
Sentence Compression as Deletion with
Contextual Embeddings

Minh-Tien Nguyen1,2, Bui Cong Minh1, Dung Tien Le1, and Le Thai Linh1,3

1 CINNAMON LAB,
10th floor, Geleximco building, 36 Hoang Cau, Dong Da district, Hanoi, Vietnam

{ryan.nguyen, matthew, nathan, linhlt}@cinnamon.is
2 Hung Yen University of Technology and Education, Vietnam

tiennm@utehy.edu.vn
3 The University of Queensland, Australia

Abstract. Sentence compression is the task of creating a shorter version
of an input sentence while keeping important information. In this paper,
we extend the task of compression by deletion with the use of contextual
embeddings. Different from prior work usually using non-contextual em-
beddings (Glove or Word2Vec), we exploit contextual embeddings that
enable our model capturing the context of inputs. More precisely, we
utilize contextual embeddings stacked by bidirectional Long-short Term
Memory and Conditional Random Fields for dealing with sequence label-
ing. Experimental results on a benchmark Google dataset show that by
utilizing contextual embeddings, our model achieves a new state-of-the-
art F-score compared to strong methods reported on the leader board.

Keywords: Sentence compression · Summarization · Transformers.

1 Introduction

Sentence compression is a standard task of natural language processing (NLP),
in which a long original sentence is compressed into a shorter version. The com-
pression tries to retain important information, which can be used to reflect the
original sentence. Table 1 shows an example of compression.

Table 1. An example of sentence compression. We can observe that the compression
is created by deleting unnecessary words from the original sentence.

Original
sentence

Floyd Mayweather is open to fighting Amir Khan in the future, de-
spite snubbing the Bolton-born boxer in favour of a May bout with
Argentine Marcos Maidana, according to promoters Golden Boy.

Compression Floyd Mayweather is open to fighting Amir Khan in the future.

The output of compression models can be used in NLP systems, e.g. com-
pression of summarization [14] or dialog summary generation [12].

Over two decades, there are a lot of studies focusing on sentence compression.
Although compression may differ lexically and structurally from the source sen-
tence, there are two main approaches to this task. The first approach is extractive

ar
X

iv
:2

00
6.

03
21

0v
1 

 [
cs

.I
R

] 
 5

 J
un

 2
02

0



2 Nguyen et al., accepted by ICCCI 2020

by deleting unimportant tokens from the original sentence [4,2,7,6,15,16,14]. The
tokens can be defined as words [6,15,16,14] or phrases from parsed trees [2,7].
By contrast, the abstractive compression approach crates compression by para-
phrasing tokens from the original sentence. Therefore, tokens of the compression
do not need to be similar to those in the original sentence. To do that, many
neural machine translation models can be utilized [3]. However, the quality of
abstractive compression models is still far from human satisfaction.

In this paper, we study the task of sentence compression by deletion. The idea
of our study comes from the fact that compression can be created by removing
unnecessary tokens [7,6,15,16]. To do that, we formulate the compression as a
sequence labeling task and introduce a sequence labeling model. More precisely,
inspired by the recent success of contextual embeddings [1,5], we employ con-
textual embeddings as word embeddings. The contextual concept enables our
model to exploit word contextual transformation for word representation. To
learn hidden representation, we stack bidirectional Long-short Term Memory
(BiLSTM) on the embedding layer. The sequence tagging is done by using Con-
ditional Random Fields (CRFs) to take into account global optimization over
the whole sequence. This paper makes two main contributions as the following:

– It introduces a neural-based deletion model for sentence compression. The
model exploits contextual embeddings from transformers, which allow our
model to encode the contextual aspect of input words. It efficiently facilitates
learning the hidden representation of data.

– It validates the efficiency of the model on the Google dataset, a benchmark
corpus of sentence compression. Experimental results show that our model
with contextual embeddings achieves a new state-of-the-art F-score com-
pared to previous strong methods reported on the leader board.

We review related work of compression in Section 2. We next introduce our
model, including data preparation, layers, and the training process in Section
3. Settings and evaluation metrics are showed in Section 4. Comparison and
observation are reported in Section 5 . We finally draw conclusions in Section 6.

2 Related Work

The compression task has been addressed in two main directions: deletion and
abstraction. The deletion approach usually treats the compression as an ex-
traction or a sequence labeling task, in which unnecessary words or tokens are
removed. The removal can be done on several level of word units [4,2,7,6]. For
example, Kirkpatrick et al. introduced a model for jointly learning sentence ex-
traction and compression for multi-document summarization [2]. The model used
n-grams and compression features to score extraction candidates. The model in-
fers to extract candidates by using Integer Linear Programming (ILP). By jointly
learning, the model achieved the highest ROUGE-scores of TAC 2008. Filippova
and Altun addressed the lack of data for sentence compression by introducing a
new dataset [7]. The dataset was created by using deletion-based algorithms on



Sentence Compression as Deletion with Contextual Embeddings 3

hundreds of thousands of instances. To do that, the authors used ILP on syntac-
tic trees. In extension work, Filippova et al. employed Long-short Term Memory
(LSTM) for word deletion [6]. The model used LSTM to learn the hidden rep-
resentation of input tokens. Labels of tokens in the final layer were predicted by
using softmax. Experimental results show that this simple model is better than
baselines in terms of readability and informativeness. Wang et al. improved the
domain adaptability of a deletion-based LSTM for sentence compression [15].
The authors assumed that syntactic information helps to make a robust model.
To do that, the authors defined syntactic features and introduced syntactic con-
straints solved by ILP. The evaluation shows that this method is better than a
traditional non-neural-network in a cross-domain setting. Zhao et al. exploited
a neural language model as an evaluator for deletion-and-evaluation [16]. To do
that, a reward function was defined by using a series of trial-and-error deletion
operation on the source sentence to obtain the best target compression. Vanetik
et al. presented an unsupervised constrained optimization method for summa-
rization compression by iteratively removing redundant parts from original sen-
tences [14]. The model used constituency-based parse trees and hand-crafted
rules for creating elementary discourse units. To do that, the authors defined
a weighted function computed by a parse tree gain for assigning weights into
tokens. Experimental results confirm the efficiency of the model in the task of
single-document summarization. The relation of our model to existing work is
that we share the idea of sentence compression as a deletion task. However, we
also enrich the task by introducing a model based on contextual embeddings.

There is little research on abstractive compression. A very close research
direction is machine translation, in which a translator receives an original sen-
tence and translates it into a shorter version. From this formulation, we can
utilize many sophisticated neural machine translation (NMT) models for com-
pression as a sequence-to-sequence problem [3]. However, even with the recent
success of abstractive compression models, their quality is still quite far from
human expectation. Therefore, we focus on sentence compression by deletion.

3 Sentence Compression with Contextual Embeddings

This section shows our proposed model of the sentence compression task. We
introduce the general process of our model in Fig. 1. The data alignment pre-

Fig. 1. The process of our model.

pares training data for training the sequence labelling model. After training, the
trained model is applied to testing samples to compress raw sentences. We first
describe data preparation and next introduce our compression model.



4 Nguyen et al., accepted by ICCCI 2020

3.1 Data Preparation

Dataset We used the Google dataset4 for the sentence compression task [7].
To create pairs of sentences, the headline and the first sentence of each article
collected from Google News service were extracted. Instead of directly using
headline-first-sentence pairs, the authors used the headline to find our proper
extractive compression of the sentence by a matching algorithm. This is because
headlines are syntactically different from the first sentences. So directly using
headlines makes a challenge for compression by deleting words. We used a new
version of the dataset. It includes automatic generated 200,000 pairs for traing
and 10,000 pairs generated by humans for testing. Each pair contain an original
sentence and a shorter version. Table 2 shows data observation.

Table 2. Data observation counting on works.

longest shortest average # all words

Original sentences 1019 5 27.4 156,565
Compression 40 2 10.4 89,238

We can observe that the longest sentence is more than 1000 words while the
longest of compression is 40. Generally, compression compresses a lot of unnec-
essary words. The shortest sequences of both original and compression sentences
are quite short. The trend of the number of all words is quite similar to the
average, in which original sentences are nearly twice longer than compressions,
showing that a good model can reduce to nearly half of the words.

Data Alignment The original data includes pairs of sentences. To train our
compression model, we followed Filippova et al. to align original sentences and
compressed sentences [6]. This is because we formulate the compression task as
a sequence labeling task, in which unnecessary words are marked by a label, i.e.
deletion or no-deletion and our model learns to remove deletion words.

Fig. 2. An alignment example. D denotes deletion and O is for no-deletion words.

The alignment was done in two steps. The first step is word segmentation,
which segments a sentence into a set of words. The second step aligns words of
original and compressed sentences. If a word in the original sentence appears in
the gold compressed sentence, this word is kept (no-deletion); otherwise, it is
deleted (deletion). Fig. 2 shows an example of the alignment.

4 http://nlpprogress.com/english/summarization.html



Sentence Compression as Deletion with Contextual Embeddings 5

We can observe that miss-matched words are labeled by "D", showing that
these words should be deleted from the compression model. After alignment,
original sentences with labels are input for our model.

3.2 The Proposed Model

As mentioned, we formulated the compression as a sequence labeling task. Given
an input sequence of words, our model learns to predict whether a word should
be deleted or not. More precisely, this is a binary classification task. Given a
word, our model needs to classify this word into deletion or non-deletion labels.

Fig. 3. The overview of our model. The model outputs a label for each word. We put
two incorrect labels (D) to show that in training, these output labels were used to
compute the loss with the ground-truth data in Fig. 2.

From this formulation, we introduce our model in Fig. 3. The main idea of
our model is that it exploits the efficiency of pre-trained language models for
the embedding layer, and then stacks with BiLSTM for learning hidden rep-
resentation from input sentences. The final layer is CRFs for classification to
output a label for each word. We share the idea of stacking BiLSTM and CRFs
with previous work because this architecture has achieved promising results in
the task of named entity recognition [11,9]. However, our model distinguishes to
previous work in two points. Firstly, we exploit the power of pre-trained con-
textual transformers (Flair or BERT) for mapping tokens into low-dimensional
vectors, instead of using word embeddings (Word2Vec or Glove) [11,9]. It enables
our model to encode the context aspect of a sequence into the learning process.
Secondly, we design a flat structure, instead of using a nested structure [9]. It
facilitates the learning process in a simple fashion. Our model also shares the
idea of deleting unnecessary words as Filippova et al. [6]; however, exploiting
pre-trained contextual embeddings from transformers makes a different point of
our model compared to [6]. Also, we add one CRF layer for classification, instead
of directly using softmax. It allows our model utilizing global optimization on a
whole sequence. We next describe each layer of our model.

Embedding layer The embedding layer is to use for mapping tokens into
low-dimensional vectors. It is possible to employ any embedding method such



6 Nguyen et al., accepted by ICCCI 2020

as Word2Vec, Glove, or fastText; however, we utilized pre-trained contextual
embeddings from transformers. This is because such transformers were trained
with the consideration of the context of tokens on a huge amount of data. As
a result, these models output high-quality embeddings compared to other word
embedding methods (Glove). Inspired by the recent success of transformers in
many NLP tasks [1,5], we exploited Flair and BERT as our embedding layer.

Flair Flair is contextual string embeddings, which were from a character lan-
guage model to produce word embeddings [1]. Flair has two distinct properties.
Firstly, embeddings were trained without any explicit notion of words, hence,
words were basically modeled in the form of sequences of characters. Secondly,
embeddings were contextualized by their surrounding texts, meaning that the
same word has different meanings (different word vectors) depending on its con-
text. We take into account the contextual aspect from Flair to our model by using
embeddings from Flair to map words in low-dimensional vectors for learning.

BERT (Bidirectional Encoder Representation from Transformer) is a multi-
layered bidirectional Transformer encoder, which allows our model to represent
the context of a word by considering its neighbors [5]. The key idea of BERT
is that it applies the bidirectional training of Transformer combined with multi-
head attention to learn contextual relationships among words in a sequence. It
includes two separate mechanisms: an encoder that reads the text input and a
decoder that produces a prediction given an input sequence. Due to the purpose
of building a language model, BERT only needs the encoder.

Different from directional models, which read the text input sequentially
(left-to-right or right-to-left), the transformer encoder of BERT reads the entire
sequence of words. With the combination of a large number of layers and multi-
head attention, BERT can deeply capture the meaning of words based on their
context. For example, considering the word “bank in two sentences “I went
to the bank to deposit some money and “I went to the bank of the river, the
representations of “bank are identical for a left-context unidirectional model, but
they are distinguished with the use of BERT. This characteristic is appropriate
with our task, in which our model needs to understand the context of a sequence
for the deletion of words, i.e. detecting deletion or no-deletion words.

We employed a pre-trained BERT as the embedding layer due to two reasons:
(i) BERT has achieved promising results on 11 NLP tasks, including sequence
tagging [5,13] and (ii) BERT was contextually trained on a huge amount of data,
so it can encode word meaning, which is important for machine learning models.

Hidden Representation The hidden representation layer receipts output from
the embedding layer to learn the hidden representation of input tokens. To do
that, we stacked a layer by using LSTM [8] on the embedding layer.

LSTM is a variation of recurrent neural networks. It was designed to tackle
long-term dependency of words and vanishing gradient descent in training deep
learning models. Each LSTM cell uses the gate mechanism to decide whether
input information is kept or ignored. The gate mechanism allows our model
capturing the hidden representation of a long sequence. In practice, we employed



Sentence Compression as Deletion with Contextual Embeddings 7

BiLSTM for training our model. This is because BiLSTM encodes information
from forward and backward directions, showing higher efficiency in learning data
representation compared to LSTM [9,5].

Classification The final layer is classification to predict labels of each word
represented from the hidden presentation layer. In order to do that, we utilized
CRFs as the final layer for prediction. This is because CRFs were designed for
the sequence labeling task [10] and stacking CRFs on the top of BiLSTM has
achieved promising results for the task of named entity recognition [11,9].

CRFs were designed to globally predict label sequences of any given se-
quences. Given an input sequence X = (x1, x2, ..., xn) which is the output
from the BiLSTM layer, CRFs learn to make the prediction of xi by maxi-
mizing the log probability during training. More precisely, given a sentence se-
quence X = (x1, x2, ..., xn) and the corresponding state of sequence (labels)
Y = (y1, y2, ..., yn), the probability of Y conditioned on X was defined as
P (Y |X). When making prediction of yi, CRFs consider the current input xi

(the current word) and previous states of previous words as P (yi = 1|X). For
example, in Fig. 3, the label of ‘‘fighting" is decided by using information
from previous words. In practice, we consider the last one or two steps because
using all information has a higher computational cost for training and inference.

Training Our model was trained in an end-to-end fashion. The classification
layer predicts a label of each word. Predicted labels were used to compare to
ground-truth labels of training data to compute the cross-entropy loss. Error
loss was updated for training by using back-propagation.

We used the BERT-large cased model trained for English with the BookCor-
pus (800M words) and English Wikipedia (2,500M words) as mentioned in [5].
For Flair, we used the English language models in both forward and backward
directions trained on 1-billion words corpus mentioned in [1]. To increase the
representation, we concatenated word vectors from Glove to word vectors from
Flair or BERT in the embedding layer. This is because we want to increase the
data representation of our model for learning.

4 Settings and Evaluation Metrics

4.1 Settings

We used a new version of the dataset, which includes 200,000 pairs for training
our model. We randomly selected 1000 pairs [6,15,16] from 10,000 pairs of human
annotation for automatic evaluation and the rest for validation. We used Adam
optimizer for training in 100 epochs with gradient clipping at 5, except for BERT-
MLP in which we found performed best with 10 epochs of training. LSTM layers
have 256 hidden states. For Flair’s language models, each composed of one-
layered LSTM with 2048 hidden states. The BERT-large model has 24 layers, a
hidden layer of 1024 neurons, 16 heads and 340M parameters.

4.2 Evaluation Metrics

We used F-score and compression rate for evaluation [7,6] as follows.



8 Nguyen et al., accepted by ICCCI 2020

F-score We used recall and precision to compute the F-1 of compression and
ground-truth data. These metrics were computed as follows.

R =
#correct del words

#all del words
; P =

#correct del words

#del words
; F-1 =

2×R× P

R + P

where: #correct del words is the number of correct deletion words from the
compression model compared to the ground-truth data; #all del words is all
deletion words in ground-truth data; and #del words is the number of deletion
words processed by the compression model.

Compression Rate considers the length aspect of compression. It was com-
puted by dividing the length of the compression over the original sentence length.

4.3 Baselines

We compared our model to several strong methods of sentence compression. F-
score of several models can be found in the leader board (http://nlpprogress.com/
english/summarization.html).

– ILP+features: uses Integer Linear Programming with a set of features to
find out optimal paths on syntactic trees [7]. The compressions are sub-trees
generated from the optimization algorithm.

– BiRNN+LM: uses a language model as an evaluator to supporting BiRNN
trained by a reinforcement learning fashion for sentence compression [16].

– LSTM: is the extension work of [7]. The authors treated compression a dele-
tion task [6]. To do that, the authors used LSTM to deal with the sequence
labeling task, in which the model tries to delete unnecessary words.

– BiLSTM: is the same with LSTM but using a bi-directional LSTM cell for
learning hidden representation [15].

– BiLSTM-CRF: We implemented BiLSTM-CRF as a baseline of our model.
It uses Glove for the embedding layer and BiLSTM to learn hidden repre-
sentation. The final layer uses CRFs for classification. This model does not
use Flair or BERT embeddings.

– BERT+MLP: We utilized BERT as the embedding layer and multi-layer
perceptron (MLP) for classification.

– BERT+BiLSTM-CRF: It uses BERT as an embedding layer and stacks
BiLSTM. It finally uses CRFs for classification to detect unnecessary words.

5 Results and Discussion

This section first reports the comparison of our model with baselines. It next
shows the observation of embeddings and error analysis.

5.1 F-score Comparison

Table 3 shows the comparison of our model and baselines. We can observe that
our model is better than baselines in terms of F-score with quite large mar-
gins. For example, our model is significantly better than BiLSTM-CRF (0.889



Sentence Compression as Deletion with Contextual Embeddings 9

vs. 0.820 with p-value ≤ 0.05 with pairwise t-test)5 even they share the same
hidden representation and classification layers. The improvement comes from
two points. Firstly, we exploit contextual embeddings from transformers instead
of directly using word embeddings (Glove) for the embedding layer. Using these
embeddings allows our model taking into account the contextual aspect of words
trained on a huge amount of data. From that, our model can correctly distin-
guish necessary and unnecessary words of input sequences. This again confirms
the efficiency of transformers for NLP tasks [1,5]. By contrast, BiLSTM-CRF
directly uses Glove as the embedding layer, which somehow limits the model in
learning context among words. Another reason is that we also exploit the power
of word embeddings by concatenating word vector from Glove with vector gen-
erated from transformers. This combination enables our model to increase data
representation, leading to improvements.

Table 3. Comparison of sentence compression models. † shows that our model is
significantly better with p-value ≤ 0.05.

Model Embedding F-score Compression Rate

ILP+features [7] — 0.843 —
BiRNN+LM [16] — 0.851 0.39

LSTM [6] Word2Vec 0.820† 0.38

BiLSTM [15] — 0.800† 0.43

BiLSTM-CRFs Glove 0.820† 0.40
BERT(original)+MLP BERT 0.867 0.38

BERT+BiLSTM-CRF (Ours) BERT+Glove 0.883 0.39
Flair+BiLSTM-CRFs (Ours) FLair+Glove 0.889 0.39

For variants of LSTM (BiRNN, LSTM, and BiLSTM), our model still achieves
better F-score from 3-5 percentage points. This supports our idea that us-
ing contextual embeddings for word representation. Compared to BiLSTM and
BiLSTM-CRF, the model using CRFs for prediction is 2 percentage points bet-
ter than that of only using BiLSTM. This shows the contribution of CRFs for
making global label sequence prediction. The ILP model obtains a promising
F-score because it uses features for weighting concepts. The features help to
increase the quality of deletion based on constraints. Compared to the original
BERT, our model is still better, but the margins among compression models
are small. This is because the original BERT takes into account the contextual
aspect of words for learning. We can also observe the contribution of BiLSTM-
CRF, in which BERT with this architecture gives a better F-score than BERT
using MLP (Tables 3 and 5). The model using Flair is slightly better than that
using BERT (0.889 vs. 0.883). A possible reason is that BERT may be appro-
priate for quite long documents while the dataset includes short sentences. As a
result, the BERT-based method is challenged to encode short separated texts.
However, the gap is tiny, showing that the contextual embeddings from BERT
can still contribute to our model.

5 https://docs.scipy.org/doc/scipy-0.19.0/reference/generated/scipy.stats.ttest ind.html.



10 Nguyen et al., accepted by ICCCI 2020

The compression rate (CR) of compression models is quite similar, even
they yield different F-scores. BiLSTM outputs the longest sequences, followed
by BiLST-CRFs. Our model is not the best in terms of CR, compared to
BERT+MLP. A possible reason may come from BiLSTM because BiLSTM-
based methods tend to output longer sequences compared to LSTM or RNN.

To avoid over-fitting, we tested our model five times on the test set. In each
time, we randomly selected 1000 samples from 10,000 pairs created by humans
for testing and the rest for validation. We also used the same data segmentation
to train BiLSTM-CRFs and BERT+MLP. We did not compare to other methods
due to the different setting. The F-score was the average of our model in five
times. Table 4 shows that our model consistently achieves better F-scores than

Table 4. The F-score of testing three models in five times.

Model Embedding F-score Compression Rate

BiLSTM-CRFs Glove 0.820† 0.40
BERT(original)+MLP BERT 0.863 0.38
Flair+BiLSTM-CRFs (Ours) FLair+Glove 0.887 0.39

BiLSTM-CRFs and the original BERT after testing in five times. This again
confirms the efficacy of our model. Comparing to results in Table 3, F-scores are
slightly different due to the average on five times.

5.2 Glove Contribution

As mentioned, we concatenated embeddings from Glove to word vectors from
Flair and BERT. To observe the contribution of Glove, we compared contextual-
based compression models using with/without word vectors from Glove.

Table 5. The contribution of Glove.

Model Embeddings F-score Compression Rate

BERT(w/o Glove)+BiLSTM-CRF BERT+Glove 0.875 0.39
BERT(with Glove)+BiLSTM-CRF BERT+Glove 0.883 0.39

Flair(w/o Glove)+BiLSTM-CRF Flair+Glove 0.877 0.38
Flair(with Glove)+BiLSTM-CRF Flair+Glove 0.889 0.39

From Table 5, we can observe that models using Glove obtain better F-cores
than those which do not use Glove. This is because the concatenation of embed-
dings from Glove and contextual embeddings enriches the data representation
of sentences, hence, it improves the learning quality of our model. However, the
margins are small, showing the efficiency of contextual embeddings from Flair
and BERT [1,5]. The compression rate of transformer variants is similar, which
is consistent with the compression rate of transformer-based models in Table 3.

5.3 Output Observation

We observed the outputs of (i) BiLSTM-CRF, (ii) BERT+MLP, (iii) BERT+BiLSTM-
CRF, and (iv) our model. We can observe that for the first output (the half of



Sentence Compression as Deletion with Contextual Embeddings 11

the table), all models give correct compression. A possible reason is that the
input sequence is quite short and simple, so all the models can correctly predict
deletion words. For the second output, our model outputs correct compression.

Table 6. Output samples. Incorrect phrases are mark by strike-through words.

Original Vine, the mobile app owned by Twitter, has banned sexually explicit
content, effective immediately.

Gold-comp Vine has banned sexually explicit content.

(i) Vine has banned sexually explicit content.
(ii) Vine has banned sexually explicit content.
(iii) Vine has banned sexually explicit content.

Our model Vine has banned sexually explicit content.

Original A man found dead in a Fairfield hotel room on Sunday, Sept. 1 has been
identified as Matthew Wuss, 20, of Chester.

Gold-comp A man found dead in a Fairfield hotel room has been identified.

(i) A man found dead in a Fairfield hotel room on Sept. 1 has been identified
as Matthew Wuss.

(ii) A man found dead in a Fairfield hotel room has been identified as
Matthew Wuss.

(iii) A man found dead in a Fairfield hotel room on Sunday has been identified.
Our model A man found dead in a Fairfield hotel room has been identified.

This supports our idea in exploiting contextual embeddings for word representa-
tion and confirms F-scores in Table 3. BiLSTM-CRF shares one incorrect phrase
("as Matthew Wuss") with BERT-MLP. The reason may come from the use of
BiLSTM-CRF, which may be limited for learning data representation of long
sequences. In addition, BiLST-CRF does not use contextual embeddings, so it
makes a challenge to capture the meaning of words from input sequences. As a
result, it predicts two wrong phrases. It again confirms F-scores in Table 3, in
which the BiLSTM-CRF compression model yields a quite low F-score.

6 Conclusion

This paper introduces a model for sentence compression as deletion. Our model
utilizes the power of contextual embeddings for capturing the context aspect of
input words for learning. The embeddings combined with BiLSTM and CRF al-
low our model efficiently learning hidden representation from data. Experimental
results on a benchmark dataset show two points. Firstly, contextual embeddings
contribute to the compression model. This leads to a new state-of-the-art F-score
on the Google dataset. Secondly, by adding word vectors from Glove, our model
improves the quality of deletion compared to the model without using Glove.

One possible direction is to analyze syntactic features that can be integrated
into our model. Also, parsed tree representation may be helpful for deep learning.

Acknowledgement

This research is funded by Hung Yen University of Technology and Education
under the grant number UTEHY.L.2020.04.



12 Nguyen et al., accepted by ICCCI 2020

References

1. Akbik, A., Blythe, D., Vollgraf, R.: Contextual string embed-dings for sequence
labeling. In: Proceedings of the 27th International Conference on Computational
Linguistics, pp. 1638-1649 (2018)

2. Berg-Kirkpatrick, T., Gillick, D., Klein, D.: Jointly learning to extract and com-
press. In: Proceedings of the 49th Annual Meeting of the Association for Compu-
tational Linguistics: Human Language Technologies-Volume 1, pp. 481-490 (2011)

3. Cho, K., van Merrie nboer, B., Gulcehre, C., Bahdanau, D., Bougares, F., Schwenk,
H., Bengio, Y.: Learning phrase representations using rnn encoder-decoder for sta-
tistical machine translation. In: Proceedings of the 2014 Conference on Empirical
Methods in Natural Language Processing, pp. 1724-1734 (2014)

4. Clarke, J., Lapata, M.: Global inference for sentence compression: An integer linear
programming approach. J. Artif. Intell. Res. 31, 399-429 (2008)

5. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: Bert: Pre-training of deep bidi-
rectional transformers for language understanding. In: Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics: Human Language Technologies, Volume 1, pp. 4171-4186 (2019)

6. Filippova, K., Alfonseca, E., Colmenares, C.A., ukasz Kaiser, Vinyals, O.: Sentence
compression by deletion with lstms. In: Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing, pp. 360-368 (2015)

7. Filippova, K., Altun, Y.: Overcoming the lack of parallel data in sentence com-
pression. In: Proceedings of the 2013 Conference on Empirical Methods in Natural
Language Processing, pp. 1481-1491 (2013)

8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural computation
9(8) , 1735-1780 (1997)

9. Ju, M., Miwa, M., Ananiadou, S.: A neural layered model for nested named entity
recognition. In: Proceedings of the 2018 Conference of the North American Chapter
of the Association for Computational Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pp. 1446-1459 (2018)

10. Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic
models for segmenting and labeling sequence data. In: Proceedings of the 18th
International Conference on Machine Learning, pp. 282289 (2001)

11. Lample, G., Ballesteros, M., Subramanian, S., Kawakami, K., Dyer, C.: Neural
architectures for named entity recognition. In: NAACL-HLT, pp. 260-270 (2016)

12. Liu, C., Wang, P., Xu, J., Li, Z., Ye, J.: Automatic dialogue summary generation
for customer service. In: Proceedings of the 25th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining, pp. 1957-1965 (2019)

13. Nguyen, M.T., Phan, V.A., Linh, L.T., Son, N.H., Dung, L.T., Hirano, M., Hotta,
H.: Transfer learning for information extraction with limited data. In: Proceed-
ings of 16th International Conference of the Pacific Association for Computational
Linguistics (2019)

14. Vanetik, N., Litvak, M., Churkin, E., Last, M.: An unsupervised constrained opti-
mization approach to compressive summarization. Information Sciences 509, 22-35
(2020)

15. Wang, L., Jiang, J., Chieu, H.L., Ong, C.H., Song, D., Liao, L.: Can syntax help?
improving an lstm-based sentence compression model for new domains. In: Pro-
ceedings of the 55th Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pp. 1385-1393 (2017)

16. Zhao, Y., Luo, Z., Aizawa, A.: A language model based evaluator for sentence
compression. In: ALC (Volume 2: Short Papers), pp. 170-175 (2018)


	Sentence Compression as Deletion with Contextual Embeddings

