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Abstract
In current deep learning paradigms, local training
or the Standalone framework tends to result in over-
fitting and thus poor generalizability. This prob-
lem can be addressed by Distributed or Federated
Learning (FL) that leverages a parameter server
to aggregate model updates from individual par-
ticipants. However, most existing Distributed or
FL frameworks have overlooked an important as-
pect of participation: collaborative fairness. In
particular, all participants can receive the same or
similar models, regardless of their contributions.
To address this issue, we investigate the collab-
orative fairness in FL, and propose a novel Col-
laborative Fair Federated Learning (CFFL) frame-
work which utilizes reputation to enforce partici-
pants to converge to different models, thus achiev-
ing fairness without compromising the predictive
performance. Extensive experiments on bench-
mark datasets demonstrate that CFFL achieves high
fairness, delivers comparable accuracy to the Dis-
tributed framework, and outperforms the Stan-
dalone framework. Our code is available on github.

1 Introduction
Training complex deep neural networks on large-scale
datasets is computationally expensive so it may not be fea-
sible by a single participant. Moreover, training a complex
model on a limited local dataset may lead to poor general-
izability. In this context, Federated Learning (FL) emerged
as a promising paradigm, as it provides a way for multiple
devices/participants to jointly train a model whiling keep-
ing their datasets local. The objective of FL is to derive a
global model with better generalizability by leveraging the
local datasets from multiple participants [1].

However, most of the current FL paradigms [1–4] allow
all participants to receive the same federated model in each
communication round and in the end, regardless of their con-
tributions. This is obviously unfair, because in practice not all
participants contribute equally due to various reasons, such
as the diverse quality/quantity of the data owned by differ-
ent participants. Therefore, the data from some participants
may lead to good model updates while updates from some

other participants can even impair the model performance.
Consider a motivating practical example: several banks may
want to collaborate to build a credit score predictor for small
and medium enterprises. However, larger banks with more
data may be reluctant to train their local model based on high
quality local data because sharing these high quality model
parameters with smaller banks may potentially erode the mar-
ket share of the larger bank [5]. Furthermore, as the paradigm
cannot distinguish the participants with high contributions
from the ones with relatively low contributions, it is vulnera-
ble to free-riders. Hence, lacking collaborative fairness may
hinder the formation and progress of a healthy FL ecosys-
tem. Existing research on fairness mostly focuses on miti-
gating potential bias introduced to the model towards certain
attributes [6, 7]. The problem of treating the FL participants
fairly according to their contributions remains open [5].

For any proposed solution or framework to be practical, it
is essential to achieve fairness not at the cost of model per-
formance. In this work, we address this problem of treating
FL participants fairly based on their contributions by propos-
ing a Collaborative Fair Federated Learning (CFFL) frame-
work. Unlike existing work such as [8] which requires ex-
ternal monetary incentives for good behaviour, CFFL makes
fundamental changes to the learning process in FL so that
the participants will receive models with performance com-
mensurate with their contributions, instead of the same FL
model. CFFL achieves collaborative fairness with a reputa-
tion mechanism, which evaluates the contributions of the par-
ticipants in the learning process and iteratively updates their
respective reputations. We highlight the practical relevance
of our CFFL in horizontally federated learning (HFL) to busi-
nesses (H2B) [9], such as biomedical or financial institutions
to whom collaborative fairness is very important.

Our work aims to achieve collaborative fairness in FL by
adjusting the performance of the models allocated to each
participant based on their contributions [10,11]. Experiments
on benchmark datasets demonstrate that CFFL achieves the
highest fairness. In terms of utility, the accuracy of the most
contributive participant in CFFL is comparable to that of
the Distributed framework, and higher than that of the Stan-
dalone framework. In the following sections, we interchange-
ably use Distributed/Federated.
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2 Related Work
In this section, we review the relevant literature on fairness in
FL to position our research in relation to existing research.

One existing approach for promoting collaborative fair-
ness among federated participants is based on incentive
schemes [3]. In principle, participants shall receive payoffs
commensurate with their contributions. Equal division is an
example of egalitarian profit-sharing [12]. Under this scheme,
the available total payoff at a given round is equally divided
among all participants. Under the Individual profit-sharing
scheme [12], each participant i’s own contribution to the col-
lective (assuming a singleton collective of i) is used to deter-
mine his share of the total payoff.

The Labour Union game [13] profit-sharing scheme deter-
mines a participant’s share of the total payoff based on his
marginal contribution to the utility of the collective formed
by his predecessors. The Fair-value game scheme [13] is a
marginal loss-based scheme. Under this scheme, a partic-
ipant’s share of the total payoff is determined according to
the sequence of the participants leaving the collective. The
Shapley game profit-sharing scheme [13] is also a marginal
contribution-based scheme. Unlike the Labour Union game,
Shapley game aims to eliminate the effect of the sequence in
which the participants join the collective in order to obtain a
fairer estimate of their marginal contributions to the collec-
tive. However, the complexity of this approach is exponential
in the number of participants, making it prohibitively expen-
sive for large-scaled FL in practice.

For gradient-based FL approaches, the gradient informa-
tion can be regarded as a useful source of data. However, in
these cases, output agreement-based rewards are hard to ap-
ply as mutual information requires a multi-task setting which
is usually not present in such cases. Thus, among these three
categories of schemes, model accuracy is the most relevant
way of designing rewards for FL. There are two emerging
federated learning incentive schemes focused on model im-
provement.

Richardson et al. [14] proposed a scheme which pays for
marginal improvements brought about by model updates. The
sum of improvements might result in overestimation of con-
tribution. Thus, the proposed approach also includes a model
for correcting the overestimation issue. This scheme ensures
that payment is proportional to model quality improvement,
which means the budget for achieving a target model qual-
ity level is predictable. It also ensures that data owners who
submit model updates early receive a higher reward. This in
turn motivates them to participate even in early stages of the
federated model training process.

Yu et al. [8] proposed a joint objective optimization-based
approach that in addition to the contributions of the partici-
pants, takes costs and waiting time into account in order to
achieve additional notions of fairness when distributing pay-
offs to the FL participants.

3 The CFFL Framework
3.1 Collaborative Fairness
Different from the existing approaches, our proposed frame-
work provides an alternative paradigm, in which participants

are allocated with different versions of the FL model with per-
formance commensurate with their contributions. Under this
context, we define collaborative fairness as follows.

Definition 1. Collaborative fairness. In a federated system, a
high-contribution participant should be rewarded with a bet-
ter performing local model than a low-contribution partici-
pant. Mathematically, fairness can be quantified by the cor-
relation coefficient between the contributions of participants
and their respective final model accuracies.

3.2 Fairness via Reputation
In our CFFL, we modify FL by allowing participants to down-
load only the allocated aggregated updates according to their
reputations. The server manages a reputation list for all par-
ticipants, and updates it according to the quality of the up-
loaded gradients of each participant in each communication
round. The upload rate – θu – denotes the proportion of pa-
rameters of which gradients are uploaded, i.e., if θu = 1,
gradients of all parameters are uploaded; if θu = 0.1, gra-
dients of only 10% the parameters are uploaded. We further
denote the selected set of gradients as S, corresponding to
θu gradients selected according to the “largest values” cri-
terion: sort the gradients in ∆wj (by their magnitude), and
upload θu of them, starting from the largest. Specifically, the
server separately evaluates the validation accuracy of partici-
pant j by integrating j’s uploaded gradients. In particular, if
θu = 1, ∆(wj)

S , ∆wj , the server can derive participant
j’s entire model wj , as all participants are initialized with
the same parameters in the beginning. The server then com-
putes the validation accuracy of participant j based on wj as
vaccj ← V (wj + ∆(wj)

S), here V denotes the validation
dataset. If θu 6= 1, the server simply integrates participant j’s
uploaded gradients ∆(wj)

S into an auxiliary model wg kept
by the server to compute participant j’s validation accuracy as
vaccj ← V (wg + ∆(wj)

S). Note wg is an auxiliary model
maintained by the server to aggregate gradients and calculate
participants’ reputations, and its parameters are not broadcast
to individual participants as in the standard FL systems.

Then the server normalizes vaccj and passes the normal-
ized vaccj through a sinh(α) function in Eq. (1) to calcu-
late the reputation cj of participant j in each communication
round.

cj = sinh(α ∗ x) (1)

Here x is the normalized vaccj , so the higher x, the more in-
formative participant j’s uploaded gradients are. sinh(α) is
introduced as a punishment function, and α denotes the pun-
ishment factor, used to distinguish the reputations among par-
ticipants based on how informative their uploaded gradients
are. The server iteratively updates the reputation of each par-
ticipant separately based on the calculated reputation in each
round and its historical reputation. The high-contribution par-
ticipant will be highly rated by the server, while the low-
contribution participant can be detected and even isolated
from the federated system, avoiding the low-contribution par-
ticipants from dominating the whole system, or free-riding.

This computed reputation determines the number of aggre-
gated gradients each participant will be allocated in the sub-
sequent communication round. The higher the reputation of



participant j, the more aggregated gradients will be allocated
to participant j. The aggregated gradients refer to the col-
lection of gradients from all participants, and are used here
as a form of reward in each communication round. The de-
tailed realization of CFFL is in Algorithm 1. In each com-
munication round, each participant uploads θu fraction of
clipped gradients to the server, and server updates the rep-
utation based on the performance of these uploaded gradients
on a validation set, and determines the number of aggregated
updates to allocate to each participant. We adopt gradient
clipping to reduce the impact of noise from abnormal exam-
ples/outliers.

3.3 Quantification of Fairness
In this work, we quantify collaborative fairness via the corre-
lation coefficient between participant contributions (X-axis:
test accuracies of standalone models which characterize their
individual learning capabilities on their own local datasets)
and participant rewards (Y-axis: test accuracies of final mod-
els received by the participants).

Participants with higher standalone accuracies empirically
contribute more. Therefore, the X-axis can be expressed by
Equation 2, where saccj denotes the standalone model accu-
racy of participant j:

x = {sacc1, · · · , saccn} (2)

Similarly, Y-axis can be expressed by Equation 3, where
accj represents the final model accuracy of participant j:

y = {acc1, · · · , accn} (3)

As the Y-axis measures the respective model performance
of different participants after collaboration, it is expected to
be positively correlated with the X-axis for a good measure of
fairness. Hence, we formally quantify collaborative fairness
in Equation 4:

rxy =

∑n
i=1(xi − x̄)(yi − ȳ)

(n− 1)sxsy
(4)

where x̄ and ȳ are the sample means of x and y, sx and sy
are the corrected standard deviations. The range of fairness
falls within [-1,1], with higher values implying good fairness.
Conversely, negative coefficient implies poor fairness.

4 Experimental Evaluation
4.1 Datasets
We implement experiments on two benchmark datasets. The
first is the MNIST dataset1 for handwritten digit recognition,
consisting of 60,000 training examples and 10,000 test exam-
ples. The second is the Adult Census dataset2. This dataset is
commonly used to predict whether an individual makes over
50K dollars in a year (binary). There are total 48,843 records,
we manually balance the dataset to have 11687 records over
50K and 11687 records under 50K, resulting in total 23374
records. We then conduct an 80-20 train-test split. For all
datasets, we randomly choose 10% of training examples as
the validation set.

1http://yann.lecun.com/exdb/mnist/
2http://archive.ics.uci.edu/ml/datasets/Adult

Algorithm 1 Collaborative Fair Federated Learning
Input: reputable participant set R; auxiliary model wg kept by

server; local model wj ; local model updates ∆wj ; upload
rate θu; validation set V ; local epochs E; coj : reputation of
previous round; Dj : data owned by each participant; data
shard vector n = {n1, · · · , n|R|}; class shard vector class =
{class1, · · · , class|R|}.

Role: participant j
if j ∈ R then

Runs SGD on local data by using current local model wj and
computes gradient vector: ∆wj ← SGD(wj , Dj)

Clips gradient vector: ∆wj ← clip(∆wj)
Sends the selected gradients ∆(wj)

S of size θu ∗ |∆wj | to
the server, according to the “largest values” criterion;

Downloads the allocated updates from the server, which is
then integrated with all its local updates as: w′

j ← wj +

∆wj +∆wj
g−

nj

max(n)
∆(wj)

S (imbalanced data size) or w′
j ←

wj+∆wj+∆wj
g−

classj
max(class)

∆(wj)
S (imbalanced class num-

ber).
end if

Role: Server
Updates aggregation:
if data size is imbalanced then

∆wg ←
∑

j∈R∆(wj)
S × nj

sum(n)
.

end if
if class number is imbalanced then

∆wg ←
∑

j∈R∆(wj)
S × classj

max(class)
.

end if
if θu = 1 then

for j ∈ R do
vaccj ← V (wj + ∆(wj)

S).
Updates local model of participant j kept by the server:

w′
j ← wj + ∆(wj)

S for next round of reputation evaluation.
end for

else
for j ∈ R do

vaccj ← V (wg + ∆(wj)
S).

end for
Updates temp model maintained by server w′

g = wg + ∆wg

for next round of reputation evaluation.
end if
for j ∈ R do

cj ← sinh(α ∗ vaccj∑
j∈R

vaccj
), c′j ← coj ∗ 0.5 + cj ∗ 0.5

end for
Reputation normalisation: c′j ←

c′j∑
j∈R

c′j

if cj ′ < cth then
R← R \ {j}, repeat reputation normalisation.

end if
for j ∈ R do

if data size is imbalanced then
numj ←

c′j
max(c)

∗ nj

max(n)
∗ |∆wg|

end if
if class number is imbalanced then

numj ←
c′j

max(c)
∗ classj

max(class)
∗ |∆wg|

end if
Groups numj aggregated updates into ∆wj

g according to
the “largest values” criterion, and allocates an adjusted ver-
sion ∆wj

g −
nj

max(n)
∆(wj)

S (imbalanced data size) or ∆wj
g −

classj
max(class)

∆(wj)
S (imbalanced class number) to participant j.

end for

http://yann.lecun.com/exdb/mnist/
http://archive.ics.uci.edu/ml/datasets/Adult


4.2 Baselines
We demonstrate the effectiveness of our proposed CFFL
framework through comparison with the following frame-
works.

Standalone framework allows participants to train stan-
dalone models on local datasets without collaboration. This
framework delivers minimum utility, because each participant
is susceptible to falling into local optima when training alone.
In addition, we remark that there is no concrete concept of
collaborative fairness in the Standalone framework, because
participants do not collaborate.

Distributed framework enables participants to train in-
dependently and concurrently, and share their gradients or
model parameters to achieve a better global model. For com-
parison, we choose two representative Distributed baselines,
including FedAvg [1] and DSSGD [15].

Furthermore, we investigate different upload rates θu =
0.1 and θu = 1 [15], where gradients are uploaded according
to the “largest values” criterion when θu = 0.1. The ratio-
nale behind introducing an upload rate less than 1 is to reduce
overfitting and to save communication overhead.

4.3 Experimental Setup
Due to the fact that the data are often heterogeneous across
participants both in terms of size and distribution, we investi-
gate the following two realistic scenarios:

Imbalanced data size. To simulate data size het-
erogeneity, we follow a power law to randomly par-
tition total {3000,6000,12000} MNIST examples among
{5,10,20} participants respectively. Similarly, for Adult
dataset, {4000,8000,12000} examples are randomly parti-
tioned among {5,10,20} participants. In this way, each par-
ticipant has a distinctly different number of examples, with
the first participant has the least and the last participant has
the most. We remark that the purpose of allocating on av-
erage 600 MNIST examples for each participant is to fairly
compare with Shokri et al. [15], where each participant has a
small number of 600 local examples to simulate data scarcity
which necessitates collaboration.

Imbalanced class numbers. To examine data distribu-
tion heterogeneity, we vary the class numbers in the data
of each participant, increasing from the first participant to
the last. For this scenario, we only investigate the MNIST
dataset. We distribute classes in a linspace manner, for exam-
ple, participant-{1, 2, 3, 4, 5} own {1,3,5,7,10} classes from
MNIST dataset respectively. In more detail, for MNIST with
total 10 classes and 5 participants, we simulate the first partic-
ipant has data from only 1 class, while the last participant has
data from 10 classes. We first partition the training dataset
according to the labels, and then sample and assign subsets
of training data with corresponding labels to the participants.
Note that each participant still has the same number of exam-
ples, i.e., 600 examples.

Model and Hyper-Parameters. For MNIST Imbalanced
data size experiment, we use a two-layer fully connected neu-
ral network with 128 and 64 units respectively. The hy-
perparameters are: local epochs E = 2, local batch size
B = 16, and local learning rate lr = 0.15 for P = 5 and
lr = 0.25 for P = {10, 20}, with exponential decay of

γ = 0.977, gradient clipping between [−0.01, 0.01], with a
total of 30 communication rounds. For MNIST Imbalanced
class numbers experiment, the same neural network architec-
ture is used. The hyperparameters are: local epochs E = 1,
local batch size B = 16, and local learning rate lr = 0.15
for P = {5, 10, 20}, with exponential decay of γ = 0.977,
gradient clipping between [−0.01, 0.01], with a total of 50
communication rounds. For Adult, we use a single layer fully
connected neural network with 32 units. The hyperparam-
eters are: local epochs E = 2, local batch size B = 16,
and local learning rate lr = 0.03 with exponential decay of
γ = 0.977, gradient clipping between [−0.01, 0.01], with a
total of 30 communication rounds.

Furthermore, to reduce the impact of different initializa-
tions and avoid non-convergence, we initialize the same
model parameter w0 for all participants and the server wg .
For all the experiments, we empirically set the reputation
threshold via grid search as follows: cth = 1

|R| ∗
1
3 for imbal-

anced data size, and cth = 1
|R| ∗

1
6 for imbalanced class num-

bers, where |R| is the number of participants with reputations
higher than the threshold. For the punishment factor, we em-
pirically choose α = 5. Stochastic Gradient Descent(SGD)
is used as the optimization technique throughout.

Communication Protocol. In standard FL, one global
model is given to all participants, both during and at the end
of the training process. Such a setup forbids the calculation of
our definition of fairness via the pearson coefficient, when all
participants have the same reward. To mitigate this, we fol-
low [15] to adopt the round-robin communication protocol for
DSSGD and FedAvg. In each communication round, partici-
pants upload parameter updates and download parameters in
sequence, leading to models with insignificant performance
differences, so that their test accuracies can be used for the
calculation of fairness.

4.4 Experimental Results
Fairness comparison. Table 1 lists the calculated fairness
of DSSGD, FedAvg and CFFL over MNIST and Adult under
varying participant number settings from {5, 10, 20}, differ-
ent pretraining status from {1, 0}, and different upload rates
θu from {0.1, 1}. From the high values of fairness (some
close to the theoretical limit of 1.0), we conclude that CFFL
achieves good fairness, confirming the intuition behind our
notion of fairness: the participants with higher contributions
are rewarded with better-performing models. Moreover, pre-
train=1 can lead to slightly higher fairness than pretrain=0.
This is attributed to the individual pretraining of 5 epochs
before collaborative learning starts, because the participants’
models have already moved towards their respective model
optimum. Note that pretraining is only conducted for CFFL.
We also observe that DSSGD and FedAvg yield significantly
lower fairness than our CFFL. This is expected since neither
the communication protocol nor the learning algorithm incor-
porates the concept of fairness.

Accuracy comparison. Table 2 reports the correspond-
ing accuracies on MNIST and Adult datasets of {5, 10, 20}
participants when θu = 0.1. Here we report the best accu-
racy achieved among the participants, because CFFL enables



Table 1: Fairness [%] of DSSGD, FedAvg and CFFL under varying participant number settings (P-k), pretraining status and upload rate θu. .

Dataset MNIST Adult
Framework FedAvg DSSGD CFFL FedAvg DSSGD CFFL

Pretrain NA NA 1 0 NA NA 1 0
θu NA 0.1 1 0.1 1 0.1 1 NA 0.1 1 0.1 1 0.1 1
P5 3.08 90.72 84.61 99.63 98.66 99.76 99.02 -3.33 15.61 35.71 98.50 97.75 98.44 99.37

P10 -50.47 -78.18 90.67 97.90 97.30 98.55 98.74 44.27 62.30 56.60 88.00 93.07 92.00 91.95
P20 60.41 -81.77 80.45 99.23 96.28 98.52 98.51 -34.32 60.30 58.01 84.41 82.46 80.56 79.52

Table 2: Maximum Accuracy [%] over MNIST and Adult of vary-
ing participant number settings, achieved by DSSGD, FedAvg, Stan-
dalone framework, and our CFFL (θu = 0.1, where CFFL* denotes
CFFL with pretraining).

Framework MNIST Adult
P5 P10 P20 P5 P10 P20

DSSGD 93.28 94.20 82.36 81.94 82.78 82.07
FedAvg 93.62 95.32 96.26 82.58 83.14 83.16
Standalone 90.30 90.88 90.64 81.93 82.31 82.07
CFFL 91.83 93.00 93.25 81.96 82.63 82.72
CFFL* 91.85 92.85 93.34 81.89 82.63 82.63

participants to converge to different final models, so we ex-
pect the most contributive participant to receive a model with
the highest accuracy comparable to both Distributed frame-
works. For the Standalone framework, we show the accuracy
of the same participant. It can be observed that CFFL obtains
comparable accuracy to DSSGD and FedAvg, and always at-
tains higher accuracy than the Standalone framework. For ex-
ample, for MNIST with 20 participants, our CFFL (CFFL*)
achieves 93.25 (93.34)% test accuracy, higher than the Stan-
dalone framework (90.64%), and slightly lower than FedAvg
(96.26%). The observation that DSSGD achieves lowest ac-
curacy in this setting can be attributed to its higher instability
and fluctuations during training.

Individual model performance. To examine the impact
of our CFFL on individual convergence, Figure 1 plots the
test accuracy of each participant for the Standalone frame-
work and CFFL with upload rate of {0.1, 1} and with/without
pretraining over MNIST across 30 (communication) rounds.
It can be observed that our CFFL consistently delivers better
accuracy than the standalone model of any participant. Im-
portantly, it confirms that our CFFL enforces the participants
to converge to different local models, which are still better
than their standalone models without collaboration, thereby
offering fairness and utility as claimed. We also observe
slight fluctuations at the beginning of training. This can be
attributed to the fact that participants are allocated with dif-
ferent aggregated updates from the server. As we can see
from these figures, the convergence curves for CFFL (with
pretrain) and CFFL (w/o pretrain) follow the similar trend,
confirming that pretraining does not alter the overall con-
vergence behaviour, but provides relatively better fairness in
most cases.

For imbalanced class numbers, Figure 3 shows individual
model accuracy in the Standalone framework and our CFFL.
We see that all participants achieve higher accuracies in CFFL
than their standalone counterparts. Similar to the scenario
of imbalanced data size, all participants converge to different

final models, but with more obvious accuracy gaps, resulting
in higher fairness. Moreover, it takes longer for participants
to converge when there are more participants in the system.

5 Discussions
Robustness to Free-riders. In an FL system, there may exist
free-riders who aim to benefit from the global model, without
really contributing. Typically, free-riders may pretend to be
contributing by uploading random or noisy updates. In stan-
dard FL systems, there is no specific safeguard against this,
so even free-riders can enjoy the system’s global model at
virtually no cost. Conversely, CFFL can automatically iden-
tify and isolate free-riders. This is because the empirical util-
ity (on the validation set) of the random or noisy gradients
is generally low. As collaborative training proceeds, the free-
riders will receive gradually lower reputations, and eventually
be isolated from the system when their reputations fall below
the reputation threshold. Through our additional experiments
(including 1 free rider who always uploads random values as
gradients), we observe that our CFFL can always identify and
isolate the free rider at the early stages of collaboration, with-
out affecting both accuracy and convergence.

Choice of Reputation Threshold. Using a reputation
threshold cth allows the server to enforce a lower bound on
the reputation. This can be used to detect and isolate the free-
rider in the system. A key challenge lies in the selection of
an appropriate threshold, as fairness and accuracy may be
inversely affected. For example, too small cth might allow
low-contribution participant to sneak into the federated sys-
tem without being detected and isolated. On the contrary, too
large cth might isolate too many participants in the system.
In our experiments, we empirically find suitable values for
different scenarios.

6 Conclusion and Future Work
This work initiates the research on collaborative fairness in
federated learning (FL), and modifies FL to enforce partici-
pants to converge to different models. A novel collaborative
fair federated learning framework named CFFL is proposed.
Based on empirical individual model performance on a vali-
dation set, a reputation mechanism is introduced to mediate
participant rewards across communication rounds. Experi-
mental results demonstrate that CFFL achieves comparable
accuracy to two Distributed frameworks, and always achieves
better accuracy than the Standalone framework, confirming
the effectiveness of CFFL in terms of both fairness and util-
ity. A number of avenues for further work are appealing. In
particular, we would like to study how to quantify fairness



Figure 1: Individual convergence for MNIST using Standalone framework and our CFFL. The 3 rows correspond to {5, 10, 20} participants,
the 5 columns correspond to {Standalone, CFFL with θu = 0.1 and pretrain, CFFL with θu = 1 and pretrain, CFFL with θu = 0.1 but
without pretrain, CFFL with θu = 1 but without pretrain}.

Figure 2: Individual convergence for Adult using Standalone framework and our CFFL. The 3 rows correspond to {5, 10, 20} participants,
the 5 columns correspond to {Standalone, CFFL with θu = 0.1 and pretrain, CFFL with θu = 1 and pretrain, CFFL with θu = 0.1 but
without pretrain, CFFL with θu = 1 but without pretrain}.

in more complex settings, and apply our framework to var-
ious domains, such as financial, biomedical, speech, NLP,
etc. Furthermore, we would like to systematically integrate
robustness with fairness. It is expected that our system can
find wide applications in real world.
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