Skip to main content

Macroscopic Skin Lesion Segmentation Using GrabCut

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12496))

Abstract

Melanoma is one of the most dangerous forms of skin cancer with an apace increase in death rates each year. One major problem in Artificial Intelligence and Machine Learning is the issue of racial disparities. This leads to myriad problems in association with medical image analysis as the data fed to these algorithms are biased. Accurate and concise segmentation is an imperative requirement when developing a computer assisted diagnostic support system. In order to surmount the problems caused by the lack of a diverse set of images, we look at initially segmenting lesions, using the GrabCut method, from the surrounding skin. This lets us focus on the skin lesion and remove potential colour confusion associated with the mixture of the lesion colour and skin tones. Thereafter, we make use of 14 pre-trained transfer learning models. The experimental results achieve the following: Dice index 0.93, Jaccard index 0.88, Matthew Correlation Coefficient 0.87, Sensitivity 0.92, Specificity 0.95 and an Accuracy rate of 0.93.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. American Cancer Society: About Melanoma Skin Cancer. https://www.cancer.org/cancer/melanoma-skin-cancer/about/what-is-melanoma.html. Accessed 7 Sep 2019

  2. Skin Cancer Foundation. https://www.skincancer.org/skin-cancer-information/melanoma/. Accessed 7 Sep 2019

  3. World Health Organization. https://www.who.int/uv/faq/skincancer/en/index1.html. Accessed 7 Sep 2019

  4. Pillay, V., Viriri, S.: Skin cancer detection from macroscopic images. In: Conference on Information Communications Technology and Society, pp. 1–9 (ICTAS) (2019)

    Google Scholar 

  5. Applications of Computer Vision in Healthcare. https://medium.com/optima-ai/applications-of-computer-vision-in-healthcare-5651208b3539. Accessed 7 Sep 2019

  6. Zhou, H., Zheng, J., Wei, L.: Texture aware image segmentation using graph cuts and active contours. Pattern Recogn. 46, 1719–1733 (2013)

    Google Scholar 

  7. Kulkarni, M., Nicolls, F.: Interactive image segmentation using graph cuts. In: Proceedings of 20th Annual Symposium of the Pattern Recognition Association of South Africa (PRASA2009), Stellenbosch, South Africa (2009)

    Google Scholar 

  8. Raghunandanan, P., John, L.: A Review on Various Graph Cut Based Image Segmentation Schemes (2013)

    Google Scholar 

  9. Graph cuts in computer vision. https://en.wikipedia.org/wiki/Graph_cuts_in_computer_vision. Accessed 27 July 2019

  10. Reynolds, D.: Gaussian Mixture Models, pp. 1–5 (2009)

    Google Scholar 

  11. Carsten, R., Vladimir, K., Andrew, B.: GrabCut: interactive foreground extraction using iterated graph cuts. ACM Trans. Graph. 23(3), 309–314 (2004)

    Google Scholar 

  12. Yang, W., Cai, J., Zheng, J., Luo, J.: User-friendly interactive image segmentation through unified combinatorial user inputs. IEEE Trans. Image Process. 19, 2470–2479 (2010). https://doi.org/10.1109/TIP.2010.2048611. A publication of the IEEE Signal Processing Society

  13. Kolmogorov, V., Ramin, Z.: What energy functions can be minimized via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 26, 147–59 (2004). https://doi.org/10.1109/TPAMI.2004.1262177

  14. Yi, F., Moon, I.: Image segmentation: a survey of graph-cut methods. In: 2012 International Conference on Systems and Informatics (ICSAI2012), pp. 1936–1941 (2012). https://doi.org/10.1109/ICSAI.2012.6223428

  15. Ford, L., Fulkerson, D.: Flows in Networks. Princeton University Press, Princeton (1962)

    Google Scholar 

  16. Franke, Markus: Color Image Segmentation Based on an Iterative Graph Cut Algorithm Using Time-of-Flight Cameras. In: Mester, Rudolf, Felsberg, Michael (eds.) DAGM 2011. LNCS, vol. 6835, pp. 462–467. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23123-0_49

    Chapter  Google Scholar 

  17. Nammalwar, P., Ghita, O., Whelan, P.F.: Segmentation of Skin Cancer Images. Vision Systems Group. Centre for Image Processing and Analysis. School of Electronic Engineering. Dublin City University. Ireland (2009)

    Google Scholar 

  18. Camilus, K., Govindan, V.K.: A review on graph based segmentation. Int. J. Image Graph. Signal Process. 4 (2012). https://doi.org/10.5815/ijigsp.2012.05.01

  19. Oyebode, K.O., Du, S., Wyk, B.J., Djouani, K.: Investigating the relevance of graph cut parameter on interactive and automatic cell segmentation. Comp. Math. Methods Med. (2018)

    Google Scholar 

  20. Ünver, H., Ayan, E.: Skin lesion segmentation in dermoscopic images with combination of YOLO and GrabCut algorithm. Diagnostics 9, 72 (2019). https://doi.org/10.3390/diagnostics9030072

  21. Jafari, M.H., et al.: Skin lesion segmentaion in clinical images using deep learning. In: IEEE International Conference on Pattern Recognition (ICPR), Cancun, Mexico (2016)

    Google Scholar 

  22. Cavalcanti, P.G., Scharcanski, J.: Automated pre-screening of pigmented skin lesions using standard cameras. Comput. Med. Imaging Graph. 6, 481–491 (2011)

    Google Scholar 

  23. Bi, L., Kim, J., Ahn, E., Feng, D.: Automatic skin lesion analysis using large-scale dermoscopy images and deep residual networks. arXiv arXiv:1703.04197 (2017)

  24. Cavalcanti, P., Yari, Y., Scharcanski, J.: Pigmented skin lesion segmentation on macroscopic images. In: Proceedings 25th International Conference on Image Vision Computing, pp. 1–7 (2010)

    Google Scholar 

  25. Li, Y., Shen, L.: Skin lesion analysis towards melanoma detection using deep learning network. Sensors 18, 556 (2018)

    Google Scholar 

  26. Chen, E.Z., Dong, X., Wu, J., Jiang, H., Li, X., Rong, R.: Lesion Attributes Segmentation for Melanoma Detection with Deep Learning. bioRxiv, p. 381855 (2018)

    Google Scholar 

  27. Maolood, I., Alsalhi, Y., Lu, S.: Thresholding for medical image segmentation for cancer using fuzzy entropy with level set algorithm. Open Med. 13, 374–383 (2018). https://doi.org/10.1515/med-2018-0056

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Serestina Viriri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pillay, V., Hirasen, D., Viriri, S., Gwetu, M.V. (2020). Macroscopic Skin Lesion Segmentation Using GrabCut. In: Nguyen, N.T., Hoang, B.H., Huynh, C.P., Hwang, D., Trawiński, B., Vossen, G. (eds) Computational Collective Intelligence. ICCCI 2020. Lecture Notes in Computer Science(), vol 12496. Springer, Cham. https://doi.org/10.1007/978-3-030-63007-2_41

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63007-2_41

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63006-5

  • Online ISBN: 978-3-030-63007-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics