Skip to main content

Machine Learning Modeling of Human Activity Using PPG Signals

  • Conference paper
  • First Online:
Computational Collective Intelligence (ICCCI 2020)

Abstract

The use of wearables is contributing towards the decrease of risk for chronic diseases related to cardiovascular or diabetes problems. Most wearables measure heart rate and the majority of them uses a Photoplethysmography (PPG) sensor. A serious limitation of the PPG sensors is their sensitivity to Motion Artifacts (MAs) which can severely corrupt the raw signal. Accurate estimation of the PPG signal as it is recorded from the subject’s wearables while performing various physical activities, is a challenging task. This research introduces a novel Human Activity Recognition (HAR) approach that determines the subject’s activity, by considering the respective PPG signal. It considers the public PPG-DaLiA dataset, for 15 persons, related to 9 activities. Totally, 24 Machine-Learning (ML) techniques were used. The weighted k-Nearest Neighbors (k-NN), the Cubic Support Vector Machines C-SVM and the Bagged Trees (BGT) have achieved the best performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ahmed, M.U., Loutfi, A.: Physical activity identification using supervised machine learning and based on pulse rate. Int. J. Adv. Comput. Sci. Appl. 4(7), 210–217 (2013)

    Google Scholar 

  2. Beerends, R.J., ter Morsche, H.G., Van den Berg, J.C., Van de Vrie, E.M.: Fourier and Laplace Transforms, p. 458. Cambridge University Press, Cambridge (2003). ISBN 0521534410

    Google Scholar 

  3. Bhowmik, T., Dey, J., Tiwari, V.N.: A novel method for accurate estimation of HRV from smartwatch PPG signals. In: 2017 39th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 109–112. IEEE, July 2017

    Google Scholar 

  4. Biagetti, G., Crippa, P., Falaschetti, L., Orcioni, S., Turchetti, C.: Human activity recognition using accelerometer and photoplethysmographic signals. In: Czarnowski, I., Howlett, R.J., Jain, L.C. (eds.) IDT 2017. SIST, vol. 73, pp. 53–62. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-59424-8_6

    Chapter  Google Scholar 

  5. Boser, B.E., Guyon, I.M., Vapnik, V.N.: A training algorithm for optimal margin classifiers. In: Proceedings of the Fifth Annual Workshop on Computational Learning Theory, pp. 144–152. ACM, July 1992

    Google Scholar 

  6. Boukhechba, M., Cai, L., Wu, C., Barnes, L.E.: ActiPPG: using deep neural networks for activity recognition from wrist-worn photoplethysmography (PPG) sensors. Smart Health 14, 100082 (2019)

    Article  Google Scholar 

  7. Boukhechba, M., Chow, P., Fua, K., Teachman, B.A., Barnes, L.E.: Predicting social anxiety from global positioning system traces of college students: feasibility study. JMIR Ment. Health 5(3), e10101 (2018)

    Article  Google Scholar 

  8. Boukhechba, M., Daros, A.R., Fua, K., Chow, P.I., Teachman, B.A., Barnes, L.E.: DemonicSalmon: monitoring mental health and social interactions of college students using smartphones. Smart Health 9, 192–203 (2018)

    Article  Google Scholar 

  9. Breiman, L.: Arcing the edge. Technical report 486, Statistics Department, University of California at Berkeley (1997)

    Google Scholar 

  10. Breiman, L.: Bagging predictors. Technical report 421, Department of Statistics, University of California at Berkeley (1994)

    Google Scholar 

  11. Brophy, E., Veiga, J.J.D., Wang, Z., Smeaton, A.F., Ward, T.E.: An interpretable machine vision approach to human activity recognition using photoplethysmograph sensor data. arXiv preprint arXiv:1812.00668 (2018)

  12. Casale, P., Pujol, O., Radeva, P.: Human activity recognition from accelerometer data using a wearable device. In: Vitrià, J., Sanches, J.M., Hernández, M. (eds.) IbPRIA 2011. LNCS, vol. 6669, pp. 289–296. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-21257-4_36

    Chapter  Google Scholar 

  13. Cochran, W.T., et al.: What is the fast Fourier transform? Proc. IEEE 55(10), 1664–1674 (1967)

    Article  Google Scholar 

  14. Cooley, J.W., Lewis, P., Welch, P.: Application of the fast Fourier transform to computation of Fourier integrals, Fourier series, and convolution integrals. IEEE Trans. Audio Electroacoust. 15(2), 79–84 (1967)

    Article  Google Scholar 

  15. Dudani, S.A.: The distance-weighted k-nearest neighbor rule. IEEE Trans. Syst. Man Cybern. 8(4), 311–313 (1978)

    Article  Google Scholar 

  16. Empatica E4 wristband (2019). https://www.empatica.com/en-eu/research/e4/. Accessed 20 Sept 2019

  17. Fitzpatrick, T.B.: The validity and practicality of sun-reactive skin types I through VI. Arch. Dermatol. 124(6), 869–871 (1988)

    Article  Google Scholar 

  18. Gogas, P., Papadimitriou, T., Sofianos, E.: Money neutrality, monetary aggregates and machine learning. Algorithms 12(7), 137 (2019)

    Article  MathSciNet  Google Scholar 

  19. Hechenbichler, K., Schliep, K.: Weighted k-nearest-neighbor techniques and ordinal classification (2004)

    Google Scholar 

  20. Incel, O.D., Kose, M., Ersoy, C.: A review and taxonomy of activity recognition on mobile phones. BioNanoScience 3(2), 145–171 (2013). https://doi.org/10.1007/s12668-013-0088-3

    Article  Google Scholar 

  21. Joutsijoki, H., Juhola, M.: Comparing the one-vs-one and one-vs-all methods in benthic macroinvertebrate image classification. In: Perner, P. (ed.) MLDM 2011. LNCS (LNAI), vol. 6871, pp. 399–413. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-23199-5_30

    Chapter  Google Scholar 

  22. Pirttikangas, S., Fujinami, K., Nakajima, T.: Feature selection and activity recognition from wearable sensors. In: Youn, H.Y., Kim, M., Morikawa, H. (eds.) UCS 2006. LNCS, vol. 4239, pp. 516–527. Springer, Heidelberg (2006). https://doi.org/10.1007/11890348_39

    Chapter  Google Scholar 

  23. Reiss, A., Indlekofer, I., Schmidt, P., Van Laerhoven, K.: Deep PPG: large-scale heart rate estimation with convolutional neural networks. Sensors 19(14), 3079 (2019)

    Article  Google Scholar 

  24. Reiss, A., Schmidt, P., Indlekofer, I., Van Laerhoven, K.: PPG-based heart rate estimation with time-frequency spectra: a deep learning approach. In: Proceedings of the 2018 ACM International Joint Conference and 2018 International Symposium on Pervasive and Ubiquitous Computing and Wearable Computers, pp. 1283–1292. ACM, October 2018

    Google Scholar 

  25. RespiBAN Professional (2019). https://www.biosignalsplux.com/index.php/respiban-professional. Accessed 20 Sept 2019

  26. Rifkin, R., Klautau, A.: In defense of one-vs-all classification. J. Mach. Learn. Res. 5(Jan), 101–141 (2004)

    Google Scholar 

  27. Salehizadeh, S., Dao, D., Bolkhovsky, J., Cho, C., Mendelson, Y., Chon, K.H.: A novel time-varying spectral filtering algorithm for reconstruction of motion artifact corrupted heart rate signals during intense physical activities using a wearable photoplethysmogram sensor. Sensors 16(1), 10 (2016)

    Article  Google Scholar 

  28. Schäck, T., Muma, M., Zoubir, A.M.: Computationally efficient heart rate estimation during physical exercise using photoplethysmographic signals. In: 2017 25th European Signal Processing Conference (EUSIPCO), pp. 2478–2481. IEEE, August 2017

    Google Scholar 

  29. Schapire, R.E., Freund, Y., Bartlett, P., Lee, W.S.: Boosting the margin: a new explanation for the effectiveness of voting methods. Ann. Stat. 26(5), 1651–1686 (1998)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Antonios Papaleonidas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Psathas, A.P., Papaleonidas, A., Iliadis, L. (2020). Machine Learning Modeling of Human Activity Using PPG Signals. In: Nguyen, N.T., Hoang, B.H., Huynh, C.P., Hwang, D., Trawiński, B., Vossen, G. (eds) Computational Collective Intelligence. ICCCI 2020. Lecture Notes in Computer Science(), vol 12496. Springer, Cham. https://doi.org/10.1007/978-3-030-63007-2_42

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63007-2_42

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63006-5

  • Online ISBN: 978-3-030-63007-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics