actions are described below). Its aim is to generate
a state containing a superposition of its inputs and the corresponding outputs for
a fixed value of the Evaluator’s input. This State Generation Procedure on the
Modified Yao Protocol 2 (Attack 1) can be summarised as follows (see Theorem
3 for its analysis):

1. The Adversary’s choice of keys, garbled table generation (but for both values
of kz) and actions in the OT are performed honestly.

2. Instead of sending one set of keys as its input, it sends a superposition of
keys for two different non-trivial values of the Garbler’s input (x̂0, x̂1) (they
do not uniquely determine the output).

3. For each value in the garbled table, it instead sends a uniform superposition
over all calculated values (with a phase of −1 for states representing garbled
values where kz = 1).

4. It then waits for the Evaluator to perform the decryption procedure and,
if the Evaluator succeeded in decrypting one of the garbled values and re-
turns the output and register containing the Garbler’s keys, the Adversary
performs a clean-up procedure which translates each key for bit-input 0 (re-
spectively 1) into a logical encoding of 0 (respectively 1). This procedure
depends only on its own choice of keys.

Theorem 3 (State Generation Analysis). The state contained in the Gar-
bler’s attack registers at the end of a successful Superposition Generation Proce-
dure (Attack 1) is negligibly close to 1

2

∑
x,kz

(−1)kz
∣∣xL

〉
|f(x, ŷ)⊕ kz〉, where xL is

a logical encoding of x and x ∈ {x̂0, x̂1}. Its success probability is lower bounded
by 1− e−1 for all values of nX and nY .

We show also in Appendix D.1 that, if U ŷf is the Standard Oracle applying

function f(·, ŷ) (ie. U ŷf |x〉 |kz〉 = |x〉 |f(x, ŷ)⊕ kz〉), then it is possible to generate

U ŷf |ψ〉 |φ〉 for any states |ψ〉 (over nX qubits) and |φ〉 (over one qubit) with
efficient classical descriptions by using the same technique.

We can now analyse the actions of the Adversary after the protocol has
terminated. The Full Attack 2 breaking the security of the Modified Yao Protocol
2 (Theorem 4, proof in Appendix D.2) can be summarised as follows:

1. The Environment provides the Adversary with the values of the Garbler’s
input (x̂0, x̂1). The input of the honest Evaluator is ŷ.

2. The Adversary performs the State Generation Procedure with these inputs.

3. If it has terminated successfully, the Adversary performs an additional clean-
up procedure (which only depends on the values of (x̂0, x̂1)) to change the

15

logical encoding of x̂b into an encoding of b. The resulting state is (omitting
this logical encoding, with bi := f(x̂i, ŷ) and up to a global phase):

1√
2

(
|0〉+ (−1)b0⊕b1 |1〉

)
⊗ |−〉

4. The Adversary applies the final steps of the DJ algorithm (after the appli-
cation of the oracle, see Appendix A) to recover the XOR of the output
values for the two inputs: it applies a Hadamard gate to its first register and
measures it in the computational basis.

Theorem 4 (Vulnerability to Superposition Attacks of the Modified
Yao Protocol). For any non-trivial two-party function f : {0, 1}nX×{0, 1}nY →
{0, 1}, let (x̂0, x̂1) be a pair of non-trivial values in {0, 1}nX . For all inputs ŷ of
honest Evaluator in Protocol 2, let PEf (ŷ) = f(x̂0, ŷ)⊕f(x̂1, ŷ). Then there exists
a real-world BQP Adversary A against Protocol 2 implementing f such that for
any BQP Simulator S, the advantage of the Adversary over the Simulator in
guessing the value of PEf (ŷ) is lower-bounded by 1

2 (1− e−1).

If the ideal and real executions were indistinguishable according to Defini-
tion 2, such a feat would be impossible for the Adversary since the Simulator
can at most access one value of the output through the Ideal Functionality.

Finally, the following lemma captures the fact that the previously described
Adversary does not break the Honest-but-Curious security of the Modified Yao
Protocol if it does not have superposition access (a fully-malicious one can triv-
ially break it), thereby demonstrating the separation between Adversaries with
and without superposition access (see Appendix D.1 for the proof).

Lemma 2 (Adversarial Behaviour Analysis). The QPPT-reduced ma-
chine (Definition 7) corresponding to the BQP Adversary described in Attack 2
is an Extended Honest-but-Curious Adversary (Definition 1).

5.2 Superposition-Resistant Yao Protocol

We can now analyse the crucial points where the security breaks down and
propose counter-measures. We notice that all actions of the Adversary only act
on the registers that contain its own keys (recall that the Evaluator sends back
the Garbler’s keys after a successful decryption) and have no effect on the output
register, which stays in the |−〉 state the whole time. It is thus unentangled
from the rest of the state and the attack on the protocol can therefore also be
performed if the Garbler has no output. As the security in this case still holds
for QPPT Adversaries via input-indistinguishability, it means that this security
property does not carry over from QPPT to BQP either.

Therefore, as counter-intuitive as it may seem, the precise point that makes
the attack possible is a seemingly innocuous message consisting of information
that the Adversary should (classically) already have, along with a partial mea-
surement on the part of the honest player (which is even stranger considering

16

that it is usually thought that the easiest way to prevent superposition attack
is to measure the state).

Not sending back this register to the Adversary (as in the Original Yao Pro-
tocol) makes the protocol structurally similar to the One-Time-Pad Protocol 1:
one party sends everything to the other, who then simply applies local opera-
tions. The proof for the One-Time-Pad works by showing that there is a violation
of the no-signalling condition if the Adversary is able to guess whether it is in
the real or ideal situation. This technique can be reused if the Evaluator does
not give away the result of the measurement on its state (by hiding the success
or failure of the garbled table decryption5). This Superposition-Resistant Yao
Protocol 3 and proof of Theorem 56 are described in Appendix D.3.

Theorem 5 (BQP-Security of Superposition-Resistant Yao Protocol).
The Superposition-Resistant Yao Protocol 3 is perfectly-secure against a BQP

adversarial Garbler according to Definition 2 in an OT-hybrid execution.

6 Conclusion

Our security model and the attack analysis performed in this paper lie com-
pletely outside of the existing models of security against superposition attacks.
They either consider the computational security of basic primitives or, for more
complex protocols with multiple interactions between distrustful parties, the pro-
tocols are all considered to be statistically-secure (and are therefore essentially
extensions of [May97]). This leads to many simplifications which have no equiva-
lent in the computational setting. We develop a novel security framework, based
on the simple premise that to be secure from superposition attacks means emu-
lating a purely classical functionality. We show that, given slight modifications
that preserves classical security, it is possible to show superposition attacks on
computationally-secure protocols. The intuition gained from the attack allows
us to build a computationally superposition-resistant protocol for Two-Party
Secure Function Evaluation, a task never achieved before.

Our results demonstrate once again the counter-intuitive nature of quantum
effects, regarding not only the vulnerability of real-world protocols to super-
position attacks (most would require heavy modifications for known attacks to
work), but also attack vectors and the optimal ways to counter them (as partial
measurements can even lead to attacks).

Acknowledgments

This work was supported in part by the French ANR project CryptiQ (ANR-
18-CE39-0015). We acknowledge support of the European Unions Horizon 2020
Research and Innovation Program under Grant Agreement No. 820445 (QIA).

5 This contradicts the remark in Appendix B.3 after Ideal Functionality 1 since the
proof works if there is no future communication between the two players.

6 As noted in Section 3, superposition-resistance implies classical-style security.

17

We would like to thank Michele Minelli, Marc Kaplan and Ehsan Ebrahimi for
fruitful discussions.

References

AR17. Gorjan Alagic and Alexander Russell. Quantum-secure symmetric-key
cryptography based on hidden shifts. In Jean-Sébastien Coron and Jes-
per Buus Nielsen, editors, Advances in Cryptology – EUROCRYPT 2017,
pages 65–93, Cham, 2017. Springer International Publishing.

ATTU16. Mayuresh Vivekanand Anand, Ehsan Ebrahimi Targhi, Gelo Noel Tabia,
and Dominique Unruh. Post-quantum security of the cbc, cfb, ofb, ctr,
and xts modes of operation. In Tsuyoshi Takagi, editor, Post-Quantum
Cryptography, pages 44–63, Cham, 2016. Springer International Publishing.

BDK+20. Niklas Büscher, Daniel Demmler, Nikolaos Karvelas, Stefan Katzenbeisser,
Juliane Krämer, Deevashwer Rathee, Thomas Schneider, and Patrick
Struck. Secure two-party computation in a post-quantum world. In 18th
International Conference on Applied Cryptography and Network Security
(ACNS’20), October 2020.

BNPS19. Xavier Bonnetain, Mara Naya-Plasencia, and Andr Schrottenloher. Quan-
tum security analysis of aes. IACR Transactions on Symmetric Cryptology,
2019(2):55–93, Jun. 2019.

BZ13. Dan Boneh and Mark Zhandry. Secure signatures and chosen ciphertext
security in a quantum computing world. In Ran Canetti and Juan A.
Garay, editors, Advances in Cryptology – CRYPTO 2013, pages 361–379,
Berlin, Heidelberg, 2013. Springer Berlin Heidelberg.

Chi93. A. Chi-Chih Yao. Quantum circuit complexity. In Proceedings of 1993
IEEE 34th Annual Foundations of Computer Science, pages 352–361, Nov
1993.

CMT13. Sandro Coretti, Ueli Maurer, and Björn Tackmann. Constructing confi-
dential channels from authenticated channels—public-key encryption re-
visited. In Kazue Sako and Palash Sarkar, editors, Advances in Cryptology
- ASIACRYPT 2013, pages 134–153, Berlin, Heidelberg, 2013. Springer
Berlin Heidelberg.

DFNS14. Ivan Damg̊ard, Jakob Funder, Jesper Buus Nielsen, and Louis Salvail. Su-
perposition attacks on cryptographic protocols. In Carles Padró, editor,
Information Theoretic Security, pages 142–161, Cham, 2014. Springer In-
ternational Publishing.

DFPR14. Vedran Dunjko, Joseph F. Fitzsimons, Christopher Portmann, and Re-
nato Renner. Composable security of delegated quantum computation. In
Palash Sarkar and Tetsu Iwata, editors, Advances in Cryptology – ASI-
ACRYPT 2014, pages 406–425, Berlin, Heidelberg, 2014. Springer Berlin
Heidelberg.

DJ92. David Deutsch and Richard Jozsa. Rapid solution of problems by quan-
tum computation. Proceedings of the Royal Society of London. Series A:
Mathematical and Physical Sciences, 439(1907):553–558, 1992.

DR02. Joan Daemen and Vincent Rijmen. Specification of Rijndael, pages 31–51.
Springer Berlin Heidelberg, Berlin, Heidelberg, 2002.

ER89. Phillippe H. Eberhard and Ronald R. Ross. Quantum field theory cannot
provide faster-than-light communication. Foundations of Physics Letters,
2(2):127–149, March 1989.

18

GGRW88. G. C. Ghirardi, R. Grassi, A. Rimini, and T. Weber. Experiments of the
EPR type involving CP-violation do not allow faster-than-light communi-
cation between distant observers. EPL (Europhysics Letters), 6:95, May
1988.

GHS16. Tommaso Gagliardoni, Andreas Hülsing, and Christian Schaffner. Seman-
tic security and indistinguishability in the quantum world. In Matthew
Robshaw and Jonathan Katz, editors, Advances in Cryptology – CRYPTO
2016, pages 60–89, Berlin, Heidelberg, 2016. Springer Berlin Heidelberg.

Gol04. Oded Goldreich. Pseudorandom Permutations, volume 1, pages 164–169.
Cambridge University Press, Cambridge, 2004.

HSS15. Sean Hallgren, Adam Smith, and Fang Song. Classical cryptographic pro-
tocols in a quantum world. International Journal of Quantum Information,
13(04):1550028, 2015.

KKVB02. Elham Kashefi, Adrian Kent, Vlatko Vedral, and Konrad Banaszek. Com-
parison of quantum oracles. Phys. Rev. A, 65:050304, May 2002.

KLLNP16. Marc Kaplan, Gaëtan Leurent, Anthony Leverrier, and Maŕıa Naya-
Plasencia. Breaking symmetric cryptosystems using quantum period
finding. In Annual International Cryptology Conference, pages 207–237.
Springer, 2016.

KM10. H. Kuwakado and M. Morii. Quantum distinguisher between the 3-round
feistel cipher and the random permutation. In 2010 IEEE International
Symposium on Information Theory, pages 2682–2685, June 2010.

KM12. H. Kuwakado and M. Morii. Security on the quantum-type even-mansour
cipher. In 2012 International Symposium on Information Theory and its
Applications, pages 312–316, Oct 2012.

KS08. Vladimir Kolesnikov and Thomas Schneider. Improved garbled circuit: Free
xor gates and applications. In Luca Aceto, Ivan Damg̊ard, Leslie Ann Gold-
berg, Magnús M. Halldórsson, Anna Ingólfsdóttir, and Igor Walukiewicz,
editors, Automata, Languages and Programming, pages 486–498, Berlin,
Heidelberg, 2008. Springer Berlin Heidelberg.

LKHB17. Momeng Liu, Juliane Krämer, Yu-pu Hu, and Johannes A. Buchmann.
Quantum security analysis of a lattice-based oblivious transfer protocol.
Frontiers Inf. Technol. Electron. Eng., 18(9):1348–1369, 2017.

Lo97. Hoi-Kwong Lo. Insecurity of quantum secure computations. Physical Re-
view A, 56(2):11541162, Aug 1997.

LP04. Yehuda Lindell and Benny Pinkas. A proof of yao’s protocol for secure two-
party computation. Cryptology ePrint Archive, Report 2004/175, 2004.
http://eprint.iacr.org/2004/175.

May97. Dominic Mayers. Unconditionally secure quantum bit commitment is im-
possible. Phys. Rev. Lett., 78:3414–3417, Apr 1997.

MS16. Shahram Mossayebi and Rdiger Schack. Concrete security against adver-
saries with quantum superposition access to encryption and decryption
oracles, 2016.

NC00. Michael A. Nielsen and Isaac L. Chuang. Quantum Computation and
Quantum Information. Cambridge University Press, 2000.

Por17. Christopher Portmann. Quantum authentication with key recycling. In
Advances in Cryptology – EUROCRYPT 2017, Proceedings, Part III, vol-
ume 10212 of Lecture Notes in Computer Science, pages 339–368. Springer,
2017. online arXiv:1610.03422.

19

SSS15. Louis Salvail, Christian Schaffner, and Miroslava Sotkov. Quantifying the
leakage of quantum protocols for classical two-party cryptography. Inter-
national Journal of Quantum Information, 13(04):1450041, 2015.

Unr10. Dominique Unruh. Universally composable quantum multi-party compu-
tation. In Henri Gilbert, editor, Advances in Cryptology – EUROCRYPT
2010, pages 486–505, Berlin, Heidelberg, 2010. Springer Berlin Heidelberg.

Unr16. Dominique Unruh. Computationally binding quantum commitments. In
Marc Fischlin and Jean-Sébastien Coron, editors, Advances in Cryptology
– EUROCRYPT 2016, pages 497–527, Berlin, Heidelberg, 2016. Springer
Berlin Heidelberg.

Yao86. Andrew Yao. How to generate and exchange secrets. In Foundations
of Computer Science, 1986., 27th Annual Symposium on, pages 162–167.
IEEE, 1986.

A Additional Quantum Notations

We give here a brief overview of quantum systems and a few basic operations
and refer to [NC00] for a more detailed presentation.

Any pure quantum state is represented by a vector |ψ〉 in a given Hilbert
space H, which in the simplest case is C2 for qubits (which will always be the
case in this paper). For n qubits, the joint system is given by C

2n = C
2⊗ . . .⊗C

2

for n subspaces, where ⊗ designates the tensor product of Hilbert spaces. We will
use the term quantum register in the same sense as a classical memory register
in a classical computer (as a way to reference specific qubits or subsystems).
For n qubits, we call computational basis the family of classical bit-string states
BC = {|x〉 | x ∈ {0, 1}n}. Let frm[o]−−A be the identity operation on quantum

register A. We write † for the conjugate transpose operation and 〈φ| = |φ〉†.
This in turn gives us the inner-product 〈φ|ψ〉 and projector |ψ〉〈ψ|.

More generally, if the quantum state is in pure state |φi〉 with probability pi
then the system is described as the density matrix ρ =

∑
i

pi |φi〉〈φi| (also called

mixed state). Let D(Q) be the set of all possible quantum states in a given
quantum register A: it is the set of all Hermitian mixed states with trace equal
to 1 and positive eigenvalues. In general, the input to a protocol is a mixed state
ρin ∈ D(X ⊗Y⊗W), whereW is an auxiliary register (the inputs are potentially
entangled to this reference register).

Unitaries acting on register Q are linear operations U such that U †U = 1Q.
On the other hand, a measurement on a quantum register Q is represented in the
simplest case (which will be sufficient here) by a complete set of orthogonal pro-
jectors {Pm} satisfying

∑
m

Pm = 1Q and PmP
′
m = δm,m′Pm, where δm,m′ is Kro-

necker’s delta. Then the probability of obtaining output m by the measurement
defined above on state |ψ〉 is given by p(m) = 〈ψ|Pm|ψ〉, the post-measurement

state is then Pm|ψ〉√
p(m)

.

Let L(A) be the set of linear mappings from A to itself. If E : L(A) →
L(B) is a completely positive and trace non-decreasing superoperator, it is called
quantum operation or CPTP-map. It can always be decomposed into unitaries

20

followed by measurements in the computational basis. For any quantum register
Q and any state ρQ is it always possible to define, given another sufficiently large
quantum system R, a pure state |φRQ〉 such that looking at the restriction of
the system to register Q (by tracing out R) gives ρQ. This technique is called
purification, the registerR is called the reference or ancillary register, and allows
to represent any CPTP-map as a unitary on a larger system.

We can now give some standard quantum operations used throughout the

paper. The Pauli X operator is defined as X =

(
0 1
1 0

)
(corresponding to a bit-

flip classically), while the CNOT gate (with the first qubit being the control) is
defined through CNOT |0〉 |φ〉 = |0〉 |φ〉 and CNOT |1〉 |φ〉 = |1〉X |φ〉 for any state

|φ〉. The Pauli Z operator is defined as Z =

(
1 0
0 −1

)
. A logical Hadamard gate

HL is defined by HL |0〉⊗L = |+L〉 = 1√
2

(
|0〉⊗L + |1〉⊗L

)
, HL |1〉⊗L = |−L〉 =

1√
2

(
|0〉⊗L−|1〉⊗L

)
(HL acts as identity on the remaining basis states). The state

|+L〉 is more commonly referred to as the |GHZL〉 state, and |−L〉 = Z1 |GHZL〉.
It is possible to represent any classical operation using a quantum implemen-

tation of the reversible classical Toffoli gate computing the function T (a, b, c) =
(a · b) ⊕ c where (⊕, ·) are defined in Z2. This can be defined as a unitary on
three qubits (any reversible classical gate is simply a permutation of the com-
putational basis states) and is universal for classical computations. Any binary
function f : {0, 1}n → {0, 1}m can therefore be implemented as a unitary Uf
defined on computational basis states |x〉 |y〉 (with x ∈ {0, 1}n and y ∈ {0, 1}m)
as Uf |x〉 |y〉 = |x〉 |y ⊕ f(x)〉 (called standard oracle of f).

Since our attack resembles in spirit the Deutsch-Jozsa algorithm, we recall
here the principle. The point of this algorithm is to solve the following promise
problem: given a function f outputting a single bit, determine whether it is
constant (the output bit is the same for all inputs) or balanced (half of the
inputs output 0 and the other half output 1). The DJ algorithm solves this
problem by using a single call to the standard oracle implementing the function
f (with probability 1). It works in the following way (for a single bit of input):

1. The player prepares two qubits in the |0〉 |1〉.
2. It applies a Hadamard gate to the two qubits.
3. It applies Uf with the second qubit receiving the output.
4. It applies a Hadamard to the first qubit.
5. It measures the first qubit in the computational basis and outputs the result.

This is represented as the following circuit:

|0〉 H
Uf

H ✌✌
✌

|1〉 H

A simple calculation gives that the state right before the application of the
last Hadamard on the first qubit is (with bi = f(i) for i ∈ {0, 1} in the case of
DJ for one input qubit):

21

1√
2

(
|0〉+ (−1)b0⊕b1 |1〉

)
⊗ |−〉

B Security Model: Auxiliary Definitions and Results

B.1 Quantum Machines and Complexity Classes

We first give the formal definition of the complexity class Bounded-Error Quan-
tum Polynomial Time [Chi93] (BQP). This is considered to be the class of lan-
guages efficiently accepted by quantum machines (ie. it is the quantum equiv-
alent of BPP), or equivalently the class of decision problems efficiently solvable
by quantum computers. By extension we use it to describe any efficient quan-
tum computation, regardless of whether it solves a problem in the complexity-
theoretic sense.

Definition 6 (Languages in BQP). We say that a language L is in BQP if
and only if there exists a polynomial-time uniform family of quantum circuits 7

{Qn | n ∈ N} such that:

– Qn takes n qubits as input and outputs a single classical bit.

– For all x ∈ L, P
[
b = 1 | b← Q#x(x)

]
≥ 2

3 .

– For all x /∈ L, P
[
b = 0 | b← Q#x(x)

]
≥ 2

3 .

We now give the formal definition of a Quantum-Strong Probabilistic Polynomial-
Time Machine (QPPT), taken from [Unr10].

Definition 7 (Quantum-Strong PPT Machine). A classical machine M is
said to be Quantum-Strong Probabilistic Polynomial-Time (or QPPT) if there
exists a quantum polynomial-time (or BQP) machine M̃ such that for any clas-
sical network N (as defined in the Universal Composability Framework), N ∪M
and N ∪ M̃ are perfectly indistinguishable. For a given BQP machine M , we de-
fine the QPPT-reduced machine MQPPT as the machine applying each round the
same unitaries as machine M to its internal registers but always measuring its
classical communication register in the computational basis after the application
of said unitary.

B.2 Proof of Lemma 1

We now give the proof of Lemma 1 stated on page 10.

7 There exists a polynomial-time deterministic Turing machine taking as input 1n for
n ∈ N and outputting a classical description of Qn.

22

Lemma 1 (Input-Indistinguishability to Security). Let f ∈ F be the func-
tion to be computed by protocol Π between parties P1 and P2, where F is the set of
functions taking as input (x, y) ∈ {0, 1}nY ×{0, 1}nX and outputting z ∈ {0, 1}nZ

to P2 (and no output to P1). If the protocol is input-indistinguishable for adver-
sarial P ∗

1 in class X (Definition 3) then it is secure against adversarial P ∗
1 in

class X (Definition 2) with identical bounds.

Proof (Input-Indistinguishability to Security (Lemma 1)).
If we suppose that the protocol is input-indistinguishable for a given class of

Adversaries X, then no computationally-bounded quantum Distinguisher (rep-
resented as a an efficient quantum machine acting on the state returned by the
Adversary) can distinguish between an execution with inputs y1 and y2. The
Simulator against an Adversary in class X then simply runs the protocol hon-
estly with a random input ỹ (it does not need to call the Ideal Functionality as
the adversarial player has no output). Therefore:

∣∣∣P
[
b = 0 | b← D

(
vA(P2(y), ρA)

)]
−P

[
b = 0 | b← D

(
vA(SP∗

1
(ỹ), ρA)

)]∣∣∣ ≤ ǫ(η)

Since this is the case for any efficient distinguisher, it also means that the
probability that the Adversary outputs a given bit as the guess for the real or
ideal execution is the same up to ǫ in both cases. Therefore the protocol is secure.

⊓⊔

B.3 Ideal Functionalities

We present here the Ideal Functionalities used throughout the paper, starting
with the Two-Party Computation Ideal Functionality 1 which Yao’s Protocol
implements.

Ideal Functionality 1 Two-Party Secure Function Evaluation.

– Public information: Binary function f : {0, 1}nX × {0, 1}nY −→ {0, 1}nZ to be
computed (where nX , respectively nY , is the size of the input of P1, respectively
P2, and nZ is the size of the output).

– Inputs: P1 has classical input x ∈ {0, 1}nX and P2 has classical input y ∈ {0, 1}nY .
– Computation by the trusted party:

1. If the trusted party receives an input which is inconsistent with the required
format (different input size) or Abort, it sends Abort to both parties. Otherwise,
let ρ̃in be the input state it received from P1 and P2.

2. The trusted party measures the parts of ρ̃in in registers X and Y in the com-
putational basis, let (x̃, ỹ) be the outcomes of the measurement.

3. The trusted party computes z̃ = f(x̃, ỹ) and sends (x̃, z̃) to P1 and ỹ to P2.

In the classical case, it is argued in [LP04] that it suffices without loss of
generality to describe the ideal functionality for functions where only one party

23

receives an output, in this case P1, via the following transformation: any function
inputs (x, y) and two outputs (w, z) to two parties can be transformed into a
function taking as input ((x, p, a, b), y) and outputting to a single party (w,α :=
z ⊕ p, β := a ⊙ α ⊕ b), where ⊕ and ⊙ are the addition and multiplication
operations in a well-chosen finite field (p serves as a perfect One-Time-Pad of
the output z and β serves as a perfect One-Time Message Authentication Code
of α). As shown in Section 5.2 this is not so clear in our model.

Then the 1-out-of-2 String Oblivious Transfer (Ideal Functionality 2), in
which one party (P1 in our case) has two strings (k0, k1) and the other (P2)
has a bit b ∈ {0, 1}. The output of P2 is the string kb (with no knowledge about
kb̄), while on the other hand P1 has no output and no knowledge about choice-bit
b. This Ideal Functionality is used by Yao’s Protocol to implement the previous
one.

Ideal Functionality 2 1-out-of-2 String OT.

– Inputs: P1 has as input (k0, k1) and P2 has as input b ∈ {0, 1}.
– Computation by the trusted party:

1. If the trusted party receives Abort or an incorrectly formatted input from either
party, it sends Abort to both parties and halts.

2. Otherwise, let (k̂0, k̂1) and b̂ be the inputs received. The Ideal Functionality

sends k̂b̂ to P2 and halts.

B.4 Superposition-Resistance of the Classical One-Time Pad

As a cryptographic “Hello World”, we prove that the classical One-Time-Pad
remains secure in our new model. The OTP (Protocol 1) uses a Key Distribu-
tion (Ideal Functionality 4, see [Por17]) for two parties to emulates a Confiden-
tial Channel (Ideal Functionality 3), which assures that only the length of the
message is leaked to the Eavesdropper but does not guarantee that it was not
tampered with (see also [DFPR14] and [CMT13]). The security of the classical
OTP Protocol against QPPT Adversaries is proven in [DFPR14].

Ideal Functionality 3 Confidential Channel.

– Inputs: The Sender has a message m ∈ {0, 1}n. The Receiver has no input and
the Eavesdropper has an auxiliary input ρaux.

– Computation by the trusted party: The Ideal Functionality sends n to the
Eavesdropper. If it has not received anything from the Eavesdropper, the trusted
party sendsm to the Receiver. Otherwise if it has received quantum state from ρaux
from the Eavesdropper over n qubits, it measures the state in the computational
basis. Let m̂ be the result of the measurement, it then sends m̂ it to the Receiver.

24

Ideal Functionality 4 Key Distribution.

– Inputs: Parties P1 and P2 have as input the size n of the key.
– Computation by the trusted party: It samples uniformly at random k ∈

{0, 1}n and sends k to P1 and P2.

Protocol 1 OTP Protocol.
Input:

– The Sender has a message m ∈ {0, 1}n.
– The Receiver has as input the size of the message.
– The Eavesdropper has an auxiliary input ρaux.

The Protocol:

1. The Sender and Receiver call the Key Distribution Ideal Functionality on input
n and receive a key k of size n.

2. The Sender computes y = m⊕k (where ⊕ corresponds to an bit-wise XOR) and
sends it to the Eavesdropper.

3. The Eavesdropper sends a message ŷ to the Receiver.
4. The Receiver compute m̂ = ŷ ⊕ k

Wewill now prove the security of the protocol against malicious BQP Receiver
(with superposition access), as captured by the following Lemma 3.

Lemma 3 (Security of One-Time-Pad against Adversaries with Su-
perposition Access). Protocol 1 is superposition-resistant against a malicious
Eavesdropper with advantage ǫ = 0 (ie. it satisfies Definition 2 against BQP

Adversaries).

Proof. We start by defining the quantum equivalent of all operations in Protocol
1. The initial message is represented as a quantum register containing |m〉. The
call to the Key Distribution Ideal Functionality yields a quantum register for
both parties containing a state |k〉 in the computational basis. The bit-wise
XOR is applied using CNOT gates where the key corresponds to the control.
The definition of the CNOT gate implies that if the control is in a computational
basis state, it remains unentangled from the rest of the state after application of
the gate. The state is then sent to the Eavesdropper. It can perform any CPTP
map on the state |y〉 ⊗ ρaux ⊗ |0⊗n〉 and send the last register to the Receiver.
The Receiver applies the XOR using CNOT gates with its key as control.

The Eavesdropper has no output in this protocol. As stated in Lemma 1, it
would be sufficient to show that two executions with different inputs are indis-
tinguishable. However we will now describe the Simulator for clarity. It receives
the size of the message n from the Confidential Channel Ideal Functionality. It
chooses uniformly at random a value ỹ ∈ {0, 1}n and sends |ỹ〉 to the Eavesdrop-
per. It receives in return a state ρ on n qubits and sends it to the Confidential

25

Channel Ideal Functionality (which then measures the state in the computational
basis).

Before the message sent by the Adversary, the protocol is equivalent to its
classical execution, so the Adversary has no additional advantage compared to
the classical execution (which is perfectly secure). The only advantage possibly
obtained by the Adversary compared to a fully classical one comes from the
state that it sent to the Receiver (repsectively Simulator) and the application
by the Receiver of an operation dependent on its secret key (respectively a
measurement in the computational basis by the Ideal Functionality). It is a
well known fact (No-Communication Theorem of quantum information) that
the Adversary obtaining any bit of information with probability higher than 0
via this method (using only local operation on the Receiver’s side or by the
Ideal Functionality) would violate the no-signalling principle [GGRW88,ER89],
therefore the distinguishing advantage of the Adversary between the real and
ideal executions is 0, thereby concluding the proof.

⊓⊔

C Formal Modified Yao Protocol

C.1 Formal Definitions for Symmetric Encryption Schemes

Protocol 2 (given on page 31) uses a symmetric encryption scheme as a primitive.
We give here the definitions of the properties required from such a scheme for
the correctness and security of the protocol. Recall that such a scheme is defined
as two classical efficiently computable deterministic functions (Enc,Dec) over K,
A, M and C. For simplicity we will suppose that the key-generation algorithm
simply samples the key uniformly at random from the set of valid keys.

C.1.1 Security and Superposition-Compatibility of Symmetric En-
cryption. The encryption scheme must satisfy the following properties in order
to behave well when called on superpositions of inputs (so that they may be
represented as minimal oracles, shown by Lemma 4). The first of those is that
the encryption and decryption functions are perfect inverses of each other.

Definition 8 (Correctness). An encryption scheme (Enc,Dec) as defined above
is said to be correct if, for all keys k ∈ K and auxiliary input aux ∈ A,
Deck(aux, ·) ◦ Enck(aux, ·) = IdM where ◦ is the composition of functions and
IdM is the identity function over set M.

It is also necessary that the plaintexts and ciphertexts belong to the same
set.

Definition 9 (Format-Preserving Encryption). An encryption scheme (Enc,Dec)
defined as above is said to be format-preserving if M = C.

The encryption scheme is called in-place if no additional memory is required
for performing encryptions and decryptions.

26

Definition 10 (In-Place Permutations).
A permutation σ over set X is said to be in-place if it can be computed effi-

ciently using exactly the memory registers storing x using reversible operations.

Finally, the encryption scheme is called non-mixing if the registers containing
the key and auxiliary value are not modified in a way that depends on anything
other than themselves. In another sense, the only mixing that is allowed is when
modifying the message register during the encryption and decryption process.

Definition 11 (Non-Mixing Encryption Scheme). Let (k′, aux′, c) = Enck(aux,m)
be the contents of the three memory registers at the end of the in-place encryp-
tion algorithm under key k (transformed into k′ by the end of the encryption),
where m is the message encrypted into ciphertext c, aux is the auxiliary value
and aux′ is the content of the auxiliary register at the end of the encryption. The
encryption scheme is said to be non-mixing if there exists two in-place permu-
tations eK : K → K and eA : A → A such that k′ = eK(k) and aux′ = eA(aux)
(and similarly for the decryption algorithm with functions dK and dA).

The function corresponding to the key may represent the key-expansion phase
which is often present in symmetric encryption schemes (in which case eK and dK
are injective functions from K to a larger space, but the same results apply), while
the one linked to the auxiliary value may be the updating of an initialisation
value used in a block cipher mode of operation.

These four previous definitions ensure that the encryption and decryption
algorithms can be represented as unitaries when acting on quantum systems
without the use of ancillae (which is usual way of transforming a classical function
into a quantum operation).

Lemma 4 (Sufficient Conditions for Minimal Oracle Representation).
Let (Enc,Dec) be a correct, format-preserving, in-place and non-mixing encryp-
tion scheme defined as above (satisfying Definitions 8 through 11). Then is has
a Minimal Oracle Representation according to Definition 4. Furthermore for all

superpositions |φ〉 = ∑
m∈M

αm |m〉 (where
∣∣∣φ̃
〉

is the same superposition over

encrypted values):

MEnc |k〉 |aux〉 |φ〉 = |eK(k)〉 |eA(aux)〉
∣∣∣φ̃
〉

Proof. The encryption scheme is correct and format preserving, which implies
that, for every key k ∈ K and any value aux ∈ A, the functions Enck and
Deck are permutations of M. In the case of a non-mixing encryption scheme, the
functions eK and eA are also invertible and so the overall scheme is a permutation
over K×A×M. Any such classical permutations can be represented as minimal
oracles: given a permutation σ over a set X it is always possible, although costly,
to compute σ(x) for all x ∈ X and define the minimal oracle Mσ by its matrix
elements (Mσ[x][σ(x)] = 1 and 0 everywhere else).

The efficiency of the scheme lies in the fact that all these permutations are
in-place, meaning that they can each be computed without using additional

27

memory and using only reversible operations even in the classical case. The
classical reversible operations can easily be implemented using unitaries (mainly
X, CNOT and Toffoli gates) and so the classical efficiency directly translates to
the quantum case.

Finally, since the functions eK and eA do not depend on the message being
encrypted (or decrypted in the case of dK and dA), they remain unentangled
from the message register if they were in a basis state prior to the application
of the minimal oracle.

⊓⊔

The last definition below presents the security of the encryption scheme.
In the following, the key-space, auxiliary-space and message-space are fixed to
K = {0, 1}nK , A = {0, 1}nA and M = {0, 1}nM for some nK(η), nA(η) and
nM (η) > nK(η) (mainly for simplicity of presentation, the ideas transpose to
other sets). We define the quantum security of such a symmetric encryption
scheme by imposing that sampling the key and giving a black-box access to
an encryption quantum oracle is indistinguishable for a quantum Adversary
from giving it superposition access to a random permutation. This is simply a
quantum game-based version of the definition for pseudo-random permutations
[Gol04].

Definition 12 (Real-or-Permutation Security of Symmetric Encryp-
tion). Let (Enc,Dec) be a symmetric encryption scheme with Minimal Oracle
Representation. Let SnM

be the set of permutations over {0, 1}nM . Consider the
following game Γ between a Challenger and the Adversary:

1. The Challenger chooses uniformly at random a bit b ∈ {0, 1} and:
– If b = 0, it samples a key k ∈ {0, 1}nK uniformly at random, and sets the

oracle O by defining it over the computational basis states |aux〉 |m〉 for
m ∈ {0, 1}nM and aux ∈ {0, 1}nA as O |aux〉 |m〉 = UEnc |k〉 |aux〉 |m〉 =
|k〉 |eA(aux)〉 |Enck(aux,m)〉 (the oracle first applies the minimal encryp-
tion oracle MEnc and then the inverse of dK to the register containing
the key).

– If b = 1, it samples a permutation over {0, 1}nM uniformly at random
σ ∈ SnM

and sets the oracle O as O |aux〉 |m〉 = Uσ,eA |aux〉 |m〉 =
|eA(aux)〉 |σ(m)〉.

2. For i ≤ q with q = poly(η), the Adversary sends a state ρi of its choice (com-
posed of nM qubits) to the Challenger. The Challenger responds by sampling
an auxiliary value at random auxi ∈ {0, 1}nA, applying the oracle to the
state |auxi〉 ⊗ ρi and sending the result back to the Adversary along with the
modified auxiliary value (notice that the oracle has no effect on the key if
there is one and so it remains unentangled from the Adversary’s system).

3. The Adversary outputs a bit b̃ and stops.

A symmetric encryption scheme is said to be secure against quantum Adver-
saries if there exists ǫ(η) negligible in η such that, for any BQP -Adversary A
with initial auxiliary state ρaux :

28

AdvΓ (A) :=
∣∣∣∣
1

2
− P

[
b = b̃ | b̃← A(ρaux , Γ)

]∣∣∣∣ ≤ ǫ(η)

We show below how to instantiate an encryption scheme satisfying these
definitions.

C.1.2 Instantiating the Symmetric Encryption Scheme. In a sense, the
perfect (but inefficient) symmetric encryption is given by associating each key
k ∈ [nM !] to a different permutation from SnM

in a canonical way (sampling
the key is then equivalent to sampling the permutation). The encryption scheme
that is used in the protocol may even be considered to be exactly this perfect
encryption scheme since the superposition attack does not use the specifics of
the underlying encryption scheme, or even supposes a negligible advantage in
breaking the encryption scheme (it simply requires it to have a Minimal Oracle
Representation).

Note however that a large number of symmetric encryption schemes can be
made to fit these conditions. For example, the most widely used block-cipher
AES [DR02] operates by performing during a certain number of rounds N the
following process (the message consists of one block of 128 bits, presented a
four-by-four square matrix with 8 bits in each cell):

1. It applies a round key (different for each round) by XORing it into the
message-block.

2. It applies to each cell a fixed permutation S : Z8 ← Z8 over 8 bits.
3. Each row i is shifted cyclically by i places to the left (the indices start at 0).
4. Each column is multiplied by a fixed invertible matrix.

This is clearly a permutation of the message block which is also in-place and
non-mixing if implemented without optimisations (note that there is no auxiliary
value apart from the invertible matrix and the key remains unchanged during
the rounds). The security of AES is well studied classically and cryptanalysis has
been performed recently in the quantum setting in [BNPS19] (albeit not against
Adversaries with superposition access).

The only place where the AES cipher is not in-place is during the key-
derivation phase, during which the round keys are generated. The simple way to
fix this is to make the register containing the original key large enough to contain
the expanded key as well and initialise the additional qubits in the |0〉 state. The
operation producing the larger key from the initial key then corresponds to the
functions eK and dK from Definition 11 (as mentioned in the remark below the
definition, these can then be injective only without changing the result).

If the message to be encrypted is longer than a block, it can easily be extended
by using the CBC operation mode, which is secure under the assumption that
the underlying block-cipher is a quantum-secure pseudo-random permutation
(based on the security analysis of [ATTU16]). In this mode, the Initialisation
Value (or IV) is a uniformly random string of the same size as the blocks upon

29

which the block-cipher operates (it corresponds to the auxiliary value discussed
previously). The encryption of the CBC mode operates by applying the function
ci = Enck(mi⊕ ci−1) for all i, where mi is the message block of index i and ci is
the corresponding ciphertext (with the convention that c0 = IV), and Enc is the
encryption algorithm of the underlying block-cipher. Conversely the decryption
is given by mi = ci−1 ⊕Deck(ci) with the same conventions. This is also clearly
in-place and non-mixing (the IV and key are never modified so eA = dA = IdA
and eK = dK = IdK) as well as secure.

However, as mentioned above, the CBC mode of operation is only secure with
superposition access under the assumption that the underlying block-cipher is
also secure against Adversaries with superposition access. To our knowledge, no
block-ciphers have been proven secure under this type of access (and some have
been broken, such as the 3-round Feistel cipher in [KM10] and the Even-Mansour
cipher in [KM12], although both were patched in [AR17] based on the Hidden
Shift Problem). The CTR mode of operation on the other hand has been proven
quantum-secure in [ATTU16] even if the underlying block-cipher is only secure
against quantum Adversaries with classical access (which, as mentionned above,
has been done in [BNPS19] for AES). This mode also satisfies all the require-
ments stated in the definitions above with only a slight modification. The IV
in this mode is also initialised to a uniformly random value of the same size the
blocks to be encrypted. The IV is encrypted with the key and XORed to the
first block, then the IV in incremented and the same process is repeated for the
subsequent blocks. This means that the IV needs to be copied (it can be done
quantumly using a CNOT gate but it is then no longer in-place). In order to
be in-place and non-mixing, the following procedure may be applied instead for
each block (with IV being the register containing the IV and Bi the register
containing block at position i, with ← being used for the assignment operator
and Inc corresponding to the incrementation operator):

1. IV ← Enck(IV)
2. Bi ← Bi ⊕ IV
3. IV ← Deck(IV)
4. IV ← Inc(IV)
The overall result is that the value contained in the IV has only been updates

by incrementing it as many times as there are blocks nb to be encrypted and
therefore the function eA = dA = Inc

◦nb only acts on the auxiliary value IV .
Note that these methods work for messages whose length is a multiple of the

block-size, but can be further extended by using a correctly chosen padding.

C.2 Description, Correctness and QPPT-Security of the Modified
Yao Protocol

We first present in Protocol 2 the formal version of our Modified Yao Protocol
for a single bit of output.

We then give the proofs of correctness (Theorem 1) and QPPT-security (The-
orem 2) of Protocol 2 against adversarial Honest-but-Curious Sender and Re-

30

Protocol 2 Modified Yao Protocol for One Output Bit.

Input: The Garbler and Evaluator have inputs x ∈ {0, 1}nX and y ∈ {0, 1}nY

respectively.
Output: The Garbler has one bit of output, the Evaluator has no output.
Public Information: The function f to be evaluated, the encryption scheme
(Enc,Dec) and the size of the padding p.
The Protocol:

1. The Garbler chooses uniformly at random the values{
k
G,1
0 , k

G,1
1 , . . . , k

G,nX
0 , k

G,nX
1

}
,

{
k
E,1
0 , k

E,1
1 , . . . , k

E,nY
0 , k

E,nY
1

}
from K and

kz ∈ {0, 1}. It uses those values to compute the garbled table GT
(X,Y,Z)
f , with

X being the set of wires for the Garbler’s input, Y the set of wires for the
evaluators input, and Z the output wire.

2. The Garbler and Evaluator perform nY interactions with the trusted third party
performing the OT Ideal Functionality. In interaction i:
– The Garbler’s inputs are the keys (kE,i

0 , k
E,i
1).

– The Evaluator’s input is yi.
– The Evaluator’s output is the key kE,i

yi
.

3. The Garbler sends the garbled table GT
(X,Y,Z)
f and 2nX+nY copies of the

keys corresponding to its input
{
kG,1
xi

}
i∈[nX]

. It also sends the auxiliary values

{auxi}i∈[nX+nY] that were used for the encryption of the garbled values.
4. For each entry in the garbled table:

(a) The Evaluator uses the next “fresh” copy of the keys supplied by the Garbler
along with the keys that it received from the OT Ideal Functionality to
decrypt the entry in the garbled table.

(b) It checks that the last p bits of the decrypted value are all equal to 0. If so
it returns the register containing the output value and the ones containing
the Garbler’s keys to the Garbler.

(c) Otherwise it discards this “used” copy of the keys and repeats the process
with the next entry in the garbled table. If this was the last entry it outputs
Abort and halts.

5. If the Evaluator did no output Abort, the Garbler applies the One-Time-Pad
defined by the key associated with wire z to decrypt the output: if kz = 1, it
flips the corresponding output bit, otherwise it does nothing. It then sets the bit
in the output register as its output.

ceiver (as defined in our new model through Definition 2). The modifications to
the original protocol therefore do not impact security against classical or QPPT
Adversaries.

C.2.1 Proof of Correctness of Protocol 2

Theorem 1 (Protocol Correctness). Let (Enc,Dec) be a symmetric encryp-
tion scheme with a Minimal Oracle Representation (Definition 4). Protocol 2 is
correct with probability exponentially close to 1 in η for p = poly(η).

Proof (Correctness of Yao’s Protocol (Theorem 1)). We suppose here that both
players are honest. Note that the protocol will only fail if one decryption which

31

should have been incorrectly decrypted is instead decrypted as valid. The pa-
rameter p must be chosen such that the probability of failure is negligible (in the
security parameter in this instance). If at least one of the keys used in decrypting
an entry in the garbled table does not correspond to the key used in encrypting
it, the encryption and decryption procedure is equivalent to applying a random
permutation on r ‖ 0p for uniformly random r (up to negligible probability in
η that the encryption scheme is distinguishable from a random permutation).
The probability that the resulting element also has p bits equal to 0 at the end
is therefore 2−p.

For p = poly(η), we show that the failure probability corresponding to one
such event happening across any possible “wrong” decryption is negligible in
η. In fact, there are 2nX+nY +1 ciphertexts (counting both possibilities for kz)
and 2nX+nY possible input key combinations, all but one being wrong for each
ciphertext. This results in 2nX+nY +1(2nX+nY −1) ≈ 22nX+2nY +1 random values
being potentially generated through incorrect decryption. The probability that
none of these random values has the string 0p as suffix (let Good be the associated
event) is given by:

P[Good] ≈
(
1− 2−p

)22nX+2nY +1

≈ 1− 2−p · 22nX+2nY +1

The first approximation comes from the aforementioned negligible probability
that the encryption scheme is not a random permutation while the second stems
from p≫ nX+nY . This probability should be negligibly close to 1 in η, in which
case setting p = η + 2(nX + nY) is sufficient.

⊓⊔

C.2.2 Proof of QPPT-Security of Protocol 2

Theorem 2 (QPPT-Security of Yao’s Protocol). Consider a hybrid execu-
tion where the Oblivious Transfer is handled by a classical trusted third party. Let
(Enc,Dec) be a symmetric encryption scheme that is ǫSym-real-or-permutation-
secure (Definition 12). Then Protocol 2 is perfectly-secure against a QPPT ad-
versarial Garbler (the Adversary’s advantage is 0) and (2nX+nY −1)ǫSym-secure
against QPPT adversarial Evaluator according to Definition 2.

Proof (QPPT-Security of Yao’s Protocol (Theorem 2)).
In both cases (adversarial Garbler and Evaluator) we will construct a Sim-

ulator that runs the Adversary against the real protocol internally and show
that the Adversary’s advantage in distinguishing the real and ideal executions is
negligible. First note that by the definition of the QPPT Adversary, there exists
a BQP machine such that the two are indistinguishable in any network, meaning
in particular in a classical network. This implies that the machine always sends
and receives messages in the computational basis when in a quantum network.

Security against QPPT Garbler. The Simulator works as follows:

1. During each OT, it performs the same interaction as an honest player would,
but with a random value for the input ỹi of each OT.

32

2. The Adversary’s machine then necessarily sends the Garbler’s keys and the
circuit in the computational basis.

3. This automatically fixes the value of the Adversary’s input x̂ (the Adversary
being Honest-but-Curious, it has generated the keys correctly and sent the
keys corresponding to its input). The Simulator can therefore measure the
register containing the input of the Garbler to recover x̂.

4. The Simulator then sends x̂ to the Ideal Functionality computing the func-
tion f and gets f(x̂, ŷ) (for the actual value of the honest player’s input
ŷ).

5. The Simulator can compute the value f(x̂, ỹ) and decrypt the garbled table
values to recover f(x̂, ỹ)⊕ kz using the keys that were giving to it through
the OTs (for its “fake” input ỹ). It uses both values to recover kz.

6. The Simulator then computes f(x̂, ŷ) ⊕ kz and sends this value to the Ad-
versary.

The only advantage of the Adversary in the real protocol compared to this
ideal execution stems from its potential usage of the execution of the OT pro-
tocols for distinguishing the real and ideal world. This execution is ideal in the
hybrid model and so the advantage of the Adversary is 0.

Security against QPPT Evaluator. The messages sent to the adversarial Evalu-
ator consist of nY instances of OTs, 2nX+nY garbled table entries and the keys
corresponding to the input of the honest player. The Simulator performs all
these steps similarly to an honest Garbler but sends the keys corresponding to a
randomly chosen input x̃. We can show through a series of games that this does
not give any information to a computationally-bounded Evaluator (we show that
the protocol is input-indistinguishable according to Definition 3, which as stated
Lemma 1 is equivalent since the Adversary has no output):

– Game 0: The Simulator performs Protocol 2 with the Adversary, with ran-
dom input x̃.

– Game 1: In the execution of the OTs the Simulator replaces the values
of the keys that are not chosen by the Adversary with random values (that
were not used to compute any of the encryptions). The advantage in the real-
world for the Adversary compared to this situation is 0 since the execution
of the OTs is perfectly-secure in the hybrid model.

– Game 2: The encryptions that use those (now random) keys can be replaced
by random values, with a security cost of ǫSym per replaced encryption (as
the encryption can be considered to be random permutations without having
access to the key). It is a double encryption, so for some values the Adver-
sary may posses either the inner or the outer key. This means that it could
invert one of the encryptions, but since it does not have the other this is
meaningless.

– Game 3: Finally, the key kz only appears in one encryption as a One-Time-
Pad of the output of the computation (the others are now independent from
it). It can therefore be replaced by an encryption of a random value, meaning
that it is as well a random value (this is perfectly equivalent).

33

Finally, at the end of Game 3, only the keys received through the OT remain
and they are random values chosen independently from one another and from
any input. The Adversary has no advantage in this scenario, meaning that the
overall advantage is at most (2nX+nY − 1)ǫSym.

⊓⊔

The proof above shows that proving the security of some protocols does
not require the Simulator to call the Ideal Functionality, in particular if the
adversarial party does not have an output in the protocol. This is contrary to
the usual simulation-based proofs, where the Simulator must extract the input of
the Adversary to send it to the Ideal Functionality (for the sake of composition).
However, the exact same proofs of security work in the Stand-Alone Framework
of [HSS15] if the Simulator does send the input value of the Adversary to the
Ideal Functionality (any Adversary against a classical protocol in the Stand-
Alone Framework is QPPT as well).

D Superposition Attack on the Modified Yao Protocol

D.1 Attack Description

In D.1.1 we first describe how the actions performed during the protocol are
transcribed into quantum operations, then give the formal description of the
superposition attack in two parts. In D.1.2 we first describe the actions of the
Adversary during the protocol, resulting in a state that contains a superposition
of inputs and outputs, followed by how it is used by the Adversary to break
the protocol by extracting one bit of information from the honest player’s input.
Finally, in D.1.3 elaborates on a few comments about the attack that are sketched
in the main text.

D.1.1 Quantum Embedding of the Classical Protocol. The inputs of
each party are stored in one register each, as |x〉 and |y〉 respectively. For each
key k that is created as part of the protocol, a different quantum register is
initialised with the state |k〉 (there are therefore nY registers for the Evaluator’s
keys and nX2nX+nY for the Garbler’s keys due to the copies being generated).
Similarly, for each value Ei of the garbled tables, a quantum register is initialised
with the value |Ei〉 (there are 2nX+nY such registers). The auxiliary values are
also all stored in separate quantum registers. All of these values are encoded in
the computational basis.

The OT trusted party works as described in the Ideal Functionality 2 in Ap-
pendix B. The inputs and outputs are considered to be pure quantum states in
the computational basis (no superposition attack is allowed to go through the
OT). Sending messages in the other parts of the protocol is modelled as taking
place over perfect quantum channels (no noise is present on the channel and su-
perpositions are allowed to pass undisturbed). A decryption of ciphertext c using

34

a key k and auxiliary value aux is modelled using the Minimal Oracle Represen-
tation from Definition 4 as MDec |k〉 |aux〉 |c〉 = |dK(k)〉 |dA(aux)〉 |Deck(aux, c)〉
on the states of the computational basis.

Checking whether the final p bits are equal to 0 corresponds to performing a
measurementMC on the corresponding register P in the basis {|0p〉〈0p| , 1P − |0p〉〈0p|}.
If the measurement fails, the Evaluator applies the inverses of dK and dA to the
registers containing respectively its keys and the auxiliary values so that they
may be reused in the next decryption. Finally, the correction applied at the end
which depends on the choice of key for wire Z is modelled as classically con-
trolled Pauli operators Xk

z

(this corresponds to the quantum application of a
classical One-Time-Pad and the value kz can be seen as internal classical values
of the Garbler for simplicity).

For simplicity of notations, let kEy := kE,1y1
‖ . . . ‖ kE,nY

ynY
for y ∈ {0, 1}nY

(and similarly for x ∈ {0, 1}nX). Also, let Ẽnc be the sequential encryption
by all keys corresponding to strings x and y, using the set of auxiliary values

ãux := aux1 ‖ . . . ‖ auxnX+nY
. Then Ek

z

x,y = ẼnckGx ,kEy (ãux, f(x, y) ⊕ c ‖ 0p).

Finally, d̃K is the function applying dK to each key, and similarly for d̃A.

D.1.2 Formal Presentation of the Superposition Attack. We give the
formal presentation of the Superposition Generation Procedure in Attack 1 and
then of the full attack on the Modified Yao Protocol in Attack 2. We show that
this Adversary is Extended Honest-but-Curious (Definition 1) and therefore that
its QPPT equivalent would not break Theorem 2.

Adversarial Behaviour. Note that the Original Yao Protocol is secure against
Honest-but-Curious Adversaries. The equivalent in terms of superposition at-
tacks is to send exactly the same messages but computed over an arbitrary su-
perposition of the randomness used by the Adversary (be it the inputs of other
random values). That is to say that, if the honest party would have measured the
state sent by the Adversary, it would recover perfectly honest classical messages.
The Adversary described in Attack 2 is not strictly Honest-but-Curious but we
prove below that its classical-message equivalent does not break the security of
the Modified Yao Protocol.

Lemma 2 (Adversarial Behaviour Analysis). The QPPT-reduced machine
(Definition 7) corresponding to the BQP Adversary described in Attack 2 is Ex-
tended Honest-but-Curious Adversary (Definition 1).

Proof (Adversarial Behaviour Analysis (Lemma 2)). Attack 2 is not strictly
Honest-but-Curious since a player that measures honestly and tries to decrypt
after can also fail with probability 1 − e−1 if it never gets the correct cipher-
text in the table after measuring. The QPPT-reduced machine (Definition 7)
corresponding to this BQP Adversary works as follows:

1. It generates all values for the garbled table (for both values of kz).

35

Attack 1 Superposition Generation Procedure on the Modified Yao Protocol.

Inputs:

– The (adversarial) Garbler has as input the quantum state φinp,G = |x̂0〉 ⊗ |x̂1〉,
with x̂0, x̂1 ∈ {0, 1}nX received from Environment Z (this describes classically
the superposition of inputs that it should use).

– The (honest) Evaluator has as input ŷ ∈ {0, 1}nY , received from Environment
Z.

The Attack:

1. The Garbler chooses uniformly at random the values
{
k
G,i
0 , k

G,i
1

}
i∈[nX]

and
{
k
E,i
0 , k

E,i
1

}
i∈[nY]

and computes the initial garbled tables GT
(X,Y,Z),0
f =

{
E0

x,y

}
x,y

and GT
(X,Y,Z),1
f =

{
E1

x,y

}
x,y

(where the index 0 corresponds to

kz = 0 and similarly for 1, or equivalently that the value encrypted is f(x, y) in
the first case and f(x, y)⊕ 1 in the second). This computation is the same as in
the honest protocol (but done for both values of kz). Note that there is no need
to permute the values as they will be sent in superposition anyway.

2. The Garbler and Evaluator perform nY interactions with the trusted third party
performing the OT Ideal Functionality. At the end of all interactions, the Eval-

uator has a quantum register initialised in the state
⊗

i∈[nY]

∣∣∣kE,i

ŷi

〉
=

∣∣∣kE
ŷ

〉
.

3. The Garbler sends the auxiliary values as it would in the original protocol. The

corresponding state is |ãux〉 =

nX+nY⊗

i=1

|auxi〉. For each key kG
x that it would send

to the Evaluator, the Garbler instead sends a uniform superposition 1√
2

(∣∣kG
x̂0

〉
+∣∣kG

x̂1

〉)
. For each entry in the garbled table that it would send, it instead sends

the following superposition over all garbled values:

|GT 〉 = 1√
2nX+nY +1

∑

x,y,kz

(−1)k
z
∣∣∣Ekz

x,y

〉

4. For each entry in the garbled table, the Evaluator proceeds as it would in the
protocol, decrypting the ciphertexts sequentially, performing a measurement on
register P in the basis {|0p〉〈0p| , 1P − |0p〉〈0p|} and returning the corresponding
output and the register containing the Garbler’s keys if successful.

5. If the Evaluator is successful and returns a state after one of its measurements,
the Garbler applies the following clean-up procedure:
(a) For each register containing one of its keys, it applied the inverse of dK .
(b) For each index i such that x̂0

i 6= x̂1
i, if there is an index j such that

k
G,i,j
0 6= k

G,i,j
1 and k

G,i,j
0 = 1 it applies an X Pauli operation on the qubit

containing this bit of the key.
(c) The first register then contains a superposition of logical encodings of the

inputs x̂0
L′

and x̂1
L′

. The register containing the output is unchanged.
6. It then sets these registers (called attack registers) as its output, along with a

register containing |x̂0〉⊗|x̂1〉⊗|L′〉, with L′ being a list of integers corresponding
to the size of a given logical repetition encoding of the inputs (see the proof of
Theorem 3).

36

Attack 2 Full Superposition Attack on the Modified Yao Protocol.

The Attack:

1. The Environment Z generates values (x̂0, x̂1, ŷ) and sends |x̂0〉 ⊗ |x̂1〉 to the
Adversary. The values (x̂0, x̂1) are non-trivial in the sense that they do not
uniquely determine the value of the output.

2. The Adversary applies the Superposition Generation Procedure described in
Attack 1, using a superposition of keys for x̂0 and x̂1. If the Evaluator was not
successful, the Adversary samples and outputs a bit b (equal to 0 with probability
pGuess , which corresponds to the optimal guessing probability and whose value
is defined in the proof of Theorem 4) and halts.

3. Otherwise, the Adversary applies the following clean-up procedure on the output
state of the Superposition Generation Procedure, similar to the one described
in Attack 1 (recall that the first register then contains a logical encoding of the

inputs x̂0
L′

and x̂1
L′

, obtained after the first clean-up procedure described in
Attack 1):
(a) If there is an index j such that x̂0

j 6= x̂1
j and x̂0

j = 1, it applies a Pauli X
operation on the qubits corresponding to the logical encoding of bit j (each
bit is encoded with a repetition code of varying length given by the list L′).

(b) The qubits corresponding to a value j such that x̂0
j = x̂1

j are unentangled
from the rest of the state and so can be discarded.

4. The result of the previous step is that the first register now contains a super-
position of a logical encoding 0L and 1L (for another logical encoding L). The
Adversary then applies a logical Hadamard gate H

L on this register.
5. The Adversary measures the first qubit in the computational basis and outputs

the result.

2. For each garbled table entry that it is supposed to send, it instead chooses
uniformly at random one of the generated values (with replacement) and a
key for either x̂0 or x̂1 and sends them (it does not store in memory which
values have been sent).

3. It then waits to see if the honest player has been able to decrypt one of the
values or not.

4. If it has, then it receives (as classical messages) the key that was used to
decrypt (either for x̂0 or x̂1) and the decrypted value.

This Adversary is precisely an Extended Honest-but-Curious Adversary ac-
cording to Definition 1 as the Simulator presented in the security proof of Theo-
rem 2 works as well for this Adversary, with the difference that with a probability
of 1 − e−1 it cannot recover the value of kz if it is unable to decrypt (but then
this is also the case when interacting with an honest party) and so must abort.
Since the Adversary does not store which values have been sent it does not know
whether this value has been decrypted from the keys from the honest player or
the Simulator (using a random input). On the other hand this action by the
Simulator is necessary to simulate the probability that none of the keys decrypt
correctly the garbled values (this happens with the same probability in the sim-
ulated and real executions)

⊓⊔

37

The core reason why the Honest-but-Curious Simulator works is that the
Adversary’s internal register is never entangled with the states that are sent to
the honest party: much more efficient attacks exist in that case, for example
the Adversary can recover the full input of the Evaluator if it keeps a register
containing the index of the garbled table value, which collapses along with the
output register when it is measured by the honest player while checking the
padding, therefore revealing the input of the Evaluator. However this Adversary
is not simulatable after being translated into a QPPT machine (and therefore
this attack does not show a separation between the two scenarii as it would be
similar to subjecting the protocol to a Malicious classical Adversary, that can
trivially recover the honest player’s input).

D.1.3 Comments on the Superposition Attack. We now give a few com-
ments on the superposition generated by the Adversary, as described above and
in Section 5.1. We first show how to generalize this generation for an (almost)
arbitrary superposition. Then, we justify some of the choices made in the design
of the variant of Yao’s protocol (Section 4.3).

Generalisation for Almost Separable Superpositions. For binary function f :
{0, 1}nX ×{0, 1}nY → {0, 1} and ŷ, let U ŷf be the unitary defined through its ac-

tion of computational basis states by U ŷf |x〉 |kz〉 = |x〉 |f(x, y)⊕ kz〉. The above

procedure allows the Adversary to generate U ŷf |ψ〉 |φ〉 for any states |ψ〉 (over
nX qubits) and |φ〉 (over one qubit) whose classical descriptions ψ and φ are
efficient (notice that the state |ψ〉 |φ〉 must be separable). The description of
state ψ is used to generate the superposition of keys (if an input appears in the
superposition ψ, then the key corresponding to it should appear in the super-
position of keys with the same amplitude) while φ is used when generating the
superposition over garbled table entries (if |φ〉 = α |0〉+ β |1〉, the corresponding

superposition over garbled values is |GTα,β〉 =
∑

x,y

α
∣∣E0

x,y

〉
+β

∣∣E1
x,y

〉
). The same

results and bounds are applicable (with similar corresponding proofs).

Justifying the Differences in the Protocol Variant. We can now more easily ex-
plain the choices straying from the Original Yao Protocol mentioned in Section
4.3. The first remark is that the fact that the Garbler sends multiple copies of its
keys is what allows the success probability to be constant and independent from
the size of the inputs (see Theorem 3). Otherwise it would decrease exponentially
with the number of entries in the garbles table, which might not be too bad if
it is a small constant (the minimum being 4 for the naive implementation). On
the other hand, returning the Garbler’s keys to the Adversary is an essential
part of the attack, as otherwise it would not be able to correct them (the final
operations described in the full attack are all performed on these registers). If
they stay in the hands of the Evaluator, it is unclear how the Adversary would
perform the attack (as the state is then similar to the entangled one described
in the introduction as something that we seek to avoid). Similarly, the fact that

38

we do not use an IND-CPA secure symmetric encryption scheme is linked to the
fact that it adds an additional register containing the randomness used to en-
crypt (for quantum notions of IND-CPA developed in [BZ13] and [MS16]), and
which is then entangled with the rest of the state (this register can not be given
back to the Adversary as it would break the security, even in the classical case,
by revealing the index of the correctly decrypted garbled entry). On the other
hand, in [GHS16] they show that the notion of quantum IND-CPA they define
is impossible for quasi-length-preserving encryption scheme (which is equivalent
to format-preserving from Definition 9). Finally, if we were to follow the same
principle as in the original protocol and decompose the binary function into
separate gates, then the intermediate keys would similarly add another register
which is entangled with the rest of the state. This is why we require that the
garbled table represents the whole function.

D.2 Proof of Insecurity of the Modified Yao Protocol against
Superposition Attacks

We present here the proof of the Theorems from Section 5.

D.2.1 Proof of Theorem 3

Theorem 3 (State Generation Analysis). The state contained in the Gar-
bler’s attack registers at the end of a successful Superposition Generation Pro-

cedure (Attack 1) is negligibly close to 1
2

∑
x,kz

(−1)kz
∣∣∣xL′

〉
|f(x, ŷ)⊕ kz〉, where

xL
′

is a logical encoding of x and x ∈ {x̂0, x̂1}. Its success probability is lower
bounded by 1− e−1 for all values of nX and nY .

We prove the two parts of Theorem 3 separately, first analysing the result
of a successful execution and later computing the success probability of the
procedure.

Proof (State Generation Correctness (Theorem 3, part 1)).
The state in the registers of the Evaluator (with input ŷ ∈ {0, 1}nY) before

it starts the decryption process is (up to appropriate normalisation):

|ŷ〉 ⊗
∣∣kEŷ

〉
⊗ 1√

2

(∣∣kGx̂0

〉
+
∣∣kGx̂1

〉)
⊗ |ãux〉 ⊗

∑

x,y

∣∣E0
x,y

〉
−
∣∣E1

x,y

〉

In fact there are 2nX+nY registers containing the superposition of keys and
the same number containing the superposition of encryptions, but it suffices
to consider the result on one such register (the protocol has been specifically
tailored so that repetitions can be handled separately, as seen in the next part of

the proof). For x 6= x′ or y 6= y′ (inclusively), let gx
′,y′,kz

x,y = D̃eckGx ,kEy (ãux, E
kz

x′,y′)

(this is the decryption of Ek
z

x′,y′ using the keys for x and y, leading to a wrong
decryption as at least one key does not match and generating the garbage value

39

gx
′,y′,c
x,y). The state after applying the decryption procedure is then (for x ∈
{x̂0, x̂1}):

|C〉⊗
(∑

x,kz

(−1)kz
∣∣∣d̃K

(
kGx

)〉
|f(x, ŷ)⊕ kz〉 |0〉⊗p+

∑

kz ,x,x′,y′

(x,y) 6=(x′,ŷ)

(−1)c
∣∣∣d̃K

(
kGx

)〉 ∣∣∣gx
′,y′,kz

x,ŷ

〉)

Here the registers containing the Garbler’s keys have been rearranged and

|C〉 = |ŷ〉⊗
∣∣∣d̃K

(
kEŷ

)〉
⊗
∣∣∣d̃A(ãux)

〉
corresponds to the classical values unentangled

from the rest of the state. With overwhelming probability in η (based on the

analysis from Theorem 1), there are no values (r, c, x, x′, y′) such that gx
′,y′,c
x,ŷ =

r ‖ 0p and so the states

∑

x,kz

(−1)kz
∣∣∣d̃K(kGx)

〉
|f(x, ŷ)⊕ kz〉 |0〉⊗p

and ∑

kz ,x,x′,y′

(x,y) 6=(x′,ŷ)

(−1)kz
∣∣∣d̃K(kGx)

〉 ∣∣∣gx
′,y′,kz

x,ŷ

〉

are orthogonal. If the measurement MC succeeds (ie. the outcome is |0p〉〈0p|),
the projected state is (also up to appropriate normalisation):

|C〉 ⊗
∑

x,kz

(−1)kz
∣∣∣d̃K(kGx)

〉
|f(x, ŷ)⊕ kz〉 |0〉⊗p

Note that the keys of the Evaluator and the auxiliary values are unentangled
from the rest of the state during the whole process thanks to the properties
satisfied by the symmetric encryption scheme. The state in the Garbler’s registers
after receiving the output and its keys is then simply:

∑

x,kz

(−1)kz
∣∣∣d̃K(kGx)

〉
|f(x, ŷ)⊕ kz〉

After applying the first step of clean-up procedure at the end (applying the
inverse of dK for each key), the Garbler is left with the state:

∑

x,kz

(−1)c
∣∣kGx

〉
|f(x, ŷ)⊕ kz〉

To demonstrate the effect of the rest of the clean-up procedure, we will apply
it to an example with k0 = 01110 and k1 = 11100 (for an Adversary’s input
consisting of a single bit). The corresponding (non-normalised) superposition is
then |k0〉 |f(0, ŷ)〉+ |k1〉 |f(1, ŷ)〉 = |01110〉 |f(0, ŷ)〉+ |11100〉 |f(1, ŷ)〉 (the terms
with kz = 1 behave similarly). If the bits of key are the same, we can factor
out the corresponding qubits (in this case, the second, third and fifth qubits
are unentangled from the rest). This gives the state |110〉 ⊗ (|01〉 |f(0, ŷ)〉 +

40

|10〉 |f(1, ŷ)〉). The unentangled qubits may be discarded and then the qubits i
for which ki0 6= ki1 and ki0 = 1 are flipped using X (meaning the fourth initial
qubit in this case, or the second one after discarding the unentangled qubits).
The result is |00〉 |f(0, ŷ)〉+ |11〉 |f(1, ŷ)〉. This procedure does not depend on the
choice of ŷ (and is the same for kz = 1), only on the keys that were generated
by the Adversary.

In the general case, the final clean-up transforms each key associated with
a bit-value of 0 into a logical 0 (ie. 0L

′

i for a random but known value L′
i),

and similarly with the corresponding key associated to the bit-value 1 (changed
into 1L

′

i with the same L′
i). The final result is therefore (where xL

′

is a logical
encoding of x where some bits may be repeated a variable but known number
of times):

1

2

∑

x,kz

(−1)kz
∣∣∣xL′

〉
|f(x, ŷ)⊕ kz〉

This is exactly the state that was expected, therefore concluding the proof.
⊓⊔

Proof (Success Probability of State Generation (Theorem 3, part 2)).
If a given measurement fails, based on the analysis in the previous proof, the

state in the Evaluator’s registers corresponding to this decryption is negligibly
close to:

|ŷ〉 ⊗
∣∣∣d̃K(kEŷ)

〉
⊗
∣∣∣d̃A(ãux)

〉
⊗
∑

kz ,x,x′,y′

(x,y) 6=(x′,ŷ)

(−1)kz
∣∣∣d̃K(kGx)

〉 ∣∣∣gx
′,y′,kz

x,ŷ

〉

By applying the inverse of the dK and dA operations on each of the registers
containing its keys and the auxiliary values, the Evaluator recovers the state:

|ŷ〉 ⊗
∣∣kEŷ

〉
⊗ |ãux〉 ⊗

∑

kz ,x,x′,y′

(x,y) 6=(x′,ŷ)

(−1)kz
∣∣∣d̃K(kGx)

〉 ∣∣∣gx
′,y′,kz

x,ŷ

〉

Unless it is the last remaining copy of the superposition of Garbler’s keys and
garbled values (in which case the attack has failed), the Evaluator can simply
proceed and repeat the decryption process using its keys and the auxiliary values
on the next copy (the failed decryption state is unentangled from the rest and
can be ignored in the remaining steps). This essentially means that the Evaluator
has 2nX+nY independent attempts to obtain measurement result 0p.

Since the states that are being considered are normalised and in a uniform
superposition, the probability of success of each measurement attempt is simply
given by the number of states correctly decrypted out of the total number of
states.

There are 2nX+nY +1 encrypted values in the garbled table and 2 key pairs
(one key for wires in Y and 2 keys for wires in X). There are therefore 2nX+nY +2

decrypted values (taking into account decryptions performed with the incorrect

41

keys and counting duplicates). For each key pair, there are exactly two cipher-
texts which will decrypt correctly (one for each value of kz), meaning that 4
decrypted values out of 2nX+nY +2 have their last p bits equal to 0. The proba-
bility of the measurementMC succeeding is therefore 1

2nX+nY
. The probability

that no measurement succeeds in 2nX+nY independent attempts (noted as event
Fail) is given by:

P[Fail] =

(
1− 1

2nX+nY

)2nX+nY

The function p(x) = (1 − 1
x
)x is strictly increasing and upper-bounded by

e−1, meaning that the success probability is P[Succ] = 1− P[Fail] ≥ 1− e−1

⊓⊔

D.2.2 Proof of Theorem 4

Theorem 4 (Vulnerability to Superposition Attacks of the Modified
Yao Protocol). For any non-trivial two-party function f : {0, 1}nX×{0, 1}nY →
{0, 1}, let (x̂0, x̂1) be a pair of non-trivial values in {0, 1}nX (they do not deter-
mine the value of the output uniquely). For all inputs ŷ of honest Evaluator in
Protocol 2, let PEf (ŷ) = f(x̂0, ŷ) ⊕ f(x̂1, ŷ). Then there exists a real-world BQP

Adversary A against Protocol 2 implementing f such that for any BQP Simula-
tor S, the advantage of the Adversary over the Simulator in guessing the value
of PEf (ŷ) is lower-bounded by 1

2 (1− e−1).

Proof (Vulnerability to Superposition Attacks of the Modified Yao Protocol (The-
orem 4)). Let (x̂0, x̂1) be a pair of values in {0, 1}nX such that there exists (ŷ0, ŷ1)
with f(x̂0, ŷ0) = f(x̂1, ŷ0) and f(x̂0, ŷ1) 6= f(x̂1, ŷ1) (at least one such pair of
inputs exists, otherwise the function is trivial). The Environment Z initialises
the input of the Adversary with values a pair of such values x̂0 and x̂1. Let
ŷ ∈ {0, 1}nY be the value of the honest player’s input chosen (uniformly at ran-
dom) by the Environment Z. The goal of the attack is to obtain the value of
PEf (ŷ) = f(x̂0, ŷ)⊕ f(x̂1, ŷ).

The Adversary will try to generate the superposition state during the pro-
tocol using Attack 1, succeeding with probability pGen . If the state has been
generated correctly, Adversary will apply the final steps of Deutsch’s algorithm
and recover the value of the XOR with probability equal to 1 (see below). If
the state generation fails, Adversary resorts to guessing the value of the value
of PEf (ŷ), winning with a probability pGuess . On the other hand, the Simulator

is only able toss a coin to guess the value of PEf (ŷ) (the only information that it
possesses is either f(x̂0, ŷ) or f(x̂1, ŷ), given by the Ideal Functionality), winning
with probability pGuess .

The overall advantage of the Adversary is therefore pGen · (1−pGuess) (if the
State Generation Procedure does not succeed, the probabilities of winning of the
Adversary and the Simulator are the same). It has been shown via Theorem 3
that the probability of generating the state is lower-bounded by 1−e−1, the rest

42

of the proof will focus on describing the last steps of the Attack 2 and calculating
the other values defined above.

We first analyse the behaviour of the state during the Adversary’s calculation
in Attack 2 if there was no Abort. The state in the register of the Adversary reg-
isters at the end of a successful Superposition Generation Procedure via Attack
1 is (the logical encoding L′ being known to the Adversary):

1

2

(∣∣∣x̂0L
′
〉
|f(x̂0, ŷ)〉 −

∣∣∣x̂0L
′
〉
|f(x̂0, ŷ)⊕ 1〉

+
∣∣∣x̂1L

′
〉
|f(x̂1, ŷ)〉 −

∣∣∣x̂1L
′
〉
|f(x̂1, ŷ)⊕ 1〉

)
(1)

The Adversary applies the clean-up procedure on the registers containing

x̂i
L′

and obtains (for a different value L for the logical encoding):

1

2

(
|0〉⊗L |f(x̂0, ŷ)〉− |0〉⊗L |f(x̂0, ŷ)⊕ 1〉+ |1〉⊗L |f(x̂1, ŷ)〉− |1〉⊗L |f(x̂1, ŷ)⊕ 1〉

)

This is exactly the state of Deutsch’s algorithm after applying the (standard)

oracle unitary implementing U
f
x̂0,x̂1
ŷ

, where f x̂0,x̂1

ŷ (b) = f(x̂b, ŷ) (by standard we

mean of the form Uf |x〉 |b〉 = |x〉 |b⊕ f(x)〉, in comparison to the Minimal Oracle
Representation). The rest of the attack and analysis follows the same pattern as
Deutsch’s algorithm.

For simplicity’s sake, let bi := f(x̂i, ŷ), then the state is:

1√
2
(−1)b0

(
|0〉⊗L + (−1)b0⊕b1 |1〉⊗L

)
⊗ |−〉

The Adversary then applies the logical Hadamard gate, the resulting state is
(up to a global phase):

|b0 ⊕ b1〉⊗L ⊗ |−〉
The Adversary can measure the first qubit in the computational basis and

distinguish perfectly both situations, therefore obtaining f(x̂0, ŷ) ⊕ f(x̂1, ŷ) =
b0 ⊕ b1.

On the other hand, in the ideal scenario, to compute the probability of guess-
ing the correct answer pGuess , we consider the mixed strategies in a two-player
game between the Environment Z and the Simulator where both players choose a
bit simultaneously, the Simulator wins if they are the same and the Environment
wins if they are different (this represents the most adversarial Environment for
the Simulator). The Environment chooses bit-value 0 with probability p, while
the Simulator chooses the bit-value 0 with probability q. The probability of win-
ning for the Simulator is then pGuess = pq + (1− p)(1− q) = 1− q − p(1− 2q).
We see that if q 6= 1

2 there is a pure strategy for the Environment such that
pGuess < 1

2 (if the Simulator chooses its bit in a way that is biased towards

43

one bit-value, the Environment always chooses the other), while if q = 1
2 then

pGuess =
1
2 . The same analysis can be applies to the Environment and therefore

p = 1
2 as well.
In the end, we have pGuess =

1
2 and therefore the advantage of the Adversary

is Adv = pGen(1 − pGuess) ≥ 1
2 (1− e−1), which concludes the proof.

⊓⊔

As a remark, the inverse of the circuit preparing the GHZ state can be applied
as the final step of the attack instead of the logical Hadamard HL, yielding the
same result (the state is then |b0 ⊕ b1〉 ⊗ |0〉⊗L−1

and measuring the first qubit
in the computational basis still gives the correct value). The presentation above
was chosen to closely reflect the description of Deutsch’s algorithm.

D.3 Formal Superposition-Secure Yao Protocol

We give here a sketch of the formal Superposition-Secure Yao Protocol 3, along
with a proof of its security against an adversarial Garbler with superposition
access.

Protocol 3 Superposition-Secure Yao Protocol (Sketch).

Input: The Garbler and Evaluator have inputs x ∈ {0, 1}nX and y ∈ {0, 1}nY

respectively.
Output: The Garbler has no output, the Evaluator has one bit of output.
Public Information: The function f to be evaluated, the encryption scheme
(Enc,Dec) and the size of the padding p.
The Protocol:

1. The Garbler creates the keys and garbled table as in the original version.
2. The Garbler and the Evaluator participate in the OT ideal executions, at the

end of which the Evaluator receives its evaluation keys for its input of choice.
3. The Garbler sends the evaluation keys for its inputs and stops (it has no further

actions and no output)
4. The Evaluator decrypts each entry in the garbled table sequentially, stopping

if the padding is 0p at the end of a decrypted value. The rest of the decrypted
value is then set as its output.

5. Otherwise (if it has not stopped at the previous step, meaning that none of the
values were decrypted correctly), it sets as its output Abort. The fact that it has
aborted or not is not communicated to the Garbler

Theorem 5 (BQP-Security of Superposition-Resistant Yao Protocol).
The Superposition-Resistant Yao Protocol 3 is perfectly-secure against a BQP

adversarial Garbler according to Definition 2 in an OT-hybrid execution.

Proof (BQP-Security of Superposition-Resistant Yao Protocol (Theorem 5)).
The Garbler cannot break the security of the OT ideal execution, which fur-

thermore is classical. The rest of the protocol can be summarised by the Garbler

44

sending one quantum state and then the Evaluator performing a local operation
on it and stopping. This is exactly the same scenario as in the One-Time Pad
protocol and the same analysis applies in this case: the Garbler recovering any
information from this operation would violate the no-signalling principle. The
resulting security bound is therefore 0.

⊓⊔

The proof above does not translate into a proof for an actual instance of the
protocol since security in our model does not hold under sequential composabil-
ity, but it gives a hint as to which steps are crucial for securing it. Another path
for obtaining security could be to replace the encryption scheme with one for
which there is no efficient Minimal Oracle Representation. We leave this case as
an open question.

E Attack Optimisation and Application to Oblivious

Transfer

The attack described in Section 5 will now be applied to a simple function,
namely the 1-out-of-2 bit-OT, in order to demonstrate a potential improvement.
In this case, the Garbler has a bit b as input, the Evaluator has two bits (x0, x1)
and the output for the Garbler is xb. This can be represented by the function
OT (b, x0, x1) = bx1 ⊕ (1⊕ b)x0. This can be factored as OT (b, x0, x1) = b(x0 ⊕
x1)⊕ x0. By changing variables and defining X := x0 ⊕ x1, it can be rewritten
further into OT (b, x0, X) = bX ⊕ x0.

Based on this simplified formula, instead of computing the garbled table for
the full function, the Garbler will only garble the AND gate between b and X .
In order to compute the XOR gate at the end, the Free-XOR technique will be
used. Recall first that the key-space is fixed to K = {0, 1}nK . Instead of choosing
both keys for each wire uniformly at random, this technique works by choosing
uniformly at random a valueK ∈ {0, 1}nK and setting kw1 := kw0 ⊕K for all wires
w which are linked to the XOR gate (either as input or output wires). The value
kw0 is sampled uniformly at random for the input wires. For the output wire, if
a and b are the labels of the input wires, the value is set to kw0 = ka0 ⊕ kb0. In
this way, instead of going through the process of encrypting and then decrypting
a garbled table, given a key for each input of a XOR gate, the Evaluator can
directly compute the output key in one string-XOR operation (as an example, if
the keys recovered as inputs for the input wires are ka0 and kb1, then the output
key is computed as ka0 ⊕ kb1 = ka0 ⊕ kb0 ⊕K = kw0 ⊕K = kw1 , which is the correct
output key value for inputs a = 0 and b = 1). The security of Yao’s protocol
using the Free-XOR technique derives from the fact that only one value for the
keys is known to the evaluator at any time, so the value K is completely hidden
(if the encryption scheme is secure). This has been first formalised in [KS08].

After having decrypted the garbled table for the AND gate, the Evaluator
simply performs the XOR gate using the Free-XOR technique. Without loss of
generality the XOR of the keys is performed into the register containing the

45

key corresponding to the output of the AND gate. In the quantum case, this is
done using a CNOT gate, where the control qubit is the register containing the
keys for x0 and the controlled qubit is the register containing the output of the
decryption of the garbled AND gate (the key for x0 is not in superposition as it
belongs to the Evaluator and so the register containing it remains unentangled
from the rest on the state).

The initial input to the garbled table is 3 bits long in the decomposed pro-
tocol, while the input to the AND gate is only 2 bits long, lowering the number
of pre-computations to generate the garbled table and improving slightly the
attack’s success probability (it is a decreasing function of the number of possible
inputs).

The probability of successfully generating the attack superposition 1
2

(
|0〉⊗L |x0〉−

|0〉⊗L |x0 ⊕ 1〉 + |1〉⊗L |x1〉 − |1〉⊗L |x1 ⊕ 1〉
)
by using this new technique is 1 −(

3
4

)4

= 175
256 (by not using the approximation at the end of the proof of part 2

of Theorem 3 for success probability). As described in Theorem 4, such a super-
position can been used to extract the XOR of the two values, an attack which
is impossible in the classical setting or even in the quantum setting without su-
perposition access. The advantage of the Adversary in finding the XOR (over a
Simulator which guesses the value) by using this attack is 175

512 . This is far from
negligible and therefore the security property of the OT is broken.

Of course this is a toy example as it uses two string-OTs to generate one bit -
OT. But the bit-OT that has been generated has a reversed Sender and Receiver
compared to the string-OTs that were used. In the classical case, it can be noted
that similar constructions have been proposed previously to create an OT which
was simulatable for one party based on an OT that is simulatable for the other
(and this construction is close to round-optimal).

46

	Dispelling Myths on Superposition Attacks: Formal Security Model and Attack Analyses

