Skip to main content

Line Reconfiguration by Programmable Particles Maintaining Connectivity

  • Conference paper
  • First Online:
Book cover Theory and Practice of Natural Computing (TPNC 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12494))

Abstract

In the geometric Amoebot model, programmable matter is viewed as a very large number of identical micro/nano-sized entities, called particles, operating on a hexagonal tessellation of the plane, with limited computational capabilities, interacting only with neighboring particles, and moving from a grid node to an empty neighboring node. An important requirement, common to most research in this model, is that the particles must be connected at all times.

Within this model, a central concern has been the formation of geometric shapes; in particular, the line is the elementary shape used as the basis to form more complex shapes, and as a step to solve complex tasks. If some of the particles on the line are faulty it might be necessary for the non-faulty particles to reconstruct a line that does not contain faulty particles. In this paper we study the Connected Line Recovery problem of reconstructing the line without violating the connectivity requirement. We provide a complete feasibility characterization of the problem, identifying the conditions necessary for its solvability, and constructively proving the sufficiency of those conditions. Our algorithm allows the non-faulty particles to solve the problem, regardless of the initial distribution of the faults and of their number.

Supported in part by NSERC under the Discovery Grant program.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Cannon, S., Daymude, J., Randall, D., Richa, A.: A Markov chain algorithm for compression in self-organizing particle systems. In: Proceedings of 35th Symposium on Principles of Distributed Computing (PODC), pp. 279–288 (2016)

    Google Scholar 

  2. Chirikjian, G.: Kinematics of a metamorphic robotic system. In: Proceedings of the International Conference on Robotics and Automation, pp. 1:449–1:455 (1994)

    Google Scholar 

  3. Daymude, J.J., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann, T.: Improved leader election for self-organizing programmable matter. In: Fernández Anta, A., Jurdzinski, T., Mosteiro, M.A., Zhang, Y. (eds.) ALGOSENSORS 2017. LNCS, vol. 10718, pp. 127–140. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-72751-6_10

    Chapter  Google Scholar 

  4. Daymude, J., Hinnenthal, K., Richa, A., Scheideler, C.: Computing by programmable particles. In: Flocchini, P., Prencipe, G., Santoro, N. (eds.) Distributed Computing by Mobile Entities, pp. 615–681. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-11072-7_22

    Chapter  Google Scholar 

  5. Derakhshandeh, Z., Gmyr, R., Richa, A., Scheideler, C., Strothmann, T.: An algorithmic framework for shape formation problems in self-organizing particle systems. In: Proceedings of NanoCom, pp. 21:1–21:2 (2015)

    Google Scholar 

  6. Derakhshandeh, Z., Gmyr, R., Richa, A., Scheideler, C., Strothmann, T.: Universal shape formation for programmable matter. In: Proceedings of the 28th ACM Symposium on Parallelism in Algorithms and Architectures (SPAA), pp. 289–299 (2016)

    Google Scholar 

  7. Derakhshandeh, Z., Gmyr, R., Richa, A., Scheideler, C., Strothmann, T.: Universal coating for programmable matter. Theoret. Comput. Sci. 671, 56–68 (2017)

    Article  MathSciNet  Google Scholar 

  8. Derakhshandeh, Z., Gmyr, R., Strothmann, T., Bazzi, R., Richa, A.W., Scheideler, C.: Leader election and shape formation with self-organizing programmable matter. In: Phillips, A., Yin, P. (eds.) DNA 2015. LNCS, vol. 9211, pp. 117–132. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-21999-8_8

    Chapter  MATH  Google Scholar 

  9. Derakhshandeh, Z., Dolev, S., Gmyr, R., Richa, A.W., Scheideler, C., Strothmann, T.: Brief announcement: Amoebot - a new model for programmable matter. In: Proceedings of 26th ACM Symposium on Parallelism in Algorithms and Architectures, pp. 220-222 (2014)

    Google Scholar 

  10. Di Luna, G., Flocchini, P., Prencipe, G., Santoro, N., Viglietta, G.: Line recovery by programmable particles. In: Proceedings of the International Conference on Distributed Computing and Networking (ICDCN), pp. 4.1–4.10 (2018)

    Google Scholar 

  11. Di Luna, G.A., Flocchini, P., Santoro, N., Viglietta, G., Yamauchi, Y.: Shape formation by programmable particles. Distrib. Comput. 33(1), 69–101 (2019). https://doi.org/10.1007/s00446-019-00350-6

    Article  MathSciNet  MATH  Google Scholar 

  12. Di Luna, G.A., Flocchini, P., Santoro, N., Viglietta, G., Yamauchi, Y.: Mobile RAM and shape formation by programmable particles. In: Malawski, M., Rzadca, K. (eds.) Euro-Par 2020. LNCS, vol. 12247, pp. 343–358. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-57675-2_22

    Chapter  Google Scholar 

  13. Dolev, S., Frenkel, S., Rosenbli, M., Narayanan, P., Venkateswarlu, K.: In-vivo energy harvesting nano robots. In: Proceedings of ICSEE, pp. 1–5 (2016)

    Google Scholar 

  14. Patitz, M.J.: An introduction to tile-based self-assembly and a survey of recent results. Natural Comput. 13(2), 195–224 (2013). https://doi.org/10.1007/s11047-013-9379-4

    Article  MathSciNet  MATH  Google Scholar 

  15. Rothemund, P.: Folding DNA to create nanoscale shapes and patterns. Nature 440(7082), 297–302 (2006)

    Article  Google Scholar 

  16. Walter, J., Welch, J., Amato, N.: Distributed reconfiguration of metamorphic robot chains. Distrib. Comput. 17(2), 171–189 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nooshin Nokhanji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Nokhanji, N., Santoro, N. (2020). Line Reconfiguration by Programmable Particles Maintaining Connectivity. In: Martín-Vide, C., Vega-Rodríguez, M.A., Yang, MS. (eds) Theory and Practice of Natural Computing. TPNC 2020. Lecture Notes in Computer Science(), vol 12494. Springer, Cham. https://doi.org/10.1007/978-3-030-63000-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63000-3_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-62999-1

  • Online ISBN: 978-3-030-63000-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics