Skip to main content

Formalizing Bitcoin Crashes with Universally Composable Security

  • Conference paper
  • First Online:
Book cover Information Security (ISC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 12472))

Included in the following conference series:

  • 821 Accesses

Abstract

Bitcoin has introduced an open and decentralized consensus mechanism which in combination with an append-only ledger allows building so-called blockchain systems, often instantiated as permissionless cryptocurrencies. Bitcoin is surprisingly successful and its market capitalization has reached about 168 billion USD as of July 2020. Due to its high economic value, it became a lucrative attack target and the growing community has discovered various flaws, proposed promising improvements, and introduced contingency plans for handling catastrophic failures. Nonetheless, existing analysis and contingency plans are not formalized and are tailored only to handle a small subset of specific attacks, and as such, they cannot resist unexpected emergency cases and it is hard to reason about their effectiveness and impact on the system. In this work, we provide a formalized framework to help evaluate a variety of attacks and their mitigations. The framework is based upon the universal composability (UC) paradigm to describe the attacker’s power and the system’s security goals. We propose the system in the context of Bitcoin and to the best of our knowledge, no similar work has been proposed previously. Besides, we demonstrate and evaluate our model with case study from the real world. Finally, we signal remaining challenges for the contingency plans and their formalization.

J. Ke—This work has been done while at SUTD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    The extended version of this paper will be publicly available as a preprint.

  2. 2.

    It is essentially assuming a synchronous network.

References

  1. Gervais, A., Karame, G.O., Wüst, K., Glykantzis, V., Ritzdorf, H., Capkun, S.: On the security and performance of proof of work blockchains. In: ACM CCS, pp. 3–16. ACM (2016)

    Google Scholar 

  2. Sapirshtein, A., Sompolinsky, Y., Zohar, A.: Optimal selfish mining strategies in bitcoin. In: Grossklags, J., Preneel, B. (eds.) FC 2016. LNCS, vol. 9603, pp. 515–532. Springer, Heidelberg (2017). https://doi.org/10.1007/978-3-662-54970-4_30

    Chapter  Google Scholar 

  3. Badertscher, C., Maurer, U., Tschudi, D., Zikas, V.: Bitcoin as a transaction ledger: a composable treatment. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 324–356. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_11

    Chapter  Google Scholar 

  4. Canetti, R.: Universally composable security: a new paradigm for cryptographic protocols. In: Proceedings 2001 IEEE International Conference on Cluster Computing, pp. 136–145. IEEE (2001)

    Google Scholar 

  5. Coretti, S., Garay, J., Hirt, M., Zikas, V.: Constant-round asynchronous multi-party computation based on one-way functions. In: Cheon, J.H., Takagi, T. (eds.) ASIACRYPT 2016. LNCS, vol. 10032, pp. 998–1021. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-53890-6_33

    Chapter  Google Scholar 

  6. Florian, T., Björn, S.: Bitcoin and beyond: a technical survey on decentralized digital currencies. IEEE Commun. Surv. Tutor. 18(3), 2084–2123 (2016)

    Article  Google Scholar 

  7. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol: analysis and applications. In: Oswald, E., Fischlin, M. (eds.) EUROCRYPT 2015. LNCS, vol. 9057, pp. 281–310. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46803-6_10

    Chapter  Google Scholar 

  8. Garay, J., Kiayias, A., Leonardos, N.: The bitcoin backbone protocol with chains of variable difficulty. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 291–323. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_10

    Chapter  Google Scholar 

  9. Gervais, A., Ritzdorf, H., Karame, G.O., Capkun, S.: Tampering with the delivery of blocks and transactions in bitcoin. In: ACM CCS, pp. 692–705. ACM (2015)

    Google Scholar 

  10. Giechaskiel, I., Cremers, C., Rasmussen, K.B.: On bitcoin security in the presence of broken crypto primitives. IACR Cryptology ePrint Archive 2016:167 (2016)

    Google Scholar 

  11. Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: ACM STOC, pp. 218–229. ACM (1987)

    Google Scholar 

  12. Heilman, E.: One weird trick to stop selfish miners: fresh bitcoins, a solution for the honest miner (poster abstract). In: Böhme, R., Brenner, M., Moore, T., Smith, M. (eds.) FC 2014. LNCS, vol. 8438, pp. 161–162. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-44774-1_12

    Chapter  Google Scholar 

  13. Heilman, E., Kendler, A., Zohar, A., Goldberg, S.: Eclipse attacks on bitcoin’s peer-to-peer network. In: USENIX Security, pp. 129–144 (2015)

    Google Scholar 

  14. Eyal, I.: The miner’s dilemma. In: IEEE S&P, pp. 89–103. IEEE (2015)

    Google Scholar 

  15. Eyal, I., Sirer, E.G.: Majority is not enough: bitcoin mining is vulnerable. Commun. ACM 61(7), 95–102 (2018)

    Google Scholar 

  16. Bonneau, J., Miller, A., Clark, J., Narayanan, A., Kroll, J.A., Felten, E.W.: SoK: research perspectives and challenges for bitcoin and cryptocurrencies. In: IEEE S&P. IEEE (2015)

    Google Scholar 

  17. Katz, J., Lindell, Y.: Introduction to Modern Cryptography. Chapman and Hall/CRC, Boca Raton (2014)

    Book  Google Scholar 

  18. Katz, J., Maurer, U., Tackmann, B., Zikas, V.: Universally composable synchronous computation. In: Sahai, A. (ed.) TCC 2013. LNCS, vol. 7785, pp. 477–498. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36594-2_27

    Chapter  Google Scholar 

  19. Kiayias, A., Russell, A., David, B., Oliynykov, R.: Ouroboros: a provably secure proof-of-stake blockchain protocol. In: Katz, J., Shacham, H. (eds.) CRYPTO 2017. LNCS, vol. 10401, pp. 357–388. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63688-7_12

    Chapter  Google Scholar 

  20. Kiayias, A., Zhou, H.-S., Zikas, V.: Fair and robust multi-party computation using a global transaction ledger. In: Fischlin, M., Coron, J.-S. (eds.) EUROCRYPT 2016. LNCS, vol. 9666, pp. 705–734. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49896-5_25

    Chapter  Google Scholar 

  21. King, S., Nadal, S.: PPCoin: peer-to-peer crypto-currency with proof-of-stake. Self-published 19 2012

    Google Scholar 

  22. Liao, K., Hammer, M.A., Miller, A.: ILC: a calculus for composable, computational cryptography. Cryptology ePrint Archive (2019). https://eprint.iacr.org/2019/402

  23. Mack, S.: Update on Zerocoin spends (2019). https://zcoin.io/update-on-zerocoin-spends/. Accessed 20 Apr 2019

  24. Marcus, Y., Heilman, E., Goldberg, S.: Low-resource eclipse attacks on Ethereum’s peer-to-peer network. IACR Cryptology ePrint Archive 2018:236 (2018)

    Google Scholar 

  25. Miers, I., Garman, C., Green, M., Rubin, A.D.: Zerocoin: anonymous distributed e-cash from bitcoin. In: IEEE S&P, pp. 397–411. IEEE (2013)

    Google Scholar 

  26. Miller, A.: Feather-forks: enforcing a blacklist with sub-50% hash power (2013). https://bitcointalk.org/index.php?topic=312668.0. Accessed 24 Aug 2019

  27. Pass, R., Seeman, L., Shelat, A.: Analysis of the blockchain protocol in asynchronous networks. In: Coron, J.-S., Nielsen, J.B. (eds.) EUROCRYPT 2017. LNCS, vol. 10211, pp. 643–673. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-56614-6_22

    Chapter  MATH  Google Scholar 

  28. Pass, R., Shi, E.: FruitChains: a fair blockchain. In: ACM PODC, pp. 315–324. ACM (2017)

    Google Scholar 

  29. Pinzón, C., Rocha, C.: Double-spend attack models with time advantage for bitcoin. Electron. Not. Theor. Comput. Sci. 329, 79–103 (2016)

    Article  Google Scholar 

  30. Samiran, B., Sushmita, R., Kouichi, S.: Bitcoin block withholding attack: analysis and mitigation. IEEE TIFS 12, 1967–1978 (2017)

    Google Scholar 

  31. Ben Sasson, E., et al.: Zerocash: decentralized anonymous payments from bitcoin. In: IEEE S&P, pp. 459–474. IEEE (2014)

    Google Scholar 

  32. Nakamoto, S.: Bitcoin: a peer-to-peer electronic cash system (2008)

    Google Scholar 

  33. Sun, S.-F., Au, M.H., Liu, J.K., Yuen, T.H.: RingCT 2.0: a compact accumulator-based (linkable ring signature) protocol for blockchain cryptocurrency Monero. In: Foley, S.N., Gollmann, D., Snekkenes, E. (eds.) ESORICS 2017. LNCS, vol. 10493, pp. 456–474. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66399-9_25

    Chapter  Google Scholar 

  34. Courtois, N.T., Bahack, L.: On subversive miner strategies and block withholding attack in bitcoin digital currency. arXiv (2014)

    Google Scholar 

  35. Bitcoin Wiki. Contingency plans (2019). https://en.bitcoin.it/wiki/Contingency_plans. Accessed 20 Apr 2019

  36. Bitcoin Wiki. IRC Channels (2019). https://en.bitcoin.it/wiki/IRC_channels. Accessed 3 Mar 2019

  37. Yujin, K., Dohyun, K., Yunmok, S., Eugene, V., Yongdae, K.: Be selfish and avoid dilemmas: fork after withholding (FAW) attacks on bitcoin. In: ACM CCS. ACM (2017)

    Google Scholar 

Download references

Acknowledgment

This project is supported by the Ministry of Education, Singapore, under its MOE AcRF Tier 2 grant (MOE2018-T2-1-111), National Natural Science Foundation of China (Grant No. 61632020), and the Major Innovation Project of Science and Technology of Shandong Province under Grant 2018CXGC0702.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qiuliang Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Ke, J., Szalachowski, P., Zhou, J., Xu, Q. (2020). Formalizing Bitcoin Crashes with Universally Composable Security. In: Susilo, W., Deng, R.H., Guo, F., Li, Y., Intan, R. (eds) Information Security. ISC 2020. Lecture Notes in Computer Science(), vol 12472. Springer, Cham. https://doi.org/10.1007/978-3-030-62974-8_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-62974-8_19

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62973-1

  • Online ISBN: 978-3-030-62974-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics