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ABSTRACT

The overall objective of the thesis is to support an effective analysis of microservice-based
applications and the automation of their deployment over container-based platforms. The
main contributions of the thesis are (i) a methodology for automating the detection of

architectural smells possibly violating some main principle of microservices, and for resolving such
smells via architectural refactorings, (ii) a technique for completing an application specification
by automatically discovering Docker-based runtime environments capable of supporting the
application components, and (iii) an architectural approach for effectively deploying microservice-
based applications on top of existing container orchestrators, by also allowing to manage the
lifecycle of microservices independently of the lifecycle of the containers hosting them. All the
aforementioned solutions have been implemented into running prototypes and tested on concrete
case studies, involving third-party software solutions.
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INTRODUCTION

C loud computing permits running on-demand distributed applications at a fraction of

the cost which was necessary just a few years ago [10]. This has revolutionised the

way enterprise applications are built by the IT industry, where monoliths are giving

way to distributed, service-based architectures. Microservice-based architectures are indeed

increasingly considered an enabling approach to shorten the lead time in software development

and to effectively scale software application deployments [108, 121]. The interest in microservice-

based architectures is witnessed by their adoption by the major IT companies (e.g., Amazon,

Facebook, Google, Netflix and Spotify).

Microservices are an approach to developing a single application as a suite of small services,

each running in its own process and communicating with lightweight mechanisms, e.g., HTTP

resource API [108]. Microservice-based architectures can be seen as service-oriented architectures

that satisfy some key principles [169]. These include shaping services around business concepts,

adopting a culture of automation, decentralising all aspects of microservices (from governance

to data management), ensuring their independent deployability and scalability, and isolating

failures [121]. Given that microservices have solid module boundaries, different services can be

written in different programming languages and they can also be managed by different teams of

developers [108].

Microservices are typically deployed in the cloud by exploiting container-based virtuali-

sation [24, 128]. Container-based virtualisation has gained significant acceptance, because it

provides a lightweight solution for running multiple isolated user-space instances (called con-

tainers). Such instances are particularly suited to package, deploy and manage service-based

applications [14]. Developers can bundle each service along with the dependencies they need to

run in isolated containers and execute them on top of a container run time (e.g., Docker [58],
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CHAPTER 1. INTRODUCTION

Rkt [50], Dynos [87]).

Container orchestrators (e.g., Docker Compose [63], Kubernetes [157]) allow to automate

the deployment and management of containers. They indeed permit scaling, discovering, load-

balancing and interconnecting containers over clusters of hosts. Compared to other existing

virtualisation approaches, like virtual machines, containers feature faster start-up times and

less overhead [98, 102, 110].

Microservice-based applications can be composed of hundreds of interacting microservices. As the

number of microservices in an architecture increases, designing a microservice-based application

and checking whether it adheres to the main design principles of microservices (e.g., horizontal

scalability, isolation of failure, decentralization), and —if not— understanding how to refactor it,

are two key issues [147, 151]. Even if there exist tools for automatically detecting architectural

smells in software applications (e.g., those reported by [11]), to the best of our knowledge, such

tools do not permit to automatically identify and refactor architectural smells possibly violating

the key design principles of microservices. As a result, such a kind of analyses/refactorings is

currently to be manually performed.

In addition, the current support for containerising microservices should be enhanced. More

precisely, developers and operators are currently required to manually package each microservice

in a proper container [121], by manually identifying and configuring a container capable of satis-

fying the deployment requirements of a microservice, i.e., providing the runtime environment it

needs to run (e.g., operating system, libraries). Such a process must be manually repeated when-

ever a developer wishes to modify the runtime environment actually used to run a microservice,

e.g., because the latter has been updated and it now needs additional software support.

As a result, designing the architecture of a microservice-based application and planning its

actual container-based deployment is inherently hard. The following is indeed widely recognised

as a key research challenge:

How to effectively design microservice-based applications and deploy them over

container-based platforms is a major challenge in enterprise IT [95, 130, 131].

1.1 Research objectives and research contributions

This thesis aims at proposing proper solutions for tackling the aforementioned research challenge.

In particular, this thesis aims at advancing the state-of-the-art on: (o1) Analysing and refactoring

microservices, (o2) Automatically packaging microservices, and (o3) Enacting the deployment of

microservices. In the following, we discuss the three main research objectives (i.e., o1, o2, o3) and

for each research objective we summarize the research contributions.
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1.1. RESEARCH OBJECTIVES AND RESEARCH CONTRIBUTIONS

(o1) Analysing and refactoring microservices

There is a need for design-time methodologies to systematically identify architectural smells

possibly violating key design principles of microservices, and to select architectural refactorings

allowing to resolve such smells. To support such a kind of analyses, we first aim at providing

a suitable modelling for microservices. Such modelling should allow describing the structure

of microservice-based architectures and the interactions among microservices. We then aim

at proposing methodologies that, based on such modelling, allow to identify the occurrence of

architectural smells in a microservice-based application, and to concretely illustrate how to

refactor its architecture to resolve the identified smells.

In this thesis, we first provide a taxonomy that singles out the set of architectural smells

possibly violating some main principles of microservices, by also eliciting the corresponding

architectural refactorings (Chapter 2). The currently available information on architectural

smells indicating possible violations of the design principles of microservices is scattered over

a considerable amount of literature. Unfortunately, this makes it difficult to consult the body

of knowledge on the topic, both for researchers willing to investigate on microservices and for

practitioners daily working with them. In this thesis, we analyse such literature, in order to

identify the most recognised smells, as well as architectural refactorings for resolving the smells

occurring in a microservice-based application. The result of such analysis is a taxonomy of design

principles, architectural smells and corresponding refactorings.

Starting from the above mentioned taxonomy, we then propose a design-time methodology

to identify the architectural smells affecting a microservice-based application, and to select

refactorings allowing to resolve such smells (Chapter 3). A convenient way to represent service-

based applications is by using a topology graph [18], whose nodes represent the application

components, and whose arcs represent the dependencies among such components. The Topology

and Orchestration Specification for Cloud Applications (TOSCA [124]) meets this intuition, by

providing a standardised modelling language for representing the topology of a cloud application.

We hence propose a model for describing the architecture of a microservice-based application

with the OASIS standard TOSCA. We indeed introduce the µTOSCA model, which allows de-

scribing service-based architectures as typed directed graphs, where nodes represent software

components forming an architecture (e.g., services and databases), and arcs represent the inter-

actions occurring among such components. In addition, µTOSCA permits also to associate nodes

to the teams responsible of such nodes.

To illustrate the feasibility of our approach supporting the design of microservice-based

applications, we also present a prototype tool (called µFRESHENER). µFRESHENER provides a

web-based graphical user interface for (i) creating the µTOSCA representation of microservice-

based applications, (ii) automatically identifying architectural smells in represented applications

and (iii) exploring/applying architectural refactorings for resolving the identified smells.

5



CHAPTER 1. INTRODUCTION

(o2) Automatically packaging microservices

The availability of techniques for automatically packaging each microservice in a proper container

is also crucial for supporting the deployment of microservices. Our aim is hence to propose a

solution where developers can describe only the microservices forming an application, and

the software support needed by each microservice. Such a description should then be fed to

tools capable of automatically searching the (image of) containers that satisfy the software

requirements of each microservice. In this thesis, we define techniques for automatically searching

the (image of) containers and for automatically packaging each microservice in the proper

container.

Developers and operators are currently required to manually select and configure an appro-

priate runtime environment for each component forming their microservice-based applications.

Such a process must then be manually repeated whenever a developer wishes to modify the

virtual environment actually used to run a microservice, e.g., because the latter has been updated

and it now needs additional software support. Our objective is instead to allow developers to

describe only the components forming an application, the dependencies occurring among such

components, and the software support needed by each component [17].

In this thesis, we hence propose techniques for automatically packaging each microservice

in the proper environment (Chapter 4). We first propose a TOSCA-based representation for

multi-component applications, and we show how to use it to specify only the components forming

an application. We then present a solution to automatically complete TOSCA application specifica-

tions, by searching the runtime environments (viz., Docker containers) that provide the software

support needed by the application components. The solution is prototyped by TOSKERISER, a

tool that automatically packages TOSCA application specifications, by discovering and including

Docker-based runtime environments.

We also propose techniques for searching the appropriate runtime environment for each

microservice (Chapter 5). We hence present DOCKERANALYSER and DOCKERFINDER, two tools

enabling the search for Docker-based runtime environments in TOSKERISER. DOCKERANALYSER

is a tool that permits building customised analysers of Docker images. The architecture of

DOCKERANALYSER is designed to crawl Docker images from a remote Docker registry, to analyse

each image by running an analysis function, and to store the results into a local database.

Image analysers can then be created by instantiating DOCKERANALYSER with a custom analysis

function. One of such analysers is DOCKERFINDER, which automatically extracts metadata

characterising Docker images, including the software support they offer. DOCKERFINDER also

permits searching for images by submitting multi-attribute queries through a remotely accessible

API. DOCKERFINDER is invoked by TOSKERISER to automatically search the Docker-based

runtime environments needed to package the software components.

6
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(o3) Enacting the deployment of microservice

The possibility of independently managing the microservices forming an application from the

containers used to run them is also important. Currently, available container orchestrators

indeed treat containers as a sort of “black-boxes", with containers constituting the minimal

deployment entity that can be orchestrated. To overcome this limitation, we aim at devising

solutions for deploying microservices on top of existing container orchestrators, by also allowing

to independently manage the lifecycle of microservices from that of the containers hosting them.

Microservices are typically packaged within containers, and their actual deployment is then

enacted by exploiting container orchestrators. The latter is indeed widely used to automate the

deployment and management of containers at a large scale, as they provide all the necessary

abstractions for scaling, discovering, load-balancing and interconnecting containers over single or

multi-host systems.

At the same time, container orchestrators treat containers as a sort of “black-boxes", since

containers constitute the minimal deployment entity that can be orchestrated. In other words,

container orchestrators can independently manage the containers forming an application, but

they do not provide any support for managing the components running within such containers.

The lifecycle of the components forming a (microservice-based) application is hence tightly coupled

to that of their hosting containers, as each component cannot be managed independently from its

hosting container.

In this thesis, we propose a solution for overcoming the aforementioned limitation, i.e., for

independently managing the software components from the containers used to run them (Chap-

ter 6). More precisely, we propose a novel architectural approach enabling a component-aware

orchestration of microservice-based applications deployed over distributed containers. We indeed

developed TOSKOSE, a tool that takes as input a TOSCA-based representation of a microservice-

based application and produces a new deployment artifact that can be distributed on top of

existing Docker container orchestrators.

The prototype toolchain

It is worth highlighting that the contributions contained in this thesis, and in particular their

prototype implementations, actually constitute a prototype toolchain for supporting the analysis

and the deployment of microservices (Fig. 1.1).

The input of the toolchain is a µTOSCA specification of the architecture of a microservice-

based application. Such a specification can then be fed to µFRESHENER for discovering architec-

tural smells making such application possibly violating key design principles of microservices.

µFRESHENER also allows resolving the identified architectural smells by proposing suitable refac-

torings. The output of µFRESHENER is a refactored µTOSCA specification, where architectural

smells have been resolved according to the choices made by the software architect exploiting

µFRESHENER to refine the design of her application.
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FIGURE 1.1. The toolchain formed by the prototypes of our research contributions.

The refactored TOSCA-based specification is passed to TOSKERISER, which automatically

searches for an appropriate container (by querying DOCKERFINDER) for each microservice, and

which packages each of such microservices in the correspondingly discovered container. The

completed specification produced by TOSKERISER can then be processed by TOSKOSE, which

produces the concrete artifacts allowing to deploy and manage the considered application on top

of existing container orchestrators.

1.2 Thesis structure

Fig. 1.2 provides a concept map of the thesis that summarises the structure of the thesis. It shows

the connections among the research challenges (i.e., designing and deploying microservices)

and the three research objectives (i.e., analysing and refactoring microservices, automatically

packaging microservices, enacting the deployment of microservices) and each research objective

is connected to the main contributions and each contribution is connected to the articles where

such contribution has been presented. The content of each chapter presented in this thesis is

taken as is from a published article. For this reason, some content of the chapters may slightly

overlap. More precisely, the contents of Chapters 2, 3, 4 and 5 are taken verbatim from the

publications [120], [29], [26], and [28], respectively. Chapter 6 is instead taken from an article

recently submitted for publication [20]. Further information about each chapter is given below.

In Chapter 2 we present a systematic, multivocal review on microservices, where the most

recognised architectural smells possibly violating key design principles of microservices are

singled out, together with the architectural refactorings allowing to resolve such smells.

The systematic review presented in Chapter 2 was published in [120], which appeared in the

journal “SICS Software-Intensive Cyber-Physical systems", and which was awarded with

the “SummerSOC Young Researcher Award" at the “13th Symposium and Summer School

On Service-Oriented Computing” (SummerSOC 2019).
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FIGURE 1.2. Concept map that shows the connection among the research challenges,
research objectives, tools and articles presented in the thesis.

In Chapter 3 we illustrate the methodology to systematically identify the architectural smells

that possibly violate the main design principles of microservices. After presenting µTOSCA

(a modelling of microservice-based applications with the OASIS standard TOSCA), we

present our methodology to discover architectural smells and apply suitable refactorings,

as well as its prototype implementation, i.e., µFRESHENER.

The methodology and prototype illustrated in Chapter 3 were published in [29], presented

in a workshop of the 17th International Conference on Service-Oriented Computing (ICSOC

2019).

In Chapter 4 we present a technique to automatically complete TOSCA application specifica-

tions, by discovering Docker-based runtime environments that provide the software support

needed by the components forming such applications. We also present TOSKERISER, a

tool that automatically completes TOSCA application specifications, by discovering and

including Docker-based runtime environments providing the software support needed by

their components. We also illustrate the effectiveness of our technique and of its prototype

implementation by means of a case study based on a third-party application.

9
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The results illustrated in Chapter 4 were published in [26], which appeared in the journal

“Science of Computer Programming".

In Chapter 5 we introduce DOCKERANALYSER, a microservice-based tool that permits building

customised analysers of Docker images. We show how users can build their own image

analysers by instantiating DOCKERANALYSER with a custom analysis function. We also

showcase the effectiveness of DOCKERANALYSER by presenting two different use cases,

each building a different analyser of Docker images by running DOCKERANALYSER with a

different analysis function and different configuration options.

The results in Chapter 5 were published in [28], which appeared in the journal “Software:

Practice and Experience".

In Chapter 6 we present our architectural approach for deploying microservice-based applica-

tions on top of existing container orchestrators, by also allowing to manage each component

independently from the container used to run it. We also present TOSKOSE, a tool that

takes as input a TOSCA specification and produces the concrete artifacts for deploying

an application according to our architectural approach and by distributing it on top of

existing container orchestrators. We finally illustrate the feasibility and effectiveness of

our approach by means of two concrete case studies involving third-party applications.

The results in Chapter 6 are currently submitted for publication [20].

In Chapter 7 we summarise and discuss the research contributions presented in this thesis,

by also providing perspectives for future work.

10



Part II

Analysing microservices

11





C
H

A
P

T
E

R

2
DESIGN PRINCIPLES, ARCHITECTURAL SMELLS AND

REFACTORINGS FOR MICROSERVICES: A MULTIVOCAL REVIEW

Potential benefits such as agile service delivery have led many companies to deliver their

business capabilities through microservices. Bad smells are however always around the

corner, as witnessed by the considerable body of literature discussing architectural smells

that possibly violate the design principles of microservices. In this chapter ,we systematically

review the white and grey literature on the topic, in order to identify the most recognised

architectural smells for microservices and to discuss the architectural refactorings allowing to

resolve them.

The content of this Chapter was published in [120], which appeared in the journal “SICS

Software-Intensive Cyber-Physical systems”.

2.1 Introduction

Microservices architectures, first discussed by Lewis and Fowler [108], bring various advantages

such as ease of deployment, resilience, and scaling [121]. Many IT companies deliver their

core business through microservice-based solutions nowadays, with Amazon, Facebook, Go-

ogle, LinkedIn, Netflix and Spotify being prominent examples. To deliver on their promises,

microservices must be designed in quality and style, which is unfortunately not always the

case [147].

Microservice-based architectures can be seen as peculiar extensions of service-oriented ar-

chitectures, characterized by an extended set of design principles [130, 169]. These principles

include shaping services around business concepts, decentralising all development aspects of

microservice-based solutions (from governance to data management), adopting a culture of au-
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tomation, ensuring the independent deployability and high observability of microservices, and

isolating failures [121]. A key research question therefore is:

How can architectural smells affecting design principles of microservices be detected

and resolved via refactoring?

The currently available information on architectural smells indicating possible violations

of the design principles of microservices is scattered over a considerable amount of literature.

Unfortunately, this makes it difficult to consult the body of knowledge on the topic, both for

researchers willing to investigate on microservices and for practitioners daily working with them.

Our objective here is to systematically analyse such literature, in order to identify the most

recognised smells, as well as architectural refactorings for resolving the smells occurring in

an application [168]. In particular, we focus on the design principles dealing with the dynamic

aspects of the interactions between microservices at runtime, i.e., on the process viewpoint, as

per the 4+1 viewpoint scheme [104]. More precisely, we consider the independent deployability of

microservices, their horizontal scalability, isolation of failures and decentralisation.

As recommended by Garousi et al. [71], to capture both the state of the art and the state

of practice in the field, we conducted a multivocal systematic review of the existing literature,

including both white literature (i.e., peer-reviewed papers) and grey literature (i.e., blog posts,

industrial whitepapers and books). We selected 41 studies, published since 2014 (when the

microservice-based architectural style was first discussed [108]) until the end of January 2019.

Then, following the guidelines for systematic reviews [71, 132], we excerpted a taxonomy of

design principles, architectural smells and corresponding refactorings. We then exploited this

taxonomy to classify the selected studies, in order to distill the actual recognition of the identified

smells and the usage of the corresponding refactorings.

In this chapter, we illustrate the results of our study. More precisely, we first present the

obtained taxonomy, including seven architectural smells and 16 refactorings, organised by design

principles. We then discuss each smell, by illustrating why it can violate the design principle it is

associated with, and by showing how to resolve it by means of an architectural refactoring.

We believe that the results presented in this study can provide benefits to both researchers

and practitioners interested in microservices. A systematic presentation of the state of the art and

practice on architectural smells and refactorings for microservices provides a body of knowledge

to develop new theories and solutions, to analyse and experiment research implications, and to

establish future research directions. At the same time, it can help practitioners to better under-

stand the currently most recognised architectural smells for microservices, and to choose among

the architectural refactorings allowing to resolve such smells. This can have a pragmatic value

for practitioners, who can use our study as a starting point for microservices experimentation or

as a guideline for day-by-day work with microservices.

The rest of the chapter is organised as follows. Sect. 2.2 defines the research problem and

illustrates the research methodology. Sect. 2.3 presents a taxonomy for design principles, archi-
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tectural smells and refactorings, which is retaken in Sect. 2.4 to overview the current state of the

art and practice on such smells and refactorings. Sects. 2.5 and 2.6 discuss potential threats to

the validity of our study and related work, respectively. Finally, Sect. 2.7 draws some concluding

remarks.

2.2 Setting the stage

The objective of this survey is to identify architectural smells indicating possible violations of

microservices principles, as well as the currently available solutions for refactoring microservice-

based architectures in order to resolve these smells.

Scope of the survey

This survey focuses on the architectural principles of microservices that pertain to the process

viewpoint, i.e., dealing with the dynamic aspects of microservices interacting at runtime [104].

We started from the principles proposed by Newman [121] and Lewis and Fowler [108],

also considering the mapping to tenets proposed by Zimmermann [169]. From these works, we

selected four principles:

1. The microservices forming an application should be independently deployable.

2. The microservices should be horizontally scalable.

3. Failures should be isolated.

4. Decentralisation should occur in all aspects of microservice-based applications, from data

management to governance.

The above selection was based on three criteria:

(a) Roots in highly significant design time and runtime quality attributes and style-defining

elements,

(b) Consequences of not adhering to a principle in terms of technical risk and re-engineering

cost, and

(c) Generality, i.e., if these four principles are met, others follow or can be achieved with similar

means.

For instance, independent deployability is a defining tenet in most definitions of microservices

and enables decentralized continuous delivery, thereby meeting criteria (a) and (c). Scalability

is a quality attribute (a) and horizontal scalability is hard to retrofit (an aspect of (b)). Failure

isolation meets criteria (a) and (b). Finally, decentralization is mentioned as crucial (and novel)
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in many introductions to microservices and enables independent, autonomous decision making,

as required to achieve (a) and (c).

Search for studies

With the objective of capturing the state of the art and practice in the field, we searched for both

white literature (i.e., peer-reviewed journal and conference articles) and grey literature (i.e., blog

posts, industrial whitepapers and books), in line with what recommended by Garousi et al. [71].

The structuring of the search string was done by following the guidelines provided by Petersen

et al. [132]. We indeed identified the search string guided by the PICO terms of our resarch

problem, and the keywords were taken from each aspect of our research problem. Differently

from Petersen et al. [132], we did not restrict our focus to specific research settings. By restricting

ourselves to certain types of research settings, we could have obtained a biased or incomplete

analysis, as some architectural smells or refactorings might have been over-/under-represented

for a certain type of study.

As a result, our search string was formed by the following terms:

microservice*

∧
(smell* ∨ antipattern* ∨ bad practice* ∨ pitfall* ∨ refactor* ∨ reengineer*)

(where ‘*’ matches lexically related terms). The search was restricted to studies published since

the beginning of 2014 (when microservices were first proposed by Lewis and Fowler [108]) until

the end of January 2019 (when the present study was initiated).

The search of white literature was carried out in the following indexing databases: ACM

Digital Library, DBLP, EI Compendex, IEEE Xplore, INSPEC, ISI Web of Science, Science Direct,

SpringerLink. Given the recency of the field and concerns with indexing, Google Scholar played a

key role for the initial selection before the inclusion and exclusion stage. The search for industrial

studies was instead carried out in renowned blogs in the software engineering community (such

as DZone, InfoQ and TechBeacon), in the blog of ThoughtWorks, and in books published by

practitioners.

Sample selection

The above described search criteria were matched by more than 150 studies, which we carefully

screened to keep only those studies that were satisfying both the following inclusion criteria:

• A study is to be selected if it presents at least one architectural smell pertaining to one

of the considered architectural principles of microservices (i.e., independent deployability,

horizontal scalability, isolation of failure, or decentralisation).
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• A study is to be selected if it presents at least one refactoring for resolving one of the

architectural smells it discusses.

The inclusion criteria were defined with the ultimate goal of selecting only representative

studies, discussing both the architectural smells (pertaining to the process viewpoint) and their

corresponding refactorings. As a result, 41 studies were selected to be analysed further. The list

of references to the selected studies is in Table 2.1, which also classifies them by colour.

2.3 A taxonomy for design principles, architectural smells and
refactorings

Fig. 2.1 illustrates a taxonomy for the architectural smells pertaining to the considered design

principles, and for the refactorings1 allowing to resolve such smells. We obtained our taxonomy

by following the guidelines for conducting systematic reviews in software engineering proposed

by Petersen et al. [132]:

1. We established the design principles, by aligning them with those pertaining to the process

viewpoint (as per [169]).

2. We identified the architectural smells by performing a first scan of the selected studies.

3. We excerpted the concrete refactorings directly from the selected studies after additional

scans.

The identified design principles, architectural smells and refactorings were manually organised

to obtain a taxonomy. The taxonomy underwent various iterations among the authors of this

study, and it was submitted for validation to an external expert. This resulted in some corrections

and amendments to the first version of the taxonomy, which resulted in the taxonomy displayed

in Fig. 2.1.

2.4 Architectural smells and refactorings

Table 2.1 shows the classification of all selected studies based on the taxonomy introduced in

Sect. 2.3. The table provides a first overview of the coverage of design principles, architectural

smells and refactorings over the selected studies, despite (for reasons of readability and space) it

only displays the classifications over the smells listed in the taxonomy2. Such coverage is also

displayed in Fig. 2.2, from which we can observe that all architectural smells in the taxonomy are

1For the sake of clarity, in the taxonomy we follow the naming of integration patterns proposed by Hohpe and
Woolf [90].

2The detailed classification, displaying each occurrence of each refactoring, is publicly available at https://
github.com/di-unipi-socc/microservices-smells-and-refactorings.
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(a) (b) (c)

FIGURE 2.1. A taxonomy for (a) the design principles pertaining to the process view-
point, (b) the architectural smells possibly violating such principles, and (c) the
refactorings resolving such smells.

significantly recognised by the authors of the selected studies, hence making it worthy to discuss

them in detail.
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FIGURE 2.2. Coverage of the architectural smells in the selected studies. The size of
each bubble is directly proportional to the number of selected studies discussing
the corresponding smell. This number is also reported within each bubble.
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co
lo

ur

independ. horizontal isolation
deployab. scalability of failures decentralisation

multiple no endpoint-b. wobbly single
services API service service ESB shared layer

in one cont. gateway inter. inter. misuse persist. teams
[7] g X
[8] w X X

[12] w X X X X
[13] w X X X X
[15] g X X X X
[21] g X X X X
[39] g X
[40] g X X X X
[41] w X X
[51] g X
[55] w X X X
[56] w X X X
[64] w X
[69] w X
[72] g X
[74] g X
[75] g X X
[91] g X X X X X
[92] g X X X X X X
[95] w X X
[99] w X X X

[101] w X X
[103] g X X X X
[108] g X X X X
[115] g X
[111] g X X
[119] g X X X X X
[121] g X X X
[123] g X X X X
[137] g X X
[138] g X X X
[139] g X X X
[141] g X
[142] g X X X
[144] w X
[147] w X X X X
[151] w X X X X
[152] w X X
[153] w X X
[163] g X X X X
[169] w X X

TABLE 2.1. References to the selected studies, and their classification by colour
(i.e., white or grey literature) and according to the taxonomy in Fig. 2.1.
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We hereafter illustrate how (according to the authors of the selected studies) each design

principle can be affected by each corresponding architectural smell, as well as how each smell can

be resolved by applying a corresponding refactoring. When multiple refactorings are applicable

to resolve an architectural smell, to provide a first measurement of how much a refactoring is

used to resolve it, we display the weight3 of each refactoring by exploiting %-based pie charts.

2.4.1 Independent deployability

In microservice-based applications, each microservice should be operationally independent from

the others, meaning that it should be possible to deploy and undeploy a microservice indepedently

from the others [121]. This indeed impacts on the initial deployment of a microservice, which can

get started without waiting for other microservices to be running, as well as on the possibility of

adding/removing replicas of a microservice at runtime.

We discuss below the MULTIPLE SERVICES IN ONE CONTAINER smell, showing how it

violates the above principle and how it can be resolved.

Multiple services in one container Containers (such as Docker containers) provide an ideal

way to deploy microservices addressing the above requirement, if properly used. Each microservice

can indeed be packaged in a container image, and different instances of a same microservice can

be launched by spawning different containers from the corresponding image. With this view, the

orchestration of the deployment and management of a microservice-based application can be

performed by exploiting the currently available support for orchestrating Docker containers [91].

The above is the right way of using containers, at least according to the authors of 16 of the

selected studies. They indeed highlight how placing multiple services in one container would

constitute an architectural smell for the independent deployability of microservices. If two

microservices would be packaged in the same Docker image, spawning a container from such

image would result in launching both microservices. Similarly, stopping the container would

result in stopping both microservices. In other words, by placing two microservices in the same

container, these services would operationally depend one another, as it would not be possible to

launch a new instance of one of such microservices, without also launching an instance of the

other.

If the MULTIPLE SERVICES IN ONE CONTAINER smell occurs, the solution is to refactor the

application in such a way that each microservice is packaged in a separate container image.

2.4.2 Horizontal scalability

The possibility of adding/removing replicas of a microservice is a direct consequence of the

independent deployability of microservices. To ensure its horizontal scalability, all the replicas of

3We measure the weight of a refactoring as the percentage of its occurrences among all occurrences of all
refactorings for the same smell. This is analogous to what done by Pahl et al. [127] to measure weights while
classifying studies on cloud container technologies.
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FIGURE 2.3. Weights (w) and occurrences (o) of the refactorings for the ENDPOINT-
BASED SERVICE INTERACTIONS smell.

a microservice m should be reachable by the microservices invoking m [91].

In the selected studies, two architectural smells emerged as possibly violating the horizon-

tal scalability of microservices, i.e., ENDPOINT-BASED SERVICE INTERACTIONS and NO API

GATEWAY, which we discuss hereafter.

Endpoint-based service interactions. This smell occurs in an application when one or more

of its microservices invoke a specific instance of another microservice (e.g., because its location

is hardcoded in the source code of the microservices invoking it, or because no load balancer is

used). If this is the case, when scaling out the latter microservice by adding new replicas, these

cannot be reached by the invokers, hence only resulting in a waste of resources.

From the selected studies, it became evident that the ENDPOINT-BASED SERVICE INTERAC-

TIONS smell can be resolved by applying three different refactorings (Fig. 2.3). The most common

solution is to introduce a service discovery mechanism. Such mechanism can be implemented as

a service storing the actual locations of all instances of the microservices in an application [139].

Microservice instances send their locations to the service registry at startup, and they are unreg-

istered at shutdown. When willing to interact with a microservice, a client can then query the

service discovery to retrieve the location of one of its instances.

The other two possible solutions share the same goal, i.e., decoupling the interaction between

two microservices by introducing an intermediate integration pattern. Nine of the selected studies

indeed suggest to introduce a message router (e.g., a load balancer), so that the requests to a

microservices are routed towards all its actual instances. Four of the selected studies instead

suggest to exploit message brokers (e.g., message queues) to decouple the interactions between
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two or more microservices.

No API gateway. When a microservice-based application lacks an API gateway, the clients of

the application necessarily have to invoke its microservices directly. The result is a situation

similar to that of the ENDPOINT-BASED SERVICE INTERACTIONS smell, with the invoker being

a client of the application. The client indeed interacts only with the specific instances of the

microservices it needs. If one of such microservices is scaled out and the client still keeps invoking

the same instance of the microservice, then we have a waste of resources.

The authors of all the selected studies discussing the NO API GATEWAY smell agree that the

solution to this smell is to add one API gateway to the application. The latter act as single entry

points for all clients, and they handle requests either by routing them or by fanning them out to

the instances of the microservices that must handle them [139].

It is worth noting that, even if the NO API GATEWAY smell results in a similar situation to

that of the ENDPOINT-BASED SERVICE INTERACTIONS smell, the refactorings to resolve them

are different. The reason for this resides in the main difference between the two architectural

smells. The NO API GATEWAY smell occurs at the edge of the architecture of a microservice-

based application, with the clients of the application directly invoking its microservices, while

the ENDPOINT-BASED SERVICE INTERACTIONS smell occurs in between its microservices [119].

Given this, the introduction of an API gateway can be useful not only for facilitating the horizontal

scalability of the microservices forming an application, but also for various other reasons. For

instance, rather than implementing end-user authentication or throttling in each microservice,

these can be implemented once for the whole application in the API gateway [7].

2.4.3 Isolation of failures

Microservices can fail for many reasons (e.g., network or hardware issues, application-level

issues, bugs), hence becoming unavailable to serve other microservices. Additionally, commu-

nication fails from time to time in any kind of distributed system, and this is even more likely

to occur in microservice-based systems, simply because of the amount of messages xchanged

among microservices [95]. Microservice-based applications should hence be designed so that each

microservice can tolerate the failure of any invocation to the microservices it depends on [108]. If

this is ensured, then a microservice-based application results to be much more resilient than a

monolithic application, simply because failures affects only few microservices in an application,

instead of the whole monolith [121].

The authors of the selected studies identify and discuss an architectural smell that can

possibly violate the isolation of failures in microservice-based solutions. This is the WOBBLY

SERVICE INTERACTIONS smell, which we discuss hereafter.

Wobbly service interactions. The interaction of a microservice mi with another microservice

m f is “wobbly" when a failure in m f can result in triggering a failure also in mi. This typically

happens when mi is directly consuming one or more functionalities offered by m f , and mi is not
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FIGURE 2.4. Weights (w) and occurrences (o) of the refactorings for the WOBBLY

SERVICE INTERACTIONS smell.

provided with any solution for handling the possibility of m f to fail and be unresponsive. If this

is the case, mi will also fail in cascade, and (in a worst case scenario) the failure of mi can result

in triggering the failure of other microservices, which in turn trigger other cascading failures,

and so on [95].

To avoid WOBBLY SERVICE INTERACTIONS (such as the one between mi and m f described

above), the authors of the selected studies identify four possible solutions (Fig. 2.4). The most

common solution is the usage of a circuit breaker to wrap the invocations from a microservice to

another. In the normal “closed" state, the circuit breaker forwards the invocations to the wrapped

microservice, and it monitors their execution to detect and count failing invocations. Once the

frequency of failures reaches a certain (customisable) threshold, the circuit breaker trips and

“opens" the circuit. All further calls to the wrapped microservice will “safely fail", as the circuit

breaker will immediately return an error message to the calling microservices. The latter can

then exploit the error messages returned by the circuit breaker to avoid failing themselves [108].

Following the same baseline idea of circuit breakers, ten of the selected studies propose to

decouple the interaction between invoking and invoked microservices by exploiting a message

broker (e.g., a message queue). The usage of a broker allows the invoker to send its requests to

the broker, and allows the invoked microservice to process such requests when it is available. In

this way, there is no direct interaction between the two microservices, and the invoker does not

fail when the invoked microservice fails (as the former continues to send messages to the broker).

On the other hand, the usage of message brokers is more costly compared to circuit breakers.

The reason is that message brokers require to intervene on the interaction protocol between

two microservices, which should start putting and getting messages to/from the broker. Instead,

with circuit breakers the interaction protocol between two microservices is unaltered, as a circuit

breaker simply wraps the invocation of a microservice. This is the reason why message brokers

are much less discussed than circuit breakers.

The most discussed alternative to circuit breakers are however timeouts, which are a simple
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yet effective mechanism allowing a microservice to stop waiting for an answer from another

microservice, when the latter is unresponsive (e.g., since it failed or due to network issues).

Well-placed timeouts provide fault isolation, as the fact that a microservice is unresponsive

does not create any other issue in the microservices invoking it [121]. However, such a kind of

solution might not likely to be applicable nowadays, as some of the APIs used to remotely invoke

microservices have few or no explicit timeout settings [121]. Note that the timeout can be also set

in the invoker (e.g., by setting the timeout on an HTTP request), hence it is not always requested

to have a timeout setting on the invoked service.

Finally, another alternative is the usage of bulkheads, whose ultimate goal is to enforce the

principle of damage containments (like bulkheads in ships, which prevent water to flow across

sections). The idea is that, if cascading failures cannot be avoided, they should at least be limited

by exploiting bulkheads. More precisely, the microservices forming an application should be

logically and/or physically partitioned so as to ensure that the failure of a microservice can be

propagated at most to the other microservices in the same partition, by preventing the rest of the

system from being affected by such failure [123].

2.4.4 Decentralisation

Decentralisation should occur in all aspects of microservice-based applications [121]. This also

means the business logic of an application should be fully decentralised and distributed among

its microservices, each of which should own its own domain logic [169].

The authors of the selected studies indentify and discuss three architectural smells possibly

violating the above principle, i.e., the ESB MISUSE, SHARED PERSISTENCE and SINGLE-LAYER

TEAMS smells. We hereafter discuss them, by also illustrating the refactorings currently employed

to resolve them.

ESB misuse. The misuse of Enterprise Service Buses (ESB) products is considered to be an

architectural smell by the microservice community. When positioned as a single central hub

(with the services as spokes), an ESB may become a bottleneck both architecturally and orga-

nizationally [130]. “Smart endpoints & dumb pipes" has been a recommended practice since

the very beginnings of service-oriented architectures [169] that regrettably has not always been

followed in all SOA implementations. Such ESB abuse may lead to undesired centralisation of

business logic and dumb services [121]. The microservices community therefore (re-)emphasizes

the decoupling of microservices and their cohesiveness [108].

Whenever a central ESB is used for connecting microservices in an application, the topology

should be refactored to remove the dependency on a single middleware component instance.

Multiple instances should instead be used, and they should implement queue-based asynchronous

messaging. The latter only permits adding and removing messages, hence forming a “dumb pipe".

The “smart" part should be left to the microservices, which implement the logic for deciding

when/how to process the messages in the message broker [151]. Additional infrastructure logic, for
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split database
(w:50%; o:17)

add data manager
(w:41%; o:14)

merge services
(w:9%; o:3)

FIGURE 2.5. Weights (w) and occurrences (o) of the refactorings for the SHARED PER-
SISTENCE smell.

instance traffic management capabilities, may be placed in side cars accompanying each service.

This repositioning and rectification of ESB middleware improves the decoupling characteristics

of the services architecture and reestablishes the original “smart endpoints & dumb pipes"

recommendations from the first wave of service-orientation.

Shared persistence. The SHARED PERSISTENCE smell occurs whenever two microservices

access and manage the same database, possibly violating the decentralisation design princi-

ple [147].

The three currently available solutions for refactoring microservices and resolving the

SHARED PERSISTENCE smell are shown in Fig. 2.5.

Although the ultimate goal of these three solutions is the same (i.e., having each database

accessed by only one microservice), they are very diverse in spirit. They apply to different

situations, highly depending on the microservices accessing the same database.

The most discussed solution is to actually split a database shared by multiple microservices,

in such a way that each microservice accesses and manages only the data it needs. This solution

is the one requiring less intervention on the microservices, as they would continue to use the

same protocol to interact with the databases. At the same time, splitting a database into a

set of independent databases is not always possible or easy to achieve. Also, if some data is

to be replicated among the databases obtained from the split, then mechanisms for (eventual)

data consistency should be introduced after the refactoring [147]. Given the above, the split

of database is recommended when the microservices accessing the same database implement

separate business logics working on disjoint portions of such database [92].

The most discussed alternative is to introduce an additional microservice, acting as “data

manager". The data manager becomes the only microservice interacting with and managing the

database, and the microservices that were accessing the database now have to interact with the

data manager to ask for accessing and updating the data. While this solution introduces some

additional communication overhead, it is considered as always applicable, and the data manager
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can also be enriched with additional logic for processing the data it manages [92].

Finally, it is worth commenting on the refactoring discussed in three of the selected studies,

i.e., merging the microservices accessing the same database. The idea is that, when multiple

microservices access the same database, this may be a signal of the fact that the application

has been split too much, by obtaining too fine-grained microservices processing the same data.

If this is the case, then the possibility of merging such microservices is a concrete option to be

evaluated [151].

Single-layer teams. To maximize the autonomy that microservices make possible, the gov-

ernance of microservices should be decentralised and delegated to the teams that own the

microservices themselves. As pointed out by Zimmermann [169], even if this is not a technical

concern, it is related to the process viewpoint due to its cross-cutting nature. The microservice

community indeed strongly emphasizes the connection between architecture and organisation,

especially concerning the integration of the microservices in an application [72, 75, 108].

The classical approach of splitting teams by technology layers (e.g., user interface teams,

and middleware teams, and database teams) is hence considered an architectural smell, as any

change to a microservice may result in a cross-team project having take time and budgetary

approval [108]. This may be the case for the refactorings discussed so far.

The microservice approach to team splitting is orthogonal to the above, as each microservice

should be assigned to a full-stack team whose members span across all technology layers. In this

way, the interactions for updating a microservice (e.g., to apply one of the refactorings discussed

in this section) are limited to the team managing such microservice, which can independently

decide how to proceed and implement the updates [41].

In short, if the governance of a microservice-based is organised by SINGLE-LAYER TEAMS,

this is an architectural smell. The solution is to split teams by microservice, rather than by

technology layer [108].

2.5 Threats to validity

Following the taxonomy developed by Wohlin et al. [162], four potential theats may affect the

validity of our study. These are the threats to external validity, the threats to internal and

construct validity, and the threats to conclusions validity, which we discuss hereafter.

External validity. As per Wohlin et al. [162], the external validity concerns the applicability of

a set of results in a more general context. Since we selected the primary studies from a very large

extent of online sources, the identified architectural smells and refactorings may only be partly

applicable to the broad area of disciplines and practices on microservices, hence threatening

external validity.

To reinforce the external validity of our findings, we organised two feedback sessions during

our analysis of the existing literature. We analysed the discussion following-up from the feedback
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session, and we exploited this qualitative data to fine-tune both our research methods and

the applicability of our findings. We also prepared a GitHub repository4, where we placed the

artifacts produced during our analysis, so as to make it available to all who wish to deepen their

understanding on the data we produced. We believe that this can help in making our results and

observations more explicit and applicable in practice.

Additionally, one may argue that our selection criteria are too restrictive. The rationale behind

such criteria is that we aim focusing only on representative studies, by requiring selected studies

to discuss at least an architectural smell and a refactoring for resolving it. There is however a

risk of having missed some relevant literature, as a study might not explicitly mention the archi-

tectural smells and refactorings in our taxonomy (Fig. 2.1). To mitigate this threat, we carefully

checked both selection criteria against each candidate study, by verifying whether a study was

discussing the problems characterised by an architectural smell, and whether it was discussing

the architectural changes characterising a refactoring. Even if a study was not explicitly referring

to a smell/refactoring, but it was reporting on the corresponding problems/changes, the study was

included in the selected literature.

Finally, there is a risk of having missed relevant grey literature, since industrial studies may

exploit a different terminology than ours (e.g., a blog post discussing some architectural smells

and refactorings may not employ the term “smell" or “refactor"). To mitigate this threat to validity,

we included relevant synonyms in the search string, and we exploited the features offered by

search engines, which naturally support including related terms in string-based searches.

Construct and internal validity. The internal validity concerns the validity of the method

employed to study and analyse data (e.g., the potential types of bias involved), while the construct

validity concerns the generalisability of the constructs under study [162].

To mitigate the corresponding potential threats, the obtained taxonomy underwent various

iterations among the authors of this study to avoid bias by triangulation, and it was submitted

for validation to an external expert. The same process was applied to the classification of the

selected studies, and to the results of the analysis.

Conclusions validity. The conclusions validity concerns the degree to which the conclusions of

a study are reasonably based on the available data [162].

In this perspective, and with the aim of performing a sound analysis of the data we retrieved,

we exploited inter-rater reliability assessment to limit potential biases in our observations and

interpretations. Additionally, the observations and conclusions discussed in this chapter were

independently drawn, and they were then double-checked against the selected studies and related

studies in a joint discussion session.

4http://github.com/di-unipi-socc/microservices-smells-and-refactorings.
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2.6 Related work

There exist various studies on microservices, aimed at analysing and classifying the state of the

art and practice on microservices. Pahl and Jamshidi [128] and Taibi et al. [153] present two

first systematic mapping studies on microservices. Pahl and Jamshidi [128] discuss agreed and

emerging concerns on microservices, position microservices with respect to current cloud and

container technologies, and elicit potential research directions. Taibi et al. [153] instead report

on architectural patterns common to microservice-based solutions, by discussing the advantages,

disadvantages and lessons learned of each pattern. However, neither Pahl and Jamshidi [128] nor

Taibi et al. [153] provide an overview both on the architectural smells applicable to microservices

and on the refactorings for resolving such smells.

Two other examples are the industrial surveys by Di Francesco et al. [54] and by Ghofrani and

Lübke [73], which both discuss the current state of practice on microservices in the IT industry.

Both report on empirical studies conducted in the form of surveys for practictioners working

everyday with microservices, to elicit the challenges and advantages on employing microservices.

This differs from our study, as we aim at distilling the architectural smells that can affect the

architecture of a microservice-based solution, as well as the refactorings allowing to resolve such

smells.

Similar considerations apply to the systematic review by Soldani et al. [147], who provide

an overview on the state of practice on microservices. Soldani et al. systematically analyse the

grey literature on microservices, in order to identify the technical/operational advantages and

disadvantages of the microservice-based architectural style. The objective of Soldani et al. hence

differs from ours, as we aim at discussing concrete architectural smells and refactorings for the

microservice-based architectural style.

In this perspective, the objective of the studies by Taibi and Lenarduzzi [151], by Bogner et

al. [19], and by Carrasco et al. [41] is much closer to ours. Taibi and Lenarduzzi [151] report on

a survey submitted to practictioners experienced with microservices. The survey allowed Taibi

and Lenarduzzi to identify 11 microservice-specific architectural smells, each with a refactoring

solution allowing to resolve it. Of such smells and refactorings, only four can be related to

the design principles of microservices pertaining to the process viewpoint (see Table 2.1). By

integrating the work by Taibi and Lenarduzzi with other carefully selected white/grey literature,

we managed to extend the set of architectural smells and refactorings pertaining to the process

viewpoint with three additional smells and ten additional refactorings.

Bogner et al. [19] present a systematic literature review identifying and documenting archi-

tectural smells in SOA-based architectural styles, including microservices. Altough the main

focus of their review is on the broader SOA, several smells apply also to microservices. However,

the review by Bogner et al. [19] differs from ours, as it focuses only on white literature, and since

it does not discuss the architectural refactorings allowing to resolve the identified smells.

Carrasco et al. [41] systematically analyses the white and grey literature on architectural
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smells that can occur while migrating from monoliths to microservice-based solutions. They

present nine common smells with their potential solutions, which all pertain to the actual

development and operation of microservice-based applications (i.e., development and physical

viewpoints). The study by Carrasco et al. [41] hence differs from ours, as we focus on the dynamic

aspects of microservices that interact at runtime (i.e., process viewpoint).

Similar considerations apply to the study by Furda et al. [69], which focuses on multitenancy,

statefulness, and data consistency. Their objective is indeed supporting the migration of enterprise

legacy source code to microservices. Finally, the Microservices API Pattern (MAP) language

suggests design improvements in the form of an informal cheat sheet. The first MAP patterns

have been published by Stocker et al. [150] and by Zimmermann et al. [170].

In summary, to the best of our knowledge, there is currently no study classifying the architec-

tural smells possibly violating the design principles of microservices pertaining to the process

viewpoint, together with the refactorings that permit resolving such smells. The latter is precisely

the scope of our study, which we have presented in this chapter.

2.7 Conclusions

We presented the results of a multivocal review focused on identifying architectural smells indi-

cating possible violations of the independent deployability, horizontal scalability, fault isolation

and decentralisation of microservices, as well as the refactorings allowing to resolve such smells.

More precisely, we presented a taxonomy organising seven architectural smells and 16 refactor-

ings, by associating each smell with the design principle(s) it violates, and each refactoring with

the smell it resolves. We then provided an overview of the actual recognition of such smells and

refactorings in the selected literature. We also discussed why each architectural smell violates

the design principle it pertains to, and how each architectural refactoring allows resolving its

corresponding smell.

We believe that our study can be of help to both researchers and practitioners interested

in microservices. Together with the review by Carrasco et al. [41], our results can help them

to understand the well-known architectural smells for microservices, and to choose among the

refactorings allowing to resolve such smells. This can have a pragmatic value for practitioners,

who can exploit the results of our study in their daily work with microservices. It can also help

researchers to shape new solutions and to establish future research directions.

We plan to exploit our results to develop a design-time support for eliminating architectural

smells from microservice-based applications. Our idea is to exploit existing languages for the

specification of microservice-based applications (such as TOSCA [124], for instance). We then

plan to develop a tool for processing the specification of a microservice-based application, to

automatically detect the architectural smells occurring in such application, and to suggest the

architectural refactorings resolving such smells.
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3
FRESHENING THE AIR IN MICROSERVICES: RESOLVING

ARCHITECTURAL SMELLS VIA REFACTORING

The adoption of microservice-based architectures is becoming common practice for enter-

prise applications. Checking whether an application adheres to the main design principles

of microservices, and —if not— understanding how to refactor it, are two key issues in

that context. In this chapter we present a methodology to systematically identify the archi-

tectural smells that possibly violate the main design principles of microservices, and to select

suitable architectural refactorings to resolve them. We also present a prototype implementing

the methodology, based on a novel representation of microservices in TOSCA.

This Chapter was published in [29], presented in a workshop of the 17th International

Conference on Service-Oriented Computing (ICSOC 2019).

3.1 Introduction

Microservice-based architectures are increasingly considered an enabling technology to shorten

the lead time in software development and to effectively scale software application deploy-

ments [108, 121]. The interest in microservice-based architectures is witnessed by their adoption

by the major IT companies (like Amazon, Facebook, Google, Netflix and Spotify, just to mention

some).

Microservice-based architectures can be seen as service-oriented architectures that satisfy

some key principles [169]. These include shaping services around business concepts, adopting

a culture of automation, decentralising all aspects of microservices (from governance to data

management), ensuring their independent deployability and high observability, and isolating

failures [121]. As the adoption of microservices is becoming common practice for enterprise appli-
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MessageRouter MessageBroker

FIGURE 3.1. The node types, relationship types and group types defining µTOSCA.

cations, checking whether an application adheres to the main design principles of microservices,

and —if not— understanding how to refactor it, are two key issues [120, 147].

In this chapter, we present a methodology to systematically identify architectural smells

possibly violating key design principles of microservices, and to select architectural refactorings

allowing to resolve such smells. We take as starting point the industry-driven review presented

in [120], which singled out a set of architectural smells possibly violating some main principles

of microservices, by also eliciting the architectural refactorings allowing to resolve each smell.

In particular, we consider four of the architectural smells in [120], each with the architectural

refactorings that permit resolving it.

Our proposal is to model the architecture of a microservice-based application with the OASIS

standard TOSCA [124]. We hence introduce µTOSCA, which allows to specify service-based

architectures as typed directed graphs. Based on such representation, we formally define the

conditions to identify the occurrence the considered architectural smells in a microservice-based

application, and we illustrate how to refactor its architecture to resolve identified smells.

We also present µFRESHENER, a prototype showcasing our methodology. We believe that

our methodology and its prototype implementation can provide a valuable decision support for

designing microservice-based architectures.

The rest of the chapter is organized as follows. Sect. 3.2 introduces µTOSCA. Sects. 3.3 and 3.4

illustrate our methodology to identify/resolve architectural smells and its prototype implementa-

tion, respectively. Finally, Sect. 3.5 discusses related work and Sect. 3.6 draws some concluding

remarks.

3.2 Modelling service-based architectures with µTOSCA

TOSCA [124] allows to represent service-based architectures as typed directed graphs, where

nodes represent software components, and arcs represent the interactions occurring among such

components. We hereby present the µTOSCA type system1, providing building blocks for such a

representation (Fig. 3.1).

Nodes can be services, communication patterns or data stores. A Service is a component

running some business logic, e.g., a service managing users’ orders in an e-commerce application.

1https://di-unipi-socc.github.io/microTOSCA/microTOSCA.yml.
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A CommunicationPattern is a component implementing a messaging pattern decoupling the

communication among two or more components. Fig. 3.1 contains two communication patterns

from [90]: MessageRouter (e.g., load balancers, API gateways) and MessageBroker (e.g., message

queues). Finally, a DataStore is a component storing the data pertaining to a certain domain,

e.g., a database of orders in an e-commerce application.

Nodes can be interconnected via InteractsWith relationships, to model that a source node

invokes functionalities offered by a target node. Such relationships can be enriched by setting the

boolean properties circuit_breaker, timeout and dynamic_discovery. The first two properties

allow to indicate whether the source node is interacting with the target node via a circuit breaker

or by setting proper timeouts, to avoid that the source fails/gets stuck waiting for an answer from

the target when the latter is unresponsive (e.g., because it failed). Property dynamic_discovery

allows to specify whether the endpoint of the target of the interaction is dynamically discovered

(e.g., by exploiting a discovery service).

Nodes can also be placed in an Edge group, to define the subset of application components

directly accessed from outside of the application.

Formally, the architectures represented with µTOSCA are triples, whose elements are (i) the

typed nodes and (ii) the relationships forming the graph representing the architecture of an

application, and (iii) the group of nodes defining the edge of the architecture.

Definition 3.1 (Architecture). The architecture of an application is represented by a triple

A = 〈N,R,E〉, where

(i) N is a finite set of typed nodes representing application components,

(ii) R is a finite multiset2 of pairs of nodes representing the relationships occurring among

application components, and

(iii) E ⊆ N is a non-empty set of nodes defining the edge of the architecture.

Def. 3.1 allows to describe an architecture where (a) a node interacts with itself. It also allows

to specify that (b) a data store is invoking functionalities offered by another component or being

accessed by something different from a service internal to the application, Finally, Def. 3.1 allows

to indicate that (c) a message broker is invoking functionalities offered by other components or

that no component is placing messages in a broker, and that (d) a message router is not routing

messages towards other components or that it is never invoked. To avoid such undesirable

situations, we hereafter consider an architecture to be well-formed when none of cases (a-d) is

occurring.

2Multiple relations from component x to component y indicate that x interacts with y in different ways (e.g., directly
in one case, via a circuit breaker in another case).
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Notation 3.1 (Types). We write x.type to denote the type of a node x, and we write , mB , mR and

to visually denote the µTOSCA types Service, MessageBroker, MessageRouter and DataStore,

respectively. Given two types t and t′, we also write t ≥ t′ iff t extends or is equal to t′.

Definition 3.2 (Well-formedness). An architecture A = 〈N,R,E〉 is well-formed iff

(a) ∀〈x, y〉 ∈ R : x 6= y,

(b) ∀x ∈ N : x.type≥ ⇒
((@〈x, y〉 ∈ R) ∧ x ∉ E ∧ (∀〈y, x〉 ∈ R : y.type≥ )),

(c) ∀x ∈ N : x.type≥ mB ⇒ ((@〈x, y〉 ∈ R) ∧ (∃〈y, x〉 ∈ R)), and

(d) ∀x ∈ N : x.type≥ mR ⇒ ((∃〈x, y〉 ∈ R) ∧ (x ∈ E∨∃〈y, x〉 ∈ R)).

We hereafter assume architectures to be well-formed.

3.3 Discovering and resolving architectural smells

The architectural smells violating the horizontal scalability, isolation of failures and decentrali-

sation of microservice-based applications, as well as the architectural refactorings allowing to

resolve them, have been classified in [120]. An excerpt of the resulting taxonomy is reported in

Fig. 3.2.

add API gateway

add service discovery

add message router

add message broker

add circuit breaker

use timeout

split data store

merge services

add data manager

no API gateway

endpoint-based  serv.  inter.

horizontal scalability

wobbly service interactionisolation of failures

shared persistencedecentralisation

(a) (b) (c)

FIGURE 3.2. A taxonomy for (a) design principles of microservices, (b) architectural
smells, and (c) architectural refactorings [120]

Starting from such taxonomy, we hereby formalise the conditions allowing to automatically

determine the occurrence of smells in architectures modelled with µTOSCA, and we illustrate how

to refactor an architecture to resolve each identified smell. In doing so, we exploit the graphical

support provided by Fig. 3.3.
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FIGURE 3.3. Visual representation of the architectural smells (left column) and refac-
torings (right column) in Fig. 3.2, with the Edge group denoted by a dotted line
and interactions depicted as arrows. Labels d, c and t represent that properties
dynamic_discovery, circuit_breaker and timeout are true, while 6d, 6c and 6t rep-
resent that they are false. Updates due to refactorings are in grey, with mandatory
updates being dashed. Solid grey lines indicate updates that may be implemented
by reusing existing components.

3.3.1 Architectural smells possibly violating horizontal scalability.

The possibility of adding/removing replicas of a microservice is a direct consequence of the inde-

pendent deployability of microservices. To ensure its horizontal scalability, all the replicas of a

microservice m should be reachable by the microservices invoking m [91]. In [120], two architec-

tural smells emerged as possibly violating the horizontal scalability of microservices, i.e., NO API

GATEWAY and ENDPOINT-BASED SERVICE INTERACTION, which we discuss hereafter.

The NO API GATEWAY smell occurs whenever the external clients of an application directly

interact with some internal services. If one of such services is scaled out, the horizontal scalability

of microservices may get violated because external clients may still keep invoking the same

instance, without reaching any replica.
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To identify the occurrence of a NO API GATEWAY smell, we should hence check whether some

application components are accessed without passing through an API gateway, i.e., whether the

edge of the architecture contains something that is not a message router.

Definition 3.3 (No Api Gateway). Let A = 〈N,R,E〉 be an architecture. A node x ∈ N indicates a

NO API GATEWAY smell iff

x ∈ E ∧ x.type 6≥ mR

Fig. 3.3 illustrates the possible NO API GATEWAY smells, due to a component x (either a

service or a message broker) being placed at the edge of an architecture. The figure also shows

the architectural refactorings resolving the occurrence of NO API GATEWAY smells. In both cases,

the refactoring consists in introducing a message router (e.g., a gateway or a load balancer),

or reusing one already available in the application. Such a message router will act as an API

gateway, hence avoiding x to get directly accessed from outside of the application.

The ENDPOINT-BASED SERVICE INTERACTION smell occurs in an application when a service x

directly invokes another service y (e.g., because the location of y is hardcoded in the source code of

x, or because no message router is used). If this is the case, when scaling out service y by adding

new replicas, these cannot be reached by x, hence only resulting in a waste of resources [120].

Formally, this happens whenever there is a direct interaction from x to y, where x is not using

any support for dynamically discovering the actual endpoint of y.

Notation 3.2 (Properties of relations). Given an architecture A = 〈N,R,E〉, we write 〈x, y〉.p to

denote the property p of a relationship 〈x, y〉 ∈ R.

Definition 3.4 (Endpoint-based Service Interaction). Let A = 〈N,R,E〉 be an architecture. A

relation 〈x, y〉 ∈ R indicates an ENDPOINT-BASED SERVICE INTERACTION smell iff

x.type≥ ∧ y.type≥ ∧ 〈x, y〉.dynamic_discovery= false

A visual representation of an ENDPOINT-BASED SERVICE INTERACTION is in Fig. 3.3, where

a service x is directly invoking another service y. The figure also illustrates the architectural

refactorings allowing to resolve the occurrence of an ENDPOINT-BASED SERVICE INTERACTION

smell, all sharing the same goal, i.e., decoupling the interaction between two services by introduc-

ing an intermediate integration pattern. Such refactorings predicate only on the value of property

dynamic_discovery of the relationship outgoing from x.

The most common solution is to add a service discovery mechanism to dynamically resolve

the endpoint of the service targeted by the interaction [139]. The other possible solutions instead

consist in decoupling the interaction between two services by exploiting a message router or a

message broker, respectively. In all cases, the interaction outgoing from x must necessarily be

updated, while the message router/broker used to decouple the interaction may also be already

available and reused to implement the architectural refactoring.
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3.3.2 Architectural smell possibly violating isolation of failures.

Microservice-based architectures should be designed to isolate failures, meaning that each

microservice should tolerate the failure of any invocation to the microservices it depends on [108].

In [120], the WOBBLY SERVICE INTERACTION smell emerged as possibly violating the isolation

of failures in microservices.

The interaction between two microservices is “wobbly" when a failure in the microservice

targeted by the interaction can result in triggering a failure also in the source, potentially

starting a cascade of failures [95]. This typically happens when a microservice x is consuming

functionalities offered by another microservice (directly or through a message router), and x is

not provided with any solution for handling the possibility of the target microservice to fail and

be unresponsive, such as a circuit breaker or a timeout.

Definition 3.5 (Wobbly Service Interaction). Let A = 〈N,R,E〉 be an architecture. A relation

〈x, y〉 ∈ R indicates a WOBBLY SERVICE INTERACTION smell iff

x.type≥ ∧ (y.type≥ ∨ y.type≥ mR )∧
〈x, y〉.circuit_breaker= false ∧ 〈x, y〉.timeout= false.

The possible WOBBLY SERVICE INTERACTIONs are illustrated in Fig. 3.3, which shows that

such a kind of interactions occurs when a service x is interacting with another service or with

a message router (dispatching the messages outgoing from x to other microservice), and such

interaction are not equipped with a support for tolerating failures, i.e., no circuit breaker or

timeout is used.

Fig. 3.3 also illustrates the architectural refactorings allowing to resolve WOBBLY SERVICE

INTERACTION smells. Such refactorings predicate only on the value of the properties cir-

cuit_breaker and timeout of the relationship outgoing from x.

The easiest solutions consist replacing the WOBBLY SERVICE INTERACTION between x and y

with one exploiting a circuit breaker to wrap the invocations outgoing from service x or using a

timeout. Both solutions allow x not to get stuck waiting for an answer from y. Another possible

solution is to decouple the interactions between x and y through a message broker, with the

latter being a new one, or one already available in the application. The usage of a broker allows x

to send its requests to the broker, with y processing such requests when it is available, hence

avoiding x to get stuck or fail when y fails.

It is worth noting that, when x and y are both services, applying the refactoring based on

the usage of a message broker allows to also resolve the occurrence of an endpoint-based service

interaction smell, if any. At the same time, when x is a service and y is a message router, such a

refactoring would not be local to x and y, but rather it would involve acting on the rest of the

architecture. It would indeed require to apply a solution like the one for the situation where x and

y are both services to all services that can be reached through the message router y, by exploiting

a single message broker or multiple brokers depending on the actual application needs.
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3.3.3 Architectural smell possibly violating decentralisation.

Decentralisation should occur in every aspect of microservice-based architectures, including data

management [121]. In this perspective, each data store should be directly accessed by only one

service [120]. The SHARED PERSISTENCE smell hence occurs whenever multiple services interact

with the same data store y.

Definition 3.6 (Shared Persistence). Let A = 〈N,R,E〉 be an architecture. A set of relations

R(y)= {〈x, y〉 ∈ R} indicates a SHARED PERSISTENCE smell iff

y.type≥ ∧ (∃〈x1, y〉,〈x2, y〉 ∈ R(y) : x1 6= x2).

A visual representation of the SHARED PERSISTENCE smell is in Fig. 3.3, where x1 . . . xn

are all the services accessing the data store y. The figure also shows the three architectural

refactorings for reducing the amount of services accessing the same data store, hence ultimately

allowing to resolve the occurrence of a SHARED PERSISTENCE smell. Although their goal is

the same, such refactorings are very diverse in spirit, and apply to different situations, highly

depending on the services accessing the same data store.

If a service x1 is the only service accessing a portion of the data stored in the data store y,

then y can be split in two different data stores y1 and y2n, with y1 only storing the portion of

data accessed by x1, and with y2n storing the rest of the data. The service x1 then becomes the

only accessing y1, while y2n is accessed by the other services x2 . . . xn.

Other possible solutions to reduce the amount of services accessing the same data store y are

exploiting a data manager or merging some of the services accessing the data store. Exploiting

a data manager consists in adding a service ym, or reusing one already available, to proxy the

access of services x1 . . . xh (with h ≤ n) to the data store y. The other refactoring instead consists

in merging the services x1 . . . xh (with h ≤ n) into a single service x1h. The rationale behind this

last refactoring is that, when multiple services access the same data store, this may be indicating

that the application has been split too much, by obtaining too fine-grained services processing

the same data [151].

3.3.4 Some important remarks.

Our approach focuses on the architecture of an application, by identifying smells based on the

interactions among the components forming an application, and by suggesting refactorings of the

architecture itself. The concrete implementation of an architectural refactoring (i.e., the actual

updates of the application sources) are left to the application owner, in a similar way as the

concrete implementation of a design pattern is left to developers. Hence, the application owner

can decide which refactoring to apply also based on the cost for actually implementing it.

Also, the architectural smells discussed in this section indicate potential violations of design

principles of microservices. This means that the occurrence of an architectural smell does not

mean that a design principle is necessarily violated, hence not necessarily needing to be resolved
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(a) (b)

FIGURE 3.4. Snapshots of (a) the editing/analysis and (b) refactoring views of
µFRESHENER.

by applying a corresponding architectural refactoring. Even if an architectural smell is denoting

an actual violation of a design principle, the application owner may still decide to not apply

any refactoring as well, e.g., because updating the application sources in accordance with an

architectural refactoring is too expensive. Another possible reason for choosing to not resolve an

architectural smell can be that an application architect intentionally structured the corresponding

part of the application as that, due to some contextual requirement. For instance, she may have

decided to share a same data store among multiple services for overriding reasons. If this is the

case, she will ignore the corresponding shared persistence smell, otherwise she would break her

contextual requirements.

In any case, manually identifying architectural smells, deciding whether to resolve them and

which refactoring to apply is not easy. It would be helpful to have a support system automatically

identifying the smells affecting the architecture of an application and allowing to explore among

multiple possible refactorings to resolve them. One such support system is presented in the

following section.

3.4 µFRESHENER: A prototype implementation

To illustrate the feasibility of our approach and support the design of microservice-based appli-

cations, we implemented a prototype tool (called µFRESHENER) publicly available on GitHub3.

µFRESHENER provides a web-based graphical user interface for (i) editing µTOSCA specifications,

(ii) automatically identifying architectural smells in specified applications and (iii) exploring/ap-

plying architectural refactorings for resolving the identified smells.

3https://github.com/di-unipi-socc/microFreshener.
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Fig. 3.4 provides two snapshots of the GUI of µFRESHENER. Fig. 3.4(a) shows the editing

and analysis view, where one can add/remove nodes and relationships from an architecture, and

where automatically identified smells are displayed with icons on top of corresponding nodes. By

clicking on one of such icons, one can open the view in Fig. 3.4(b), which permits selecting the

architectural refactoring to apply to resolve the selected smell. Once selected, the architecture

modelling is updated in accordance with the architectural refactoring. Note that the refactoring

is only applied to the µTOSCA specification of an application (and not on its sources), and that

one can go back and forth in architectural refactorings, by undoing/redoing them by clicking on

the corresponding buttons.

3.5 Related work

Even if there exists studies classifying various architectural smells for microservices (e.g., [41,

120, 151]), to the best of our knowledge, ours is the first systematic approach for identifying and

resolving architectural smells possibly violating the design principles of microservices in existing

microservice-based applications.

[13] and [82] report on design patterns and decision models to design microservice-based

applications (from scratch, or by migrating from monoliths to microservices). [13] also illustrates

different possible solutions to resolve potential design issues. In both cases, this is done by

retrieving information from practitioners or industry-scale projects, and by organising such

information in informal guidelines, which can be used for driving the design of microservice-based

application. Our approach tries to further support the design of microservices, by providing a

systematic solution to identify and resolve the architectural smells affecting an already existing

application, also providing a tool support.

Systematic solutions for modelling and analysing microservice-based architectures anyway

exist, even if conceived for different purposes. For instance, [155] presents MicroDSL, a domain-

specific language for modelling microservice-based architectures, where microservices interact

through RESTish protocols, and models are then used to generate an executable deployments of

specified applications. [37] instead proposes a Petri net-based solution for the runtime verification

of the orchestration of microservice-based application on top of Netflix’s Conductor. Even if con-

ceived for different purposes, [155] and [37] share our baseline idea of elicitating all interactions

among microservices to analyse an architecture. They however differ in the goals of the proposed

approachs, due to which they focus on modelling specific types of applications (microservices

interacting with REST in [155], Conductor-based applications in [37]).

[38] and [48] present two other existing tools for analysing of microservices, which exploit a

modelling closer to ours. Indeed, they both model a microservice-based architecture as a graph,

whose nodes represent components and whose arcs represent interactions. They however do

not support modelling the edge of an architecture, nor distinguishing whether a component is
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a service, communication pattern or a data store. This, along with our willingness to exploit

a standard to model microservice-based architectures, is the reason why developed µTOSCA

instead of reusing the modelling in [38] or [48].

Another tool worth mentioning is [144], which provides an approach to automate the testing

of microservice-based applications. [144] relates to our approach as it allow to systematically

check whether the interfaces of running microservices adhere to a given specification. It however

requires to run the microservice-based application to be tested, while ours is a design-time

support not needing to actually run an application.

[70] and [143] instead present solutions for detecting smells in the design of a single service

(specified in UML and ARCHERY, respectively). [9], [67] and [159] focus on identifying smells

in the structuring of the sources of a service, and propose refactorings for resolving detected

smells. All such approaches however differ from ours, as they focus on the design of a single

service, while our approach focuses on the architectural smells due to the interactions among all

components forming a microservice-based application. In other words, such approaches and ours

can complement each other, to permit identifying both the architectural smells affecting a single

service and those due to the interactions among the components in an application.

Similar considerations apply to [84] and [83]. Even if with different approaches (self-adaptation

in [84], aspect-oriented ambients in [83]), they both focus on analysing a single microservice

to determine whether the its granularity is optimal, or whether it needs some adaptation to

rightsize its granularity. We instead focus on analysing the interactions among all microservices

forming an application to identify and resolve architectural smells.

Finally, it is also worth relating our work with [76], [77], [112] and [113]. Starting from the

idea that service interactions are the main mechanism to program the microservices forming an

application, [77] proposes to develop microservice-based applications with Jolie, a language for

developing service compositions by programming their interactions. Our approach follows the

same idea, as we consider service interactions as the basis for identifying architectural smells.

[76], [112] and [113] instead propose different solutions for microservice-based architecture

recovery, i.e., identifying the microservices forming an application and the interactions among

them. [76] and [112] also show how automatically recovered architectures can be analysed for

identifying issues (i.e., unnecessary service interactions in [76], dependency cycles in [112]).

[76], [112] and [113] could then be used in conjunction with our approach, to first derive the

architecture of a microservice-based application, and then identify and resolve the architectural

smells affecting such application.

3.6 Conclusions

We have presented a methodology to identify the architectural smells possibly violating design

principles of microservices, and to apply architectural refactorings to resolve them. We have also
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presented the µFRESHENER, implementing our methodology to support the design of microservice-

based applications.

While our methodology and the µFRESHENER prototype can be actually applied to analyse

and improve existing microservice-based applications, users must currently define (with the

GUI of µFRESHENER) or provide a µTOSCA description of the architecture of their applications.

To increase the usability of our prototype, we plan to develop plug-ins to automatedly extract

the µTOSCA description of the architecture of an application (from its code structure like in

[85, 112, 156] and/or from its runtime behaviour like in [76, 113]).

We also plan to extend the architectural smells that can be identified and resolved with our

methodology (and with µFRESHENER), by starting from the smells and refactoring classified

in [41, 120, 151]. As a concrete example, we plan to extend µTOSCA with a type for grouping nodes

to represent team assignment (i.e., which components are assigned to which team), to formalise

the team-related architectural smells available in [120], to correspondingly extend µFRESHENER

to identify and resolve such smells, and to feature team-wise usage of µFRESHENER.

Finally, we plan to extend µFRESHENER to account for the container orchestrator (e.g., Docker

Compose, Kubernetes) used to deploy the application, as the container orchestration layer can

resolve some smells possibly present at the architecture layer. We also intend to validate the

effectiveness of our methodology and the usability µFRESHENER against real-world microservice-

based applications (possibly involving hundreds of interconnected services).
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4
ORCHESTRATING INCOMPLETE TOSCA APPLICATIONS WITH

DOCKER

C loud applications typically consist of multiple interacting components, each requiring a

virtualised runtime environment providing the needed software support (e.g., operating

system, libraries). In this chapter ,we show how TOSCA and Docker can be effectively

exploited to orchestrate multi-component applications, even if their (runtime) specification is

incomplete. More precisely, we first propose a TOSCA-based representation for multi-component

applications, and we show how to use it to specify only the components forming an application. We

then present a way to automatically complete TOSCA application specifications, by discovering

Docker-based runtime environments that provide the software support needed by the application

components. We also discuss how the obtained specifications can be automatically orchestrated

by existing TOSCA engines.

The results illustrated in this Chapter were published in [26], which appeared in the journal

“Science of Computer Programming”.

4.1 Introduction

Cloud computing permits running on-demand distributed applications at a fraction of the cost

which was necessary just a few years ago [10]. This has revolutionised the way applications

are built in the IT industry, where monoliths are giving way to distributed, component-based

architectures. Modern cloud applications typically consist of multiple interacting components,

which (compared to monoliths) permit better capitalising the benefits of cloud computing [35].

At the same time, the need for orchestrating the management of multi-component applications

across heterogeneous cloud platforms has emerged [23, 109]. The deployment, configuration, en-
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actment and termination of the components forming an application must be suitably orchestrated.

This must be done by considering all the dependencies occurring among the components forming

an application, as well as the fact that each application component must run in a virtualised

environment providing the software support it needs [66].

Developers and operators are currently required to manually select and configure an appro-

priate runtime environment for each application component, and to explicitly describe how to

orchestrate such components on top of the selected environments [121]. As we discuss in Sect. 4.2,

such process must then be manually repeated whenever a developer wishes to modify the virtual

environment actually used to run an application component, e.g., because the latter has been

updated and it now needs additional software support.

The current support for developing cloud applications should be enhanced. In particular, develop-

ers should be required to describe only the components forming an application, the dependencies

occurring among such components, and the software support needed by each component [17].

Such description should be fed to tools capable of automatically selecting and configuring an

appropriate runtime environment for each application component, and of automatically orches-

trating the application management on top of the selected runtime environments. Such tools

should also allow developers to change the virtual environment running an application component

whenever they wish (e.g., by automatically replacing a previously selected environment with

another satisfying the new/updated requirements of an application component).

In this chapter, we present a solution geared towards providing such an enhanced support. Our

solution is based on TOSCA [124], the OASIS standard for orchestrating cloud applications, and

on Docker, the de-facto standard for cloud container virtualisation [127]. The main contributions

of this chapter are indeed the following:

• We propose a TOSCA-based representation for multi-component applications, which can be

used to specify the components forming an application, the dependencies occurring among

them, and the software support that each component requires to effectively run.

• We present TOSKERISER, a tool that automatically completes TOSCA application specifi-

cations, by discovering and including Docker-based runtime environments providing the

software support needed by the application components. The tool also permits changing

–when/if needed– the runtime environment used to host a component.

The obtained application specifications can then be processed by orchestration engines sup-

porting TOSCA and Docker (such as TOSKER [30], for instance). Such engines will automatically

orchestrate the deployment and management of the corresponding applications on top of the

given runtime environments.

This chapter extends [25] by (a) extending the approach of [25] to permit hosting groups of

software components on the same Docker container, by (b) providing a detailed description of

the implementation of TOSKERISER, and by (c) presenting two novel case studies comparing the
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FIGURE 4.1. Running example: The application Thinking.

orchestration of the management of applications with and without our solution (based on three

KPIs) and illustrating the usefulness of groups.

The rest of the chapter is organised as follows. Sect. 4.2 illustrates an example further

motivating the need for an enhanced support for orchestrating the management of cloud ap-

plications. Sect. 4.3 provides some background on TOSCA and Docker. Sect. 4.4 shows how to

specify application-specific components only, with TOSCA. Sect. 4.5 then presents our tool to

automatically determine appropriate Docker-based environments for hosting the components of

an application. Sect. 4.6 illustrates the two case studies, while Sects. 4.7 and 4.8 discuss related

work and draw some concluding remarks, respectively.

4.2 Motivating scenario

Consider the open-source web-based application Thinking1, which allows its users to share their

thoughts, so that all other users can read them. Thinking is composed by three interconnected

components (Fig. 4.1), namely (i) a MongoDB storing the collection of thoughts shared by end-

users, (ii) a Java-based REST API to remotely access the database of shared thoughts, and (iii)

a web-based GUI visualising all shared thoughts and allowing to insert new thoughts into the

database. As indicated in the documentation of the Thinking application:

(i) The MongoDB component can be obtained by directly instantiating a standalone Docker-

based service, such as mongo2, for instance.

(ii) The API component must be hosted on a virtualised environment supporting maven

(version 3), java (version 1.8) and git (any version). The API must also be connected to the

MongoDB.

(iii) The GUI component must be hosted on a virtualised environment supporting nodejs

(version 6), npm (version 3) and git (any version). The GUI also depends on the availability

of the API to properly work (as it sends GET/POST requests to the API to retrieve/add

shared thoughts).
1https://github.com/di-unipi-socc/thinking.
2https://hub.docker.com/_/mongo/.
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Docker containers work as virtualised environments for running application components [127].

However, we currently have to manually look for the Docker containers offering the software

support needed by API and GUI (or to manually extend existing containers to include such

support). We then have to manually package the API and GUI components within such Docker

containers, and to explicitly describe the orchestration of the management ofall the Docker

containers in our application. In other words, we must identify, develop, configure and orchestrate

the deployment and management of all components in Fig. 4.1, including those not specific to the

Thinking application (viz., the lighter nodes API RTE and GUI RTE).

The above process must be manually repeated whenever we wish to change the Docker

containers used to run the components of Thinking. Suppose, for instance, that we wish to host

GUI and API on the same container. We should remove their containers from the application,

we should manually look for a new container providing the software support needed by both

components, and we should re-describe — possibly from scratch — the orchestration of GUI and

API on the newly added container.

Especially in the latter case, our effort would be lower if we were provided with a support

requiring us to describe our application only, and automating all remaining tasks. More precisely,

we should only be required to specify the thicker nodes and dependencies in Fig. 4.1. The support

should then be able to automatically complete our specification, and to exploit the obtained

specification to automatically orchestrate the deployment and management of the Thinking

application. In this chapter, we show a TOSCA-based solution geared towards providing such a

support.

4.3 Background

4.3.1 TOSCA

TOSCA (Topology and Orchestration Specification for Cloud Applications [124]) is an OASIS

standard whose main goals are to enable (i) the specification of portable cloud applications

and (ii) the automation of their deployment and management. TOSCA provides a YAML-based

and machine-readable modelling language that permits describing cloud applications. Obtained

specifications can then be processed to automate the deployment and management of the specified

applications. We hereby report only those features of the TOSCA modelling language that are

used in this chapter3.

TOSCA permits specifying a cloud application as a service template, which is in turn composed

by a topology template, and by the types needed to build such a topology template (Fig. 4.2). The

topology template is essentially a typed directed graph, which describes the topological structure

of a multi-component cloud application. Its nodes (called node templates) model the application

3A more detailed, self-contained introduction to TOSCA can be found in [17, 34].
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FIGURE 4.2. The TOSCA metamodel [124].

components, while its edges (called relationship templates) model the relations occurring among

such components.

Node templates and relationship templates are typed by means of node types and relationship

types, respectively. A node type defines the observable properties of a component, its possible

requirements, the capabilities it may offer to satisfy other components’ requirements, and the

interfaces through which it offers its management operations. Requirements and capabilities

are also typed, to permit specifying the properties characterising them. A relationship type

instead describes the observable properties of a relationship occurring between two application

components. As the TOSCA type system supports inheritance, a node/relationship type can be

defined by extending another, hence permitting the former to inherit the latter’s properties,

requirements, capabilities, interfaces, and operations (if any).

Node templates can also be logically grouped, typically to define groups of nodes to be managed

together, and/or to uniformly apply the same management policy to all the nodes forming a group

(e.g., placing all nodes in a group on the same host, simultaneously scaling all the nodes forming

of a group). A TOSCA group represents a logical grouping of node templates that need to be

orchestrated together to achieve some management goal. As such goals can be many, the actual

purpose of each group is specified by means of its group type.

To concretely realise the deployment and management of the nodes forming an application,

node templates and relationship templates also specify the artifacts needed to actually perform

their deployment or to implement their management operations. As TOSCA allows artifacts to

represent contents of any type (e.g., scripts, executables, images, configuration files, etc.), the

metadata needed to properly access and process them is described by means of artifact types.

TOSCA applications are then packaged and distributed in so-called CSARs (Cloud Service

ARchives). A CSAR is essentially a zip archive containing an application specification along with
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the concrete artifacts realising the deployment and management operations of its components.

4.3.2 Docker

Docker (https://docker.com) is a Linux-based platform for developing, shipping, and running

applications through container-based virtualisation. Container-based virtualisation [148] exploits

the kernel of the operating system of a host to run multiple isolated user-space instances, called

containers.

Each Docker container packages the applications to run, along with whatever software

support they need (e.g., libraries, binaries, etc.). Containers are built by instantiating so-called

Docker images, which can be seen as read-only templates providing all instructions needed for

creating and configuring a container. Docker images can be created by developing Dockerfiles,

which contain all the commands to be executed to create an image (e.g., installing the needed

support, setting the main process to run). Existing Docker images are distributed through so-

called Docker registries (e.g., Docker Hub — https://hub.docker.com), and new images can be

built by extending existing ones.

Docker containers are volatile, and the data produced by a container is (by default) lost when

the container is stopped. This is why Docker introduces volumes, which are specially-designated

directories (within one or more containers) whose purpose is to persist data, independently of the

lifecycle of the containers mounting them. Docker never automatically deletes volumes when a

container is removed, nor does it remove volumes that are no longer referenced by any container.

Docker also allows containers to intercommunicate, by creating virtual networks, which span

from bridge networks (for single hosts), to complex overlay networks (for clusters of hosts). Docker

also provides built-in orchestration tools, such as Docker Compose (https://docs.docker.com/

compose/), which permits creating multi-container Docker applications, and managing them on

a single host or in a cluster of hosts4.

4.4 Specifying applications only, with TOSCA

Multi-component applications typically integrate various and heterogeneous software compo-

nents [66]. We hereby propose a TOSCA-based representation for such components (Sect. 4.4.1).

We also illustrate how it can be used to specify only the components that are specific to an appli-

cation, and to constrain the Docker containers that can be used to actually host such components

(Sect. 4.4.2).

4A more detailed introduction to Docker can be found in [114, 145].
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4.4.1 A TOSCA-based representation for applications

We first define three different TOSCA node types5 to distinguish Docker containers, Docker

volumes, and software components that can be used to build a multi-component application

(Fig. 4.3).

tosker.nodes.Container permits representing Docker containers, by indicating whether a con-

tainer requires a connection (to another Docker container or to an application component),

whether it has a generic dependency on another node in the topology, or whether it needs

some persistent storage (hence requiring to be attached to a Docker volume). tosker.no-

des.Container also permits indicating whether a container can host an application com-

ponent, whether it offers an endpoint where to connect to, or whether it offers a generic

feature (to satisfy a generic dependency requirement of another container or application

component). It also lists the operations to manage a container (which correspond to the

basic operations offered by Docker [114]).

To complete the description, tosker.nodes.Container provides placeholder properties

for specifying port mappings (ports) and the environment variables (env_variables) to be

configured in a running instance of the corresponding Docker container. It also provides two

properties (supported_sw and os_distribution) for indicating the software support provided

by the corresponding Docker container and the operating system distribution it runs.

The above listed elements are all optional, viz., node templates of type tosker.nodes.Con-

tainer can optionally instantiate/implement them. Additionally, requirements and capabili-

ties can be instantiated multiple times in a node of type tosker.nodes.Container (e.g., if a

container requires two distinct connections to two different components, two requirements

connection have to be instantiated).

tosker.nodes.Volume permits specifying Docker volumes, and it defines an optional capability

attachment to indicate that a Docker volume can be used to satisfy the storage requirements

of Docker containers. It also lists the operations to manage a Docker volume (which

corresponds to the basic operations offered by the Docker platform [114]).

tosker.nodes.Software permits describing the software components forming a multi-component

application. It permits specifying whether an application component requires a connection

(to a Docker container or to another application component), whether it has a generic

dependency on another node in the topology, and that it has to be hosted on a Docker

container or on another component tosker.nodes.Software also permits indicating whether

an application component can host another component, whether it provides an endpoint

where to connect to, or whether it offers some feature (to satisfy a generic dependency

requirement of a container/application component). Finally, tosker.nodes.Software indicates

5Their actual TOSCA definition is publicly available at https://github.com/di-unipi-socc/tosker-types.
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FIGURE 4.3. TOSCA node types for multi-component, Docker-based applications,
viz., tosker.nodes.Container, tosker.nodes.Software, and tosker.nodes.Volume.

the operations to manage an application component (viz., create, configure, start, stop,

delete).

All above listed elements are optional, as node templates of type tosker.nodes.Software

can optionally instantiate them. Requirements and capabilities can also be instantiate

multiple times in a node of type tosker.nodes.Software (e.g., two instances of the requirement

connection permits indicating that a component requires two distinct connections to two

different components).

The interconnections and interdependencies among the nodes forming a multi-component applica-

tion can then be indicated by exploiting the TOSCA normative relationship types [124]. Namely,

tosca.relationships.AttachesTo can be used to attach a Docker volume to a Docker container,

tosca.relationships.ConnectsTo can indicate interconnections between Docker containers and/or

application components, tosca.relationships.HostedOn can be used to indicate that an application

component is hosted on another component or on a Docker container, and tosca.relationships.De-

pendsOn can be used to indicate generic dependencies between the nodes of a multi-component

application6.

4.4.2 Specifying application-specific components only

The TOSCA types introduced in the previous section can be used to specify the topology of a

multi-component application. We hereby illustrate, by means of an example, how to specify in

6The TOSCA specification [124] explains how to validly instantiate normative relationship types.
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FIGURE 4.4. A specification of our running example in TOSCA (where nodes are typed
with tosker.nodes.Container, tosker.nodes.Volume, or tosker.nodes.Software, while
relationships are typed with TOSCA normative types [124]).

TOSCA only the fragment of a topology that is specific to an application (by also constraining the

Docker containers that can be used to actually host the components in such fragment).

Example 4.1. Consider again the application Thinking in our motivating scenario (Sect. 4.2).

The components specific to Thinking (viz., MongoDB, API, and GUI) can be specified in TOSCA

as illustrated in Fig. 4.4:

• MongoDB is obtained by directly instantiating a Docker container mongo (modelled as a

node of type tosker.nodes.Container). The latter is attached to a Docker volume where the

shared thoughts will be persistently stored.

• API is a software component (viz., a node of type tosker.nodes.Software). API requires to be

connected to the back-end MongoDB, to remotely access the database of shared thoughts.

• GUI is a software component (viz., a node of type tosker.nodes.Software). GUI depends on

the availability of API to properly work (as it sends HTTP requests to the API to retrieve/add

shared thoughts).

Please note that the requirements host of both API and GUI are left pending (viz., there is

no node satisfying them). This is because the actual runtime environment of API and GUI is not

specific to the application Thinking, and it should be automatically determined among the many

possible (as we will discuss in Sect. 4.5). The only effort required to the developer is to specify

constraints on the configuration of the Docker containers that can effectively host API and GUI

(e.g., which software support they have to provide, which operating system distribution they must

run, which port mappings they must expose, etc.).
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node_filter:
type: tosker.nodes.Container
properties:
- supported_sw:

- mvn: 3.x
- java: 1.8.x
- git: x

- ports:
- 8080: 8000

- os_distribution: ubuntu

node_filter:
type: tosker.nodes.Container
properties:

- supported_sw:
- node: 6.x
- npm: 3.x
- git: x

- ports:
- 3000: 8080

(a) (b)

FIGURE 4.5. Constraints on the Docker containers that can effectively run the software
components (a) API and (b) GUI (specified within their requirements host).

TOSCA natively supports the possibility of expressing constraints on the nodes that can satisfy

requirements left pending [124], through the clause node_filter that can be indicated within a

requirement. node_filter permits specifying the type of a node that can satisfy a requirement,

and it permits constraining the properties of such node.

We can hence exploit node_filter to indicate that the software components in an application

must be hosted on Docker containers (viz., on nodes of type tosker.nodes.Container). We can also

indicate constraints to configure such containers (e.g., which port mappings they must expose,

or which environment variables they should define), to define the operating system distribution

they must run, and to indicate the software distributions they must support. The latter can be

indicated with pairs name: version, where version indicates the prefix number of the desired

software version followed by an x (e.g., java: 1.8.x is an alias for all versions of java starting

with 1.8).

Example 4.2. Consider again the multi-component application Thinking, modelled in TOSCA

as in Fig. 4.4. The pending requirements host of API and GUI must constrain the nodes that can

actually satisfy them.

The requirement host of API can express the constraints on the Docker containers that can

effectively host it with the node_filter in Fig. 4.5.(a). The latter indicates that API needs to run

on a Docker container, viz., a node of type tosker.nodes.Container, which supports maven (version

3), java (version 1.8) and git (any version). It also indicates a port mapping to be configured in the

hosting container and that such container must be based on an Ubuntu distribution7.

Analogously, the requirement host of GUI can constrain the Docker containers for hosting

it with the node_filter in Fig. 4.5.(b). The latter prescribes that GUI must run on a Docker
7Constraining the operating system distribution is particularly useful when the artifacts implementing the

management operations of a software component require to perform distribution-specific system calls (e.g., a .sh script
performing a command apt-get, which is supported only in Debian-based distributions).
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container supporting node (version 6), npm (version 3) and git (any version). It also requires

the hosting container to expose the indicated port mapping. The obtained (incomplete) TOSCA

specification is publicly available on GitHub8.

4.4.3 Specifying groups of components to be hosted on the same container

An application developer may also wish to group some of the components forming her application,

and to host all the nodes forming a group in the same container. This would allow, for instance, to

reduce the network traffic produced by the components of an application.

TOSCA natively permits grouping the nodes forming an application in groups, and it allows

specifying the actual purpose of each group by means of its type [124]. We hence defined a

new group type tosker.groups.DeploymentUnit, whose purpose is precisely to indicate that the

nodes it contains must all be hosted on the same container. Given the nature of tosker.gro-

ups.DeploymentUnit, the following conditions must be satisfied while defining a group of such

type:

(i) A group of type tosker.groups.DeploymentUnit can only contain nodes of type tosker.no-

des.Software.

(ii) If the requirement host of a node within a group of type tosker.groups.DeploymentUnit is

satisfied, then such requirement must be satisfied by another node within the same group

or by a node of type tosker.nodes.Container.

(iii) If a node within a group of type tosker.groups.DeploymentUnit satisfies the requirement

host of another node, then the latter node must be part of the same group.

(iv) The groups of type tosker.groups.DeploymentUnit in a TOSCA application specification

must be all disjoint (viz., a node cannot be simultaneously part of two different groups).

The first condition is due to the fact that, according to Sect. 4.4.1, nodes of type tosker.no-

des.Software can be hosted on other nodes, while tosker.nodes.Container and tosker.nodes.Volume

cannot be hosted on other nodes. The second, third and last conditions instead ensure that,

whenever a software component is hosted on another software component, then both components

are deployed within the same Docker container.

Example 4.3. Consider again the application Thinking in our motivating scenario (Sect. 4.2).

Example 4.1 showed how to specify the components forming such application in TOSCA, while

Example 4.2 illustrated how to indicate constraints on the Docker containers that can effectively

run its software components API and GUI.

8https://github.com/di-unipi-socc/TosKeriser/blob/master/data/examples/thinking-app/
thinking/thinking.yaml.
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FIGURE 4.6. A specification of our running example in TOSCA, including a group (of
type tosker.groups.DeploymentUnit) specifying that API and GUI must be hosted
by the same Docker container.

Suppose now that we wish to host both API and GUI on the same container. This can be

constrained by just indicating that API and GUI form a group of type tosker.groups.Deployment-

Unit (Fig. 4.6 — the corresponding TOSCA specification is publicly available on GitHub9).

The tool used to complete the specification of Thinking will then have to automatically de-

termine a Docker container capable of satisfying the requirements host of both API and GUI

(Fig. 4.5).

4.5 Completing TOSCA specifications, with Docker

We hereby present TOSKERISER, an open-source prototype tool10 that automatically completes

“incomplete” TOSCA application specifications (describing only application-specific components,

and indicating constraints on the Docker containers that can be used to host such components —

as discussed in the previous section).

TOSKERISER is part of an open-source toolchain allowing to orchestrate multi-component

applications with TOSCA and Docker (Fig. 4.7). TOSKERISER inputs a CSAR file containing

a TOSCA application specification. It then identifies the set of software components whose

requirement host has to be fulfilled, and it exploits DOCKERFINDER11 to identify the Docker

9https://github.com/di-unipi-socc/TosKeriser/blob/master/data/examples/thinking-app/
thinking_group/thinking_group.yaml.

10The Python sources of TOSKERISER are publicly available on GitHub at https://github.com/di-unipi-socc/
toskeriser (under MIT license). TOSKERISER is also available on PyPI, and it can be directly installed on Linux
hosts by executing the command pip install toskeriser.

11DOCKERFINDER [27] is a tool allowing to search for Docker containers based on multiple attributes, including
the distributions of software they support and the operating system they are based on.
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FIGURE 4.7. Open-source toolchain for orchestrating multi-component applications
with TOSCA and Docker.

FIGURE 4.8. BPMN modelling of the process that TOSKERISER performs to automati-
cally complete TOSCA application specifications.

containers providing the support needed by such components. TOSKERISER then completes the

application topology by properly including the discovered containers, and it outputs the resulting

CSAR file. Such file can then be passed to TOSKER [30] (or to any other orchestration engine

offering the needed support for TOSCA and Docker), which will automatically deploy and manage

the actual instances of the specified application.

We hereafter first detail how TOSKERISER concretely proceeds for automatically completing

TOSCA application specifications (Sect. 4.5.1), and we then show how to use TOSKERISER in

practice (Sect. 4.5.2).

4.5.1 How TOSKERISER completes applications, concretely

TOSKERISER completes TOSCA application specifications according to the workflow illustrated

in Fig. 4.8.

Parsing. TOSKERISER initially parses and validates the TOSCA application specification con-
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tained in the CSAR given as input. More precisely, the step Parsing first exploits the OpenStack

TOSCA parser library [126] to check whether the specification is syntactically correct. If this

is not the case, the parser generates an error report, which is then returned by TOSKERISER.

Otherwise, it generates an internal representation of the input specification, which is passed to

the step Validation.

Validation. The step Validation type-checks the (internal representation of the) TOSCA applica-

tion specification, by verifying the following three conditions:

(v1) The property constraints expressed in the node_filter clause of each node are not con-

flicting one another (viz., by requiring different versions of the same software distribution,

by defining different mappings for the same port, or by defining twice an environment

variable),

(v2) the constraints on operating system and on software distributions are defined by using

names of operating systems and software distributions that are actually supported by

TOSKERISER12, and

(v3) the groups of type tosker.groups.DeploymentUnit do not violate the four conditions listed in

Sect. 4.4.3.

If at least one out of the conditions v1, v2 or v3 does not hold, then TOSKERISER stops by

returning an appropriate error message. Otherwise, the application specification is passed to the

step Filtering.

Filtering. The step Filtering scans the application specification to identify the nodes that have

to be hosted on automatically discovered Docker containers. A node needs to be hosted on an

automatically discovered Docker container if it satisfies all following conditions:

( f1) It is of type tosker.nodes.Software,

( f2) it is not hosted on another node of type tosker.nodes.Software, and

( f3) its requirement host is not satisfied (viz., it is not connected to any container), or it is part

of a group where there exists a node whose requirement host is not satisfied.

The result of the step Filtering is a set of pairs 〈nodes,conds〉, where nodes is a set of nodes13,

and where conds is a multi-set containing the sets of hosting constraints specified by the nodes in

nodes (viz., each element of conds is a set of constraints specified within the requirement host of

a node in nodes). The set of pairs 〈nodes,conds〉 is then passed to the step Merge.

12All names of software distributions currently supported by TOSKERISER can be displayed by running the
command line instruction toskerise –supported_sw.

13If a node is not part of a group, then nodes will be the singleton set containing only such node. If a node is instead
part of a group, then nodes will be the set of the nodes that are members of such group.
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Merge. For each pair 〈nodes,conds〉, the step Merge merges the constraints specified by the sets

in conds in a single set of mergedConds (which will have to be satisfied by the automatically

discovered Docker container used to host the corresponding nodes).

Given a pair 〈nodes,conds〉, the step Merge first checks whether two distinct sets in conds

impose conflicting constraints (viz., they require different versions of the same software distribu-

tion, different operating system distributions, different mappings for the same port, or different

values for the same environment variable). If this is not the case, Merge proceeds in merging

the sets of constraints in conds in a single set mergedConds. The latter is essentially the set

union of all sets in conds. The only exception is on version matching of software distributions, as

multiple compatible constraints on the version of a same software distribution result in keeping

the most stringent constraint (e.g., the constraints java:1.x, java:1.8.x and java:1.8.4 result

in keeping only the constraint java:1.8.4).

The result of the step Merge is a set of pairs 〈nodes,mergedConds〉, which is passed to the

step Best-effort adaptation.

Best-effort adaptation. The purpose of the step Best-effort adaptation is to actually enact the

completion of the TOSCA application specification, by first trying to determine suitable Docker

container for each of the pairs 〈nodes,mergedConds〉 (viz., a Docker container satisfying all

hosting requirements mergedConds of the nodes in nodes), which could then be included within

the TOSCA application specification.

This step is “best-effort”. Namely, despite it looks for a Docker container satisfying the

hosting constraints mergedConds for each pair 〈nodes,mergedConds〉, it may happen that such

a container is not available. If this is the case, the step Best-effort adaptation simply skips the

corresponding pair, and it continues adapting the remaining ones. The end-user is however

informed by TOSKERISER, which prints out a warning message for each skipped pair.

Such behaviour is obtained by applying to each pair 〈nodes,mergedConds〉 the following three

sub-steps (Fig. 4.8):

• The step Image Search exploits the hosting constraints in mergedConds to build an appro-

priate query for DOCKERFINDER and to invoke it. If DOCKERFINDER return an empty

set of images of Docker containers, then the instance of the sub-process terminates. This

would indeed mean that it is not possible to automatically determine a Docker container

capable of satisfying the hosting requirements of all the nodes in nodes. Otherwise, the set

of images is passed to the step Image Selection.

• The purpose of step Image Selection is to pick one out of the images of Docker containers

returned by DOCKERFINDER. The current prototype of TOSKERISER either automatically

picks the first image returned by DOCKERFINDER, or it permits manually selecting the

image among those returned by DOCKERFINDER (depending on the runtime configuration

of TOSKERISER— see Sect. 4.5.2).
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• The step Adaptation finally includes the selected image of Docker container within the

TOSCA application specification by creating a new node of type tosker.nodes.Container for

modelling such container, and by adding all relationships modelling that the nodes in nodes

have to be hosted on the newly created node.

Finally, a new CSAR containing the completed TOSCA application specification is returned by

Best-effort adaptation, and hence by TOSKERISER. An obtained CSAR can then be run “as is” with

any orchestration engine providing the needed support for TOSCA and Docker (e.g., TOSKER [30]),

provided that all the requirements host of the packaged TOSCA application specification have

been fulfilled by appropriate containers. This is because there is no need for further adaptation

or configuration to be enacted.

4.5.2 How to use TOSKERISER

TOSKERISER is currently implemented as a command-line tool, which can be actually run by

executing the following command:

$ toskerise FILE [COMPONENTS] [OPTIONS]

where FILE is the (YAML or CSAR) file containing the TOSCA application specification to be

completed. COMPONENTS is an optional list, which permits restricting the completion process to a

subset of the software components contained in the input application specification (by default, the

completion process is applied to all software components). OPTIONS is instead a list of additional

options, which permit further customising the execution of TOSKERISER. Among all options that

can be indicated, the following are the most interesting:

–constraints The option –constraints permits customising the discovery of Docker images by

indicating additional constraints (e.g., by allowing to search for images whose size is lower

of 200MB).

–policy This option allows to indicate which images of Docker containers to privilege, among all

those that can satisfy the requirement host of a software component. The policy top_rated

(default) privileges images best rated by Docker users, while policies size and most_used

privilege smallest images and most pulled images, respectively.

–interactive (or -i) This option allows users the manually select the image of the Docker

container to be used for satisfying the host requirement of a software component, from a

list that contains only the best images (according to the privileging policy — see –policy).

–force (or -f) The option –force instructs TOSKERISER to search for a new Docker container

for each considered component, even if the requirement host of such component is already

satisfied, viz., even if such requirement is already connected to a container in the application
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FIGURE 4.9. Application topology obtained by completing the partial topology of the
application Thinking (Fig. 4.4). Lighter nodes and relationships are those automat-
ically included by TOSKERISER.

specification. In other words, it instructs TOSKERISER to ignore the condition f3 during

the step Filter (see Sect. 4.5.1).

Example 4.4. Consider again the application Thinking in our motivating scenario, whose cor-

responding TOSCA representation is displayed in Fig. 4.6. The CSAR file (thinking.csar)

containing the TOSCA application specification of Thinking is publicly available on GitHub14.

Such file can be automatically completed by executing the following command:

$ toskerise thinking.csar --policy size

The above will generate a new CSAR file (thinking.completed.csar), which contains the TOSCA

specification of Thinking, whose topology is completed by including a new Docker container, called

AGContainer, which is used to host both API and GUI (Fig. 4.9, lighter node). Such node provides

the software support and the port mappings needed by both API and GUI. We can then run such

file with TOSKER [30] (or with another orchestration engine supporting both TOSCA and Docker),

which will be capable of automatically deploying and managing actual instances of the specified

application.

Please note that we run TOSKERISER with the option –policy size. The latter instructs

TOSKERISER to concretely implement AGContainer with the smallest among all images of Docker

containers providing the needed software support. Suppose now that we wish to change the

container used to host GUI and API, e.g., because we now wish to select the container that is most

14https://github.com/di-unipi-socc/TosKeriser/blob/master/data/examples/thinking-app/
thinking_group.csar.
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used by Docker users. We can run again TOSKERISER on the obtained specification, by setting

the option -f to force TOSKERISER to replace the Docker container previously included in the

specification:

$ toskerise thinking.completed.csar -f --policy most_used

This will result in replacing the Docker container implementing AGContainer by selecting (among

all images of Docker containers that can provide the software support needed by API and GUI) the

image that is most used by Docker users.

4.6 Case studies

We hereby present two case studies based on two different applications15. The first case study is

used to compare the initial effort required to deploy an application with and without our solution,

based on three KPIs (viz., lines of code to be added/changed/deleted, files to be added/changed-

/deleted, and programming languages employed — Sect. 4.6.1). The second case study is instead

used to compare the effort for maintaining an existing, third-party application with and without

our solution, based on the same KPIs (Sect. 4.6.2). We finally present an example illustrating the

usefulness of using groups in such case studies (Sect. 4.6.3).

4.6.1 First deployment of a new application

The objective of this first case study is to compare the effort required for performing the first

deployment of a newly developed application, with and without our solution. We hence developed

from scratch a toy application, called PingPong (which we publicly released on GitHub16). Ping-

Pong is composed by 3 interconnected components, viz., Ping, Proxy and Pong. Ping is connected

to Proxy, whose objective is to act as a proxy for all requests sent to Pong, and which is hence

connected to Pong. The behaviour of PingPong is as follows: Ping sends “ping” messages to Proxy,

which forwards such messages to Pong. The latter replies with “pong” messages, which are sent

to Ping (by passing through Proxy). Ping also provides a simple web-based interface allowing to

start and stop the ping-pong of messages.

The technical requirements of the components of PingPong are as follows. Ping is implemented

in JavaScript, it must be hosted on a runtime environment supporting npm (version 5) and node

(version 8), and it must be connected to Proxy. Proxy is implemented in Go, it must be installed in

a Docker container supporting go (version 1.8) and tar (any version), and it must be connected to

Pong. Pong is implemented in Python, and its runtime environment must support python (version

3), pip (any version) and tar (any version). Additionally, to reduce the network traffic generated

15The sources of the case studies and experiments reported in this section are publicly available online at
https://github.com/di-unipi-socc/toskeriser/tree/master/data/examples.

16https://github.com/di-unipi-socc/ping-pong.
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FIGURE 4.10. A specification of the topology of the PingPong application in TOSCA
(where all relationships are of type tosca.relationships.ConnectsTo).

by the components of PingPong, Proxy and Pong must be deployed on the same container, while

Ping can be hosted in a separate container.

First deployment. To compare the initial effort required to deploy a newly developed application

with and without our solution, we performed the deployment of PingPong both with our TOSCA-

based approach and with the support currently offered by Docker.

Our specification of PingPong in TOSCA is illustrated in Fig. 4.10. We modelled all components

as nodes of type tosker.nodes.Software, and we interconnected them with relationships of type tos-

ca.relationships.ConnectsTo. We also indicated all hosting requirements in the requirements host

of Ping, Proxy and Pong, and we specified the deployment group ProxyPong. We also implemented

15 shell scripts for implementing the management operations to install, configure, start, stop and

delete each component. We then exploited TOSKERISER to automatically complete the obtained

specification of PingPong. This resulted in effectively completing the application specification,

which we successfully run with TOSKER.

The Docker-based deployment of PingPong was instead implemented as follows. We first

wrote two Dockerfiles, one for installing Ping in a container offering the software support it needs,

and one for installing Proxy and Pong in a container offering the software support they need. We

then developed a Docker Compose file orchestrating the deployment of the containers obtained

from such Dockerfiles. The obtained Docker Compose file was then successfully run with Docker.

Summary. Table 4.1 compares the effort required to perform the first deployment of the Ping-

Pong application with and without our solution, in terms of the lines of code and files to be added,

changed and deleted, and of the programming languages to be employed. The table highlights

that the initial effort required by our solution is slightly higher (in terms of lines of code and

number of files) than that currently required by Docker. This is mainly due to the fact that

TOSCA requires to initially specify more information with respect to Docker. Most of the bash

commands contained in the shell scripts written for the TOSCA-based deployment are indeed

also contained in the Dockerfiles written for the Docker-based deployment.

The higher amount of information to be initially provided may be perceived as a drawback

of our approach (and of TOSCA, as well), as it increases the initial effort for deploying multi-
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KPI TOSKERISER Docker-based
Lines of code 141 89

a:141,c:0,d:0 a:89,c:0,d:0

Files 16 3
a:16,c:0,d:0 a:3,c:0,d:0

Languages 2 3
TOSCA,bash Dockerfile,Docker Compose,bash

TABLE 4.1. Initial effort required to deploy the PingPong application with TOSKERISER

and with Docker. The abbreviations a, c and d denote added, changed and deleted,
respectively.

Node Needed software distributions
Frontend npm (version 2.15), node (version 4), git (any version)
Catalogue go (version 1.7), git (any version)
Users go (version 1.7), git (any version)
Carts java (version 1.8)
Orders mvn (version 3), java (version 1.8), git (any version)
Payment go (version 1.7), git (any version)
Shipping java (version 1.8)

TABLE 4.2. Technical requirements of the main services in Sock Shop.

component applications. However, it actually pays off while maintaining an application (e.g., when

the requirements of components change, or when we wish to re-group the components of an

application), as we will show in the next section.

4.6.2 Maintenance of a third-party, existing application

Sock Shop [160] is an open-source, service-based application. Sock Shop is publicly available

on GitHub17, and it is maintained by Weaveworks (https://www.weave.works) and Container

Solutions (https://container-solutions.com) The application simulates the user-facing part

of an e-commerce website selling socks, and it is composed by 14 interconnected components.

The main components of Sock Shop are a Frontend displaying a graphical user interfaces for

e-shopping socks, a set of pairs of services and databases for storing and managing the catalogue

of available socks (viz., Catalogue and CatalogueDB), the users of the application (viz., Users and

UsersDB), the users’ shopping carts (viz., Carts and CartsDB), and the users’ orders (viz., Orders

and OrdersDB), and two services for simulating the payment and shipping of orders (viz., Payment

and Shipping). The technical requirements of the above mentioned services are recapped in

Table 4.2.

The Sock Shop application is then completed by three other components, namely Edge Router,

17https://github.com/microservices-demo/microservices-demo.
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KPI TOSKERISER Docker-based
Lines of code 303 268

Files 26 8
Languages 2 3

TOSCA,bash Dockerfile,Docker Compose,bash

TABLE 4.3. Values of the considered KPIs for the the initial deployment of Sock Shop
with TOSKERISER, and for its already existing Docker-based deployment.

RabbitMQ and Queue Master. The Edge Router redirects user requests to the Frontend. The

RabbitMQ is a message queue that is filled of shipping requests by the Shipping service. The

shipping requests are then consumed by the Queue Master, to simulate the actual shipping of

orders.

As Sock Shop is intended to aid the demonstration and testing of solutions for orchestrating

multi-component applications, we exploited it to compare the effort for maintaining an existing,

third-party application with and without our solution. More precisely, we exploited it to measure

the effort needed for addressing three subsequent changes in the deployment of Sock Shop:

(i) Frontend requires a new version of npm,

(ii) Frontend and Catalogue must be installed in the same container, and

(iii) Orders, Users and Carts must be installed in the same container.

While the Docker-based deployment of Sock Shop was already available in its GitHub reposi-

tory18, we had to develop from scratch its specification with our TOSCA-based representation.

Our specification of Sock Shop in TOSCA is illustrated in Fig. 4.11 and it is publicly available

on GitHub19. We modelled all databases and infrastructure components as nodes of type tos-

ker.nodes.Container, and we exploited the Docker containers already configured by Weaveworks

to actually implement them. We instead specified the services Frontend, Catalogue, Users, Carts,

Orders, Payment and Shipping as nodes of type tosker.nodes.Software, each having a pending

requirement host that specifies the hosting constraints of the node (Table 4.2). We also developed

25 shell scripts for implementing the management operations offered by Frontend, Catalogue,

Users, Carts, Orders, Payment and Shipping20. We then completed the specification of Sock Shop

with TOSKERISER, and we successfully run the completed specification with TOSKER.

Table 4.3 recaps the initial values of the KPIs we consider for the Sock Shop application.

The specification of Sock Shop with our approach required us to manually write 303 lines of

18https://github.com/microservices-demo/microservices-demo/tree/master/deploy/docker-
compose.

19https://github.com/di-unipi-socc/TosKeriser/tree/master/data/examples/sockshop-app.
20The management operations of a component have to be implemented by an associated artifact only when the

component actually needs such operations [124]. For instance, as Users does not require to be configured, we do not
need to develop a script for implementing its management operation configure.
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FIGURE 4.11. A specification of the topology of Sock Shop in TOSCA (where all rela-
tionships are of type tosca.relationships.ConnectsTo).

code in 26 different files, by exploiting 2 different languages (TOSCA and bash). The already

available Docker-based deployment of Sock Shop instead counts 268 lines of code in 8 different

files, by exploiting 3 different languages (Dockerfile, Docker Compose and bash). This confirms

that the initial effort with our approach is higher. At the same time, it is important to observe

that the differences between our approach and that based on Docker here are relatively lower

(with respect to the case of PingPong). This is because the impact of the additional information

to be provided with our TOSCA-based representation is lowered by the higher amount of bash

commands needed to install the services forming Sock Shop, which are contained both in the

shell script implementing the management operations in our solutions and in the Dockerfiles

required by the Docker-based deployment.

Case (i). We first considered the case of a component requiring to upgrade the software support
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KPI TOSKERISER Docker-based
Lines of code 1 1

a:0,c:1,d:0 a:0,c:1,d:0

Files 1 1
a:0,c:1,d:0 a:0,c:1,d:0

Languages 1 2
TOSCA Dockerfile,bash

TABLE 4.4. Effort required to update the deployment of the Sock Shop application,
in order to provide its Frontend with the new version of npm it requires. The
abbreviations a, c and d denote added, changed and deleted, respectively.

provided by the container hosting it, which is a frequent issue while maintaining in multi-

component applications [123]. We considered the case of Frontend requiring to upgrade the

version of npm supported by its hosting container from 2.15 to 3.10. We then compared the

effort required to update the deployment based on our approach and that based on the support

currently provided by Docker.

Our approach allowed us to update the TOSCA-based representation of Sock Shop by simply

replacing the constraint on npm in the requirement host of Frontend, viz., npm: 2.15.x was

replaced by npm: 3.10.x. The update in the Docker-based deployment instead required us to

manually change the Dockerfile installing Frontend in its container. More precisely, it required

us to add the a new line instructing to upgrade the npm version supported by the container, viz.,

RUN npm i npm@3.10 -g

at the beginning of the Dockerfile of Frontend. The corresponding efforts (in terms of the three

KPIs we consider) is reported in Table 4.4.

Both updates led to runnable instances of Sock Shop, with the desired, updated support for

its Frontend. Although they were also similar in terms of the considered KPIs, by looking at

the concrete changes that we performed, we can already appreciate some concrete differences.

To update the specification of Sock Shop, our approach required us to change the actual value

assigned to a pre-existing constraint (and the Docker container providing the desired version of

npm was then automatically determined). To update the Docker-based specification of Sock Shop,

we instead had to manually look for the bash command allowing to upgrade the distribution of

npm, and to insert such command in the Dockerfile of Frontend in such a way that the desired

version of npm is available when needed. In the latter case, we were also required to manually

check that no conflicts were generated by the newly inserted command.

Case (ii). We then considered the case of being required to deploy two different components in

the same container, e.g., to reduce the network traffic generated by the components of Sock Shop.
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KPI TOSKERISER Docker-based
Lines of code 4 176

a:4,c:0,d:0 a:114,c:4,d:58

Files 1 4
a:0,c:1,d:0 a:1,c:1,d:2

Languages 1 3
TOSCA Dockerfile,Docker Compose,bash

TABLE 4.5. Effort required to update the deployment of the Sock Shop application, in or-
der to deploy Frontend and Catalogue within the same container. The abbreviations
a, c and d denote added, changed and deleted, respectively.

We focused on grouping Frontend and Catalogue, as the former often interacts with the latter to

display the socks available in the e-shop.

We added the group to our TOSCA-based representation of Sock Shop by defining a group of

type tosker.groups.DeploymentUnit. More precisely, we added the following lines at the end of the

specification of Sock Shop:

groups:

my_group1:

type: tosker.groups.DeploymentUnit

members: [ front-end, catalogue ]

We then run TOSKERISER (with the option -f set), and we obtained an updated specification

hosting Frontend and Catalogue on the same container (providing all the software support they

need).

We instead updated the Docker-based deployment of Sock Shop by deleting the Dockerfiles

installing Frontend and Catalogue, and by creating a new Dockerfile installing both components in

an appropriate container. We then updated the Docker Compose file specifying the orchestration

of the containers of Sock Shop, which had to refer the newly created Dockerfile instead of the

deleted ones.

Despite both updates led to runnable instances of Sock Shop (with Frontend and Catalogue

grouped together), the effort required by our approach was by far lower with respect to that

required by the Docker-based deployment (Table 4.5). This is even more evident if we compare the

lines and files changed with those of the initial specification (Table 4.3). With our approach, we

reuse 100% of the lines and files we already wrote, as we only add 4 lines to 1 file. The update to

the Docker-based deployment instead has a much higher impact and it experiences a much lower

reuse, as the initial deployment counts 268 lines of code distributed over 8 files, and since we had

to edit 176 lines of code over 4 files. Additionally, while with our approach we were required to

only work with the TOSCA language, the update to the Docker-based deployment required us to

work with three different languages.
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KPI TOSKERISER Docker-based
Lines of code 9 164

a:3,c:6,d:0 a:100,c:0,d:64

Files 1 4
a:0,c:1,d:0 a:1,c:2,d:3

Languages 1 3
TOSCA Dockerfile,Docker Compose,bash

TABLE 4.6. Effort required to update the deployment of the Sock Shop application, in or-
der to deploy Orders, Users and Carts within the same container. The abbreviations
a, c and d denote added, changed and deleted, respectively.

Case (iii). We finally considered the grouping of Orders, Users and Carts, which we wished to in-

stall within the same container, and we compared the effort required to perform the corresponding

update with our approach and with the support currently provided by Docker.

We updated our TOSCA-based representation of Sock Shop by adding a group of type tos-

ker.groups.DeploymentUnit, viz., by adding the following lines at the end of the specification of

Sock Shop:

my_group2:

type: tosker.groups.DeploymentUnit

members: [ orders, user, carts ]

By running TOSKERISER (with the option -f set), we discovered that there were conflicting

requirements on the port mappings required by the grouped components. We hence had to

change 6 other lines of our specification for reconfiguring the port mappings in order to avoid

the discovered conflicts. We then re-run TOSKERISER (with the option -f set) and we obtained

an updated specification hosting the three components on the same container (providing all the

software support they need).

The update to the Docker-based deployment instead required us much more effort. We had

to delete the Dockerfiles installing Orders, Users and Carts, and to create a new Dockerfile

installing the three components in a container providing the needed support. In doing so, we

had to manually manage the issues due to conflicting port mappings (already known thanks

to the above mentioned run of TOSKERISER), by configuring Orders, Users and Carts to listen

on different ports of their container. This required us also to update the Dockerfile packaging

Frontend and Catalogue in a container, to allow such components to connect to the newly

configured Orders, Users and Carts. We finally had to update the Docker Compose file specifying

the orchestration of the containers of Sock Shop, which had to refer the newly created Dockerfile

instead of the deleted ones.

Table 4.6 illustrates the measured effort for performing both above mentioned updates, in

terms of lines of code and files to be added, changed and deleted, and of languages to be employed.
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The table highlights how case (iii) is another example showing that the maintenance effort with

our approach is much lower than that without our approach. What we can observe is indeed

very similar to the case of grouping Frontend and Catalogue. Additionally, while TOSKERISER

automatically discovers conflicting requirements, the same does not hold for the support currently

provided by Docker.

Summary. Finally, consider the effort required by three changes together (Table 4.7). Our

approach required us to overall edit 14 lines of code, by only touching the file containing the

TOSCA application specification. The impact on the initial specification was hence minimum,

as the latter consisted in writing 303 lines of code distributed over 26 different files. The effort

required by the Docker-based deployment was instead highly impacting on the initial specification.

Indeed, while the initial specification consisted of 268 lines of code distributed over 8 files, we

were required to edit 341 lines of code over 9 files.

KPI TOSKERISER Docker-based
Lines of code 14 341

a:7,c:7,d:0 a:215,c:4,d:112

Files 1 9
a:0,c:1,d:0 a:2,c:2,d:5

Languages 1 3
TOSCA Dockerfile,Docker Compose,bash

TABLE 4.7. Overall effort for updating the deployment of Sock Shop, in order to address
cases (i), (ii) and (iii). The abbreviations a, c and d denote added, changed and
deleted, respectively.

We can hence observe that despite our approach required us a slightly higher effort for devel-

oping the initial specification of Sock Shop, such effort actually paid off by the maintainability of

the obtained specification.

4.6.3 On groups

How to group the components forming an application depends on the governance of the application

itself. For instance, as the performances (in terms of delay and throughput) of Docker networking

are low on average [167], we may wish to reduce the network traffic generated by the components

of an application. Grouping can help reducing the the network traffic generated by the components

of an application, as shown by the following experiments on the applications PingPong and Sock

Shop.

PingPong. We measured the network traffic generated by the containers running components of

PingPong for processing 100 “ping” requests. More precisely, we run PingPong with two different

configurations, one with each component in a different container, and one grouping Proxy and

Pong in a single container (with Ping in a separate container). For both deployments, we iterated
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FIGURE 4.12. Average network traffic (a) transmitted and (b) received by the compo-
nents of PingPong for processing 100 “ping” requests. Darker histograms plot the
values for a deployment of PingPong with each component in a separate container,
while lighter histograms plot the values for a deployment of PingPong with the
components Proxy and Pong hosted in the same container.

50 times a test executing 100 “ping” requests, and we measured the network traffic generated by

the containers running the components of PingPong for each iteration.

Fig. 4.12 shows the average network traffic transmitted by the containers running the

components of PingPong for executing the above illustrated test. While the network traffic of Ping

keeps stable in both deployments, by grouping Proxy and Pong in a single container, we effectively

reduced the average network traffic generated by the containers running the components of

PingPong. The average network traffic generated by the deployment with one component per

container was indeed 532.84 KBs (270.45 KBs transmitted, 262.39 KBs received), while that

of the deployment with Proxy and Pong in the same container was 285.90 KBs (147.60 KBs

transmitted, 138.30 KBs received). This means that by hosting Proxy and Ping on the same

container we reduced the average network traffic of around 46%.

Sock Shop. We also prepared a test for comparing the network traffic generated by two different

deployments of SockShop, viz., its default deployment (with each component in a separate

container), and the deployment obtained at the end of the case study discussed in Sect. 4.6.2

(with two groups placing Frontend and Catalogue in one container, and Carts, Users and Orders

in another single container). Each test consisted in executing an end-to-end test of Sock Shop21,

which simulates an end-user interacting with the web-based interface of Sock Shop to perform an

order of a given pair of socks. We repeated such test 50 times for both deployments, to measure

the average network traffic transmitted by the containers running the components of Sock Shop.

Table 4.8 shows the average network traffic transmitted and received by the containers

21https://github.com/di-unipi-socc/e2e-tests.
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Transmitted Received
(KBs) (KBs)

Carts 31.01 24.93
CartsDB 17.97 15.61

Catalogue 106.50 5672.96
CatalogueDB 18.87 48.95

Frontend 6266.88 66058.24
Orders 48.77 65.70

OrdersDB 6.78 37.85
Payment 6.34 0.51
Shipping 6.30 0.92

Users 33.53 28.71
UsersDB 18.11 18.69

(a)

Transmitted Received
(KBs) (KBs)

CartsDB 18.25 15.00
CatalogueDB 18.53 49.20

Frontend-Catalogue 629.56 66334.72
Orders-Users-Carts 82.48 91.45

OrdersDB 6.70 23.63
Payment 6.33 0.51
Shipping 6.16 0.93
UsersDB 17.64 18.54

(b)

TABLE 4.8. Average network traffic of the containers running the main components of
Sock Shop for 10 iterations of end-to-end test on (a) the default deployment of Sock
Shop and (b) a deployment grouping Frontend and Catalogue, and Orders, Users
and Carts.
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FIGURE 4.13. Average network traffic (a) transmitted and (b) received by the containers
running the grouped components of Sock Shop executing its end-to-end test. Darker
histograms plot the values for a deployment of Sock Shop with each component in
a separate container, while lighter histograms plot the values for a deployment of
Sock Shop with the groups Frontend-Catalogue and Orders-Users-Carts. Values
are displayed by exploiting a logarithmic scale on the y-axis.

running the main components of Sock Shop, in the two different deployments discussed above. By

introducing the groups Frontend-Catalogue and Orders-Users-Carts, we effectively managed to

reduce the average network traffic generated by the internals of Sock Shop of around 14%. This

is mainly thanks to the reduction of the traffic generated by the containers running the grouped

components (which can be observed in Fig. 4.13).

Summary. The above reported experiments showed that the network traffic generated by the
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containers running the components of both PingPong and Sock Shop was effectively reduced by

grouping multiple components in a single container.

4.7 Related work

We presented a solution for automatically completing TOSCA specifications, which is much in the

spirit of [89]. The goal of [89] is indeed to reduce the effort paid by TOSCA delevopers, by allowing

them create incomplete application topologies, which then have to be automatically completed.

Developers can focus on modelling the components that are specific to their applications, by

also indicating the types of nodes needed to host them (e.g., a web server or a DBMS). The

solution proposed by [89] automatically adds nodes and relationships to an incomplete TOSCA

specification, in order to build the software stack needed to run each of its component. Such

nodes and relationships are taken from a finite alphabet of supported node/relationship types,

and a manual refinement step is foreseen for developers to specify the configuration of the

nodes automatically included in their topologies. However, the approach presented in [89] only

checks type-compatibility between specified nodes and those automatically included to form their

runtime environments. We instead allow developers to impose additional constraints on the nodes

that can be used to host a component (e.g., by allowing to indicate that an application component

requires a certain software support on a certain operating system distribution). Additionally, our

solution does not require further adaptation/configuration of the Docker containers automatically

included in an application.

Other approaches worth mentioning are [32], [33] and [146], whose goal is however different

from ours. They indeed focus on allowing to reuse portions of existing TOSCA applications while

developing new applications. This means that [32], [33] and [146] can still be used to automatically

determine the runtime environment needed by the components of TOSCA applications. They

indeed allow to abstractly specify desired nodes, and they can determine actual implementations

for such nodes by matching and adapting existing TOSCA application specifications. [32], [33]

and [146] however differ from our approach as they look for type-compatible solutions, without

constraining the actual values that can be assigned to a property (hence not allowing to indicate

the software support that must be provided by a Docker container, for instance).

If we broaden our view beyond TOSCA, we can identify various other efforts that have been

recently oriented to try devising systematic approaches to adapt multi-component applications to

work with heterogeneous cloud platforms. For instance, [57] and [81] propose two approaches to

transform platform-agnostic source code of applications into platform-specific applications. In

contrast, our approach does not require the availability of the source code of an application, and

it is hence applicable also to third-party components whose source code is not available nor open.

[80] proposes a framework allowing developers to write the source code of cloud applications

as if they were “on-premise" applications. [80] is similar to our approach, since, based on cloud
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deployment information (specified in a separate file), it automatically generates all artefacts

needed to deploy and manage an application on a cloud platform. [80] however differs from our

approach, as artefacts must be (re-)generated whenever an application is moved to a different

platform, and since the obtained artefacts must be manually orchestrated on such platform. Our

approach instead produces portable TOSCA application specifications, which can be automatically

orchestrated by engines supporting both TOSCA and Docker (e.g., TOSKER [30]).

In general, most existing approaches to the reuse of cloud applications support a from-scratch

development of cloud-agnostic applications, and do not account for the possibility of adapting

existing (third-party) components. To the best of our knowledge, ours is the first approach for

adapting existing multi-component applications to work with heterogeneous cloud platforms, by

relying on a natural combination of two standards (viz., TOSCA [124] and Docker) to achieve

cloud interoperability. TOSCA is indeed exploited to specify the orchestration of multi-component

applications in a cloud-agnostic manner, for which it has proven abilities [17, 125]. Docker is

instead exploited to standardise the virtual runtime environments of the components forming

an application to Linux-based containers, which are portable and widely supported by cloud

platforms (as Docker is the de-facto standard for container-based virtualisation [127]).

4.8 Conclusions

Cloud applications typically consist of multiple heterogeneous components, whose deployment,

configuration, enactment and termination must be suitably orchestrated [66]. This is currently

done manually, by requiring developers to manually select and configure an appropriate runtime

environment for each component in an application, and to explicitly describe how to orchestrate

such components on top of the selected environments.

In this chapter, we have presented a solution for enhancing the current support for orches-

trating the management of cloud applications, based on TOSCA and Docker. More precisely, we

have proposed a TOSCA-based representation for multi-component applications, which allows

developers to describe only the components forming an application, the dependencies among

such components, and the software support needed by each component. We have also presented

a tool (called TOSKERISER), which can automatically complete the TOSCA specification of a

multi-component application, by discovering and configuring the Docker containers needed to

host its components.

The obtained application specifications can then be processed by orchestration engines

supporting TOSCA and Docker, like TOSKER [30], which can process specifications produced by

TOSKERISER, to automatically orchestrate the deployment and management of the corresponding

applications.

TOSKERISER is integrated with DOCKERFINDER [27], and it produces specifications that can be

effectively processed by TOSKER [30]. TOSKERISER, DOCKERFINDER and TOSKER are all open-
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source prototypes, and their ensemble provides a first support for automating the orchestration

of multi-component applications with TOSCA and Docker. Future work on this ensemble regards

its engineering. In this perspective, we plan to evaluate and improve the performances of each

tool (TOSKERISER, DOCKERFINDER and TOSKER) and of their ensemble as well.

We also plan to further extend the open-source ensemble composed by TOSKERISER, DOC-

KERFINDER and TOSKER, to pave the way towards the development of a full-fledged, open-

source support for orchestrating multi-component applications with TOSCA and Docker. In

this direction, it is worth highlighting that despite DOCKERFINDER can provide information

on all Docker images available on Docker Hub, it may be the case that no existing image is

providing the combination of software support and operating system distribution needed by a

group of application components. This would hence impede TOSKERISER to complete the TOSCA

application specification containing such group of components. A tool supporting the creation of

ad-hoc images (configured from scratch, if needed) would permit overcoming this limitation. The

development of such tool and its integration with TOSKERISER are in the scope of our future

work.

Another interesting direction for future work is to investigate whether existing approaches

for reusing fragments of TOSCA applications (e.g., TOSCAMART [146]) can be included in TOS-

KERISER. This would permit completing TOSCA specifications by hosting the components of an

application not only on single Docker containers, but also on software stacks already employed in

other existing solutions.

Another interesting direction is to integrate our open source environment TOSKERISER

and TOSKER with existing approaches allowing to determine the optimal deployment of multi-

component applications on virtual infrastructures (such as Zephyrus [6], for instance). The

output of TOSKERISER could indeed be provided as input to a tool like Zephyrus, along with

a description of the virtual machines where the application components can run and a set

of deployment constraints (e.g., desired number of replicas of each component, co-installation

requirements, conflicting components, etc.). Zephyrus could automatically determine an optimal

application deployment of the application components on the available infrastructure.
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5
A MICROSERVICE-BASED ARCHITECTURE FOR (CUSTOMISABLE)

ANALYSES OF DOCKER IMAGES

In this chapter , we introduce DOCKERANALYSER, a microservice-based tool that permits building

customised analysers of Docker images. The architecture of DOCKERANALYSER is designed to

crawl Docker images from a remote Docker registry, to analyse each image by running an analysis

function, and to store the results into a local database. Users can build their own image analysers

by instantiating DOCKERANALYSER with a custom analysis function and by configuring the

architecture. More precisely, the steps needed to obtain new analysers are: (i) replacing the

analysis function used to analyse crawled Docker images, (ii) setting the policy for crawling

Docker images, and (iii) setting the scalability options for obtaining a scalable architecture.

We also present 2 different use cases, i.e., 2 different analysers of Docker images created by

instantiating DOCKERANALYSER with 2 different analysis functions and configuration options.

The 2 use cases show that DOCKERANALYSER decreases the effort required to obtain new

analysers versus building them from scratch.

The results of this Chapter were published in [28], which appeared in the journal “Software:

Practice and Experience".

5.1 Introduction

Container-based virtualisation [102, 110] has gained significant acceptance, because it provides

a lightweight solution for running multiple isolated user-space instances (called containers).

Such instances are particularly suited to package, deploy and manage complex, multi-component

applications [14]. Developers can bundle application components along with the dependen-

cies they need to run in isolated containers and execute them on top of a container run time
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(e.g., Docker [58], Rkt [50], Dynos [87]). Compared to previous existing virtualisation approaches,

like virtual machines, the use of containers features faster start-up times and less overhead [98].

The current de-facto standard technology for container-based virtualization is Docker [52,

127], a platform for building, shipping, and running applications inside portable containers.

Docker containers run from Docker images, which are the read-only templates used to create

them. A Docker image permits packaging a software component together with all the software

dependencies needed to run it (e.g., libraries, binaries). In addition, Docker provides the ability to

distribute and search (images of) containers that were created by other developers through Docker

registries. Given that any developer can create and distribute its own created images through

Docker registries, other users have at their disposal plentiful repositories of heterogeneous,

ready-to-use images. In this scenario, public registries (such as the official Docker Hub [59]) are

playing a central role in the distribution of images [60].

However, images stored in Docker registries are described by fixed attributes (e.g., name,

description, owner of the image), and this makes it difficult for users to analyse and select the

images satisfying their needs. Also, needs may differ from user to user, depending on the actual

exploitation of Docker images they wish to carry out. For instance, a developer may want to

deploy her application on a Docker image supporting precise software distributions (e.g., Python

2.7 and Java 1.8), an end-user may want to assign custom tags to her images in order to ease

their retrieval, or a data scientist may wish to analyse images to discover interesting, recurring

patterns.

Currently, a support for performing analyses on large set of Docker images is missing. Users

are required to manually check whether an image satisfies their needs by looking at the attributes

provided by the Docker registry or on the image features by running it in a container.

In this chapter, we present DOCKERANALYSER, a tool that permits building customised analysers

of Docker images. Users can create their own Docker image analysers by simply instantiating

DOCKERANALYSER with a user-defined analysis function that produces descriptions of Docker

images. The analysis function can be any Python code that, given the name of a Docker image,

scans such image to extract some metadata that are used to generate the description of the

image. DOCKERANALYSER is designed to provide a scalable architecture for running the analysis

function provided by the users on large set of Docker images in a fully automated way. Users

are only required to provide the analysis function, while DOCKERANALYSER provides the other

functionalities for crawling Docker images from a Docker registry, running the analysis function

on each image, storing the results of the analysis function in a local storage, and allowing to

query the storage through a RESTful API.

To illustrate this, we implemented two different analysers of Docker images, namely DOC-

KERFINDER and DOCKERGRAPH.

• DOCKERFINDER collects the software distributions supported by an image, and it permits

searching for images supporting such software distributions. For instance, if a developer
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wishes to package her application into a Docker image satisfying certain software require-

ments (e.g. Python 2.7 and Java 1.8), she can query DOCKERFINDER and select the image

that best satisfies such requirements.

• DOCKERGRAPH creates a directed graph whose nodes are names of (repositories of) Docker

images, and whose arcs connect each image i to its parent image (viz., the image that has

been used as the basis to create i), if any. Many applications can take advantage of the

graph created by DOCKERGRAPH. For instance, if a parent image is affected by a security

flaw, DOCKERGRAPH can be used for retrieving all the images that are built starting from

such image.

We deployed both DOCKERGRAPH and DOCKERFINDER as multi-container Docker applications

where the microservices of the analysers run inside Docker containers.

We chose to implement DOCKERANALYSER as a suite of interacting microservices mainly because

of the configurability properties of microservice-based architectures [108, 121]. For instance,

replaceability in a microservice-based architecture allows replacing a microservice with another

offering the same interface, without affecting any of the other microservices composing the

architecture [121]. In DOCKERANALYSER, replaceability allows obtaining different analysers by

just changing the actual implementation of the microservice running the analysis function. We

illustrate this by showing how DOCKERFINDER and DOCKERGRAPH are built by changing the

implementation of such microservice.

The results presented in this chapter extend those presented in [27]. [27] describes a tool

that analyses Docker images by executing a fixed analysis function. DOCKERANALYSER is a

generalisation of that in [27], and such generalisation permits customising the analysis function

executed by the architecture in order to create different analysers of Docker images.

The rest of the paper is organised as follows. Sect. 5.2 describes the microservice-based

architecture of DOCKERANALYSER. Sect. 5.3 introduces the DOCKERANALYSER tool. Sect. 5.4

presents 2 use cases of analysers of Docker images (DOCKERFINDER and DOCKERGRAPH)

obtained by customising the analysis function of DOCKERANALYSER. Sect. 5.5 discusses related

work. Sect. 5.6 draws some conclusions.

5.2 DOCKERANALYSER architecture

The objective of DOCKERANALYSER (Fig. 5.1) is to permit building analysers of Docker images.

A new analyser of Docker images can be created by instantiating DOCKERANALYSER with a

different analysis function (contained in the deploy package). We implemented DOCKERANALYSER

as a suite of interacting microservices.

79



CHAPTER 5. A MICROSERVICE-BASED ARCHITECTURE FOR (CUSTOMISABLE)
ANALYSES OF DOCKER IMAGES

• Analysis. DOCKERANALYSER crawls and analyses each image contained in the Docker

registry it is connected to. The analysis of the images is performed by running the analysis

function provided by the user.

• Storage. DOCKERANALYSER stores all produced image descriptions into a local storage.

The storage is then made accessible to external users through a RESTful API.

FIGURE 5.1. Microservice-based architecture of DOCKERANALYSER.

We now detail the microservices composing the architecture of DOCKERANALYSER (Fig. 5.1).

We separately discuss the microservices in the analysis group (Sect. 5.2.1) and those in the

storage (Sect. 5.2.2) group.

5.2.1 Microservices in the Analysis group

As illustrated in Fig. 5.1, the analysis is carried out by a Crawler, a Message Broker, and (one or

more) Scanners.

Crawler. The Crawler crawls the Docker images to be analysed from a remote Docker registry.

More precisely, the Crawler crawls the names of the images from the registry, and it passes such

names to the Message Broker. The Crawler can be configured by the users to implement two

different crawling policies: randomly or sequentially. The former permits crawling a random

sample of images, while the latter permits crawling all the images sequentially. In both cases,

the total number of images to be crawled can be configured.

Message Broker. A message broker is an intermediary service whose purpose is to take incoming

messages from one or multiple sources, to process such messages, and to route them to one or
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more destinations [43]. The Message Broker of DOCKERANALYSER receives the names of the

images to be analysed (from the Crawler), it stores them into a messages queue, and it permits

the Scanners to retrieve them. The goal of the Message Broker is to decouple the Crawler from

the Scanners.

Scanner. The Scanner retrieves the name of the images from the Message Broker, and for each

name received it runs the analysis function. More precisely, given a user-defined function analysis,

each Scanner continuously works as follows:

1. It retrieves an image name i from the Message Broker.

2. It runs the analysis function analysis on the image name i producing a description de-

scr=analysis(i).

3. It sends the generated description descr to the Images Service that stores the description

into the local storage.

The description descr sent to the Images Service is a JSON object containing the information

obtained by running the analysis function on the image. It is worth noting that the Scanner,

depending on the analysis function executed, can be the most time consuming service in the

architecture. For example, if the function analysis requires downloading all layers of a Docker

image locally then it can require up to minutes to download a single image. In order to decrease

the time needed to analyse images, the number of Scanner microservices can be increased

by exploiting the scalability property of microservice-based architectures (see Sect. 5.4.1 for a

concrete example of analyser exploiting such scalability to reduce the time to analyse images).

5.2.2 Microservices in the storage group

DOCKERANALYSER stores all image descriptions produced by the Scanners into a local storage.

The images descriptions stored in the local storage are made accessible through a RESTful API.

To accomplish such a storage functionality, DOCKERANALYSER relies on a microservice composed

by the Image Service and Image Database (Fig. 5.1).

Images Database. The Images Database is the local repository where the image descriptions

are stored. Given that different analysis functions can produce different image descriptions, the

Images Database has been implemented as a NoSQL database without a fixed model.

Images Service. The Images Service is a RESTful service that permits adding, deleting, updating,

and searching image descriptions inside the Images Database. The Images Service interface is

used both by other microservices in DOCKERANALYSER (for adding, deleting, updating images

descriptions) and by external users (for submitting queries to the local repository).
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FIGURE 5.2. DOCKERANALYSER as a multi-container Docker application.

5.3 DOCKERANALYSER

We hereby illustrate the implementation of DOCKERANALYSER1 (Sect. 5.3.1) and we then show

the steps needed to obtain different analysers of Docker images (Sects. 5.3.2 and 5.3.3).

5.3.1 Implementation of DOCKERANALYSER

The microservice-based architecture of DOCKERANALYSER has been implemented as a multi-

container Docker application, where each microservice is implemented and shipped in its own

Docker container. Fig. 5.2 illustrates such a multi-container Docker application by representing

each Docker container as a box labelled with the name of the microservice it implements, and

with the logo of the official Docker image used to ship such microservice. Fig. 5.2 shows also the

communication protocol exploited by the microservices to interact each other (viz., HTTP, AMQP),

and the Docker registry from which to retrieve the images to be analysed (viz., the Docker Hub).

We now separately discuss the implementation of the microservices in the analysis and storage

groups.

Analysis. The Message Broker is implemented by directly exploiting the official Docker image for

RabbitMQ2. The Crawler and the Scanner are instead implemented as Python modules, which

1The source code of DOCKERANALYSER is available on GitHub https://github.com/di-unipi-socc/
DockerAnalyser.

2RabbitMQ Docker image https://hub.docker.com/_/rabbitmq/
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are shipped in Docker containers based on the official Docker image for Python3. Both modules

exploit the Python library pika [133] for communicating (via AMQP) with the Message Broker.

Crawler uses also the Python library requests [135] for interacting with the Docker Hub REST

API. The Scanner module is configured to import and run the user-defined analysis function. By

default, the analysis function is a void function that given an image to be analysed it sends the

same image to the Images Service. The steps needed to execute a custom analysis function in

DOCKERANALYSER are listed in Sect. 5.3.2.

Storage. The Images Database is implemented as a NoSQL database hosted on a MongoDB

container4. The Images Service is a RESTful API implemented in JavaScript, which is shipped in

a container based on the official Docker image for NodeJS5. The Images Service API provides

the HTTP methods for adding, updating, deleting, and searching image descriptions. To do so,

it exploits the JavaScript framework express [122] to run a web server and mongoose [107] sto

interact (via mongodb) with the Images Database. The Images Service API returns the image

descriptions as JSON documents.

5.3.2 How to create new Docker image analysers

A user can instantiate DOCKERANALYSER in order to obtain new Docker image analysers. The

steps needed for obtaining a new analyser consist of (i) replacing the analysis function, (ii)

selecting the crawling policies of the Crawler microservice, and (iii) setting the scaling options of

the Scanner microservice.

The analysis function is replaced by instantiating the Scanner microservice of DOCKERANALYSER

with a user-defined analysis function. More precisely, the steps needed to instantiate DOCKER-

ANALYSER with a customised analysis function are the following:

1. Clone the GitHub repository of DOCKERANALYSER locally.

2. Create a folder F (that represents the deploy package – Fig. 5.1) and inside the created

folder create the following files:

a) The analysis.py file that contains the code of the custom analysis function,

b) The requirements.txt file that contains the Python library dependencies6,

c) Any other file needed by the analysis function (e.g., configuration files)

3. Build the Scanner Docker image with Docker Compose [63] by running the command

docker-compose build –build-arg DEPLOY_PACKAGE_PATH=<F> scanner, (where F is

the name of the folder created at step 2).
3Python Docker image https://hub.docker.com/_/python/
4MongoDB Docker image https://hub.docker.com/_/mongo/
5NodeJS Docker image https://hub.docker.com/_/node/
6The file requirements.txt is empty if the implemented function does not have dependencies.
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It is worth noting that step 3 builds the Docker image of the Scanner with the customised

analysis function (contained in the analysis.py) that replaces old Scanner code. The option

–build-arg DEPLOY_PACKAGE_PATH=<F> at step 3 copies the folder F (containing the custom

analysis.py file, the requirements.txt file and any other files needed to the analysis) into the

(old) Docker image of the Scanner Docker image hence allowing to create a new image running

the new analysis function. The new image of the Scanner is indeed built by importing the custom

analysis.py function and by installing all dependencies listed in the file requirements.txt (if

any).

1 def analysis(image_json, context):
2 logger = context['logger']
3 client_images = context['images']
4 # return True or False

LISTING 5.1: Signature of the function defined in the analysis.py

The analysis.py file stored in the deploy package F contains the code of the custom analysis

function (written in Python) and it must follow the signature illustrated in Listing 5.1.

• The image parameter is a JSON object containing the name of the image to be analysed

along with other basic fields taken from the registry (some of the most important fields of

the JSON object are is_automated, is_official, star_count, and pull_count).

• The context parameter is a dictionary containing the objects images and logger (lines

2, 3). The images object can be used for interacting with the Images Service API. More

precisely, the images object offers the methods get_image(name), post_image(json),

put_image(json), delete_images(id) for getting, adding, updating, and deleting an

image into the Images Database, respectively. The logger is the standard logging.Logger

class of Python and it provides a set of methods for logging the actions during the execution

of the code (e.g., info(), warning(), error(), critical(), log().

• The return code is a boolean value. True must be returned by the function if the image has

been processed correctly. False must be returned for discarding and deleting the image

from the Message Broker.

Sect. 5.4 presents two examples of analysis functions that we used to create two different

analysers of Docker images.

The second step required to obtain a custom analyser is to set the crawling policy of the Crawler

microservice for crawling the images from the Docker Hub. The crawling options of the Crawler

can be found in the docker-compose.yml file in the crawler service definition. The available

configuration options are the following:
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–random By setting –random=True the Crawler crawls the images from the Docker registry by

randomly selecting them, otherwise it crawls images sequentially.

–policy By setting –policy=stars_first the Crawler crawls the images starting from those

with a higher number of stars. Otherwise, by setting –policy=pulls_first it crawls first

the images with more number of pulls.

–min-stars This option permits setting the minimum number of stars (–min-stars=<integer>)

that an image must have in order to be crawled. All the images with a number of stars less

than –min-stars are not crawled.

–min-pulls This option permits setting the minimum number of pulls (–min-pulls=<integer>)

that an image must have in order to be crawled. All the images with a number of pulls less

than –min-pulls are not crawled.

–only-official If this option is set, then only the official images stored into the Docker registry

are crawled.

–only-automated If this option is set, then only the images that are automatically created from

a GitHub repository are crawled.

Finally, the user can configure the scaling options of the architecture by setting the number

of replicas of the Scanner microservice. Running more Scanners in parallel may reduce the

time needed to analyse the crawled images. The deploy option of the scanner in the docker-

compose.yml file permits specifying the number of parallel Scanners to be started. Listing 5.2

shows an example of a configuration that starts 10 Scanners in parallel when the analyser is

started.

1 scanner:
2 ...
3 deploy:
4 mode: replicated
5 replicas: 10

LISTING 5.2: An example of configuration of the Scanner microservice.

In addition, the Scanner can be scaled up or down at run time by using the command

docker-compose scale [SERVICE=NUM...]. For example, the command docker-compose scale

scanner=5 updates the number of Scanner replicas to 5.

5.3.3 How to deploy DOCKERANALYSER

DOCKERANALYSER is a multi-container Docker application which can be deployed using the

Docker platform. It can be deployed in two different configurations, depending on whether the
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target infrastructure is a single host or a cluster of multiple hosts. The single host deployment

configuration runs all the containers of DOCKERANALYSER in a single node while the multi host

deployment runs the containers in a cluster of distributed nodes. While former is suitable for

running simple and low load analyser, the latter is recommended whenever the analyser requires

higher amount of physical resources (e.g., network traffic or storage space) because it permits

distributing the load on multiple machines rather than just one.

Single host deployment. Docker Compose [63] permits deploying a multi-container application

on a single host if such application is equipped with a docker-compose.yml that describes the

application deployment. DOCKERANALYSER is equipped with its own docker-compose.yml file,

and it can hence be deployed on any host supporting Docker Compose. In order to start a newly

created analyser, users should submit the command docker-compose up.

Multiple host deployment. Docker Swarm [62] permits defining a cluster of Docker engines (called

a swarm) where to schedule the containers forming a multi-container application. DOCKER-

ANALYSER is equipped with a shell scripts (called start_swarm.sh) that allows to start the

analyser in a swarm. The script assumes that the user has already configured the swarm where

the analyser will be actually executed (as the script itself will have to be executed within the

Docker engine managing the swarm). The start_swarm.sh script takes as input the name of the

deploy package and the name to be assigned to the analyser. The script first creates the Scanner

image with the deploy package, and it then runs the analyser into the swarm. By default, the

script distributes the containers of the analyser among all nodes of the swarm.

5.4 Use cases

In this section, we illustrate how different analysers of Docker images can be created by instanti-

ating DOCKERANALYSER with different user-defined analysis functions. In particular, we present

DOCKERFINDER and DOCKERGRAPH, two use cases that run different analysis functions.

DOCKERFINDER analyses an image by running it in a container and checking whether the

image provides a list of software distributions. DOCKERGRAPH, instead, creates a graph of

Docker images where each node is a name of the repository of an image and where every node is

connected to its parent image. The use cases are obtained by replacing the scanner microservice

of DOCKERANALYSER (that consist of replacing the Scanner Docker image) while the other

microservices in the architecture remain untouched. As presented in Sect. 5.3.2 replacing the

scanner microservice corresponds to building a new Scanner Docker image starting from a user-

defined deploy package folder (containing the analysis.py file, the requirements.txt file, and

any other files needed by the analysis function).
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5.4.1 DOCKERFINDER

Docker images stored in Docker Hub provide virtually almost any software distributions (e.g., li-

braries, programming languages, frameworks) to the users. However, the current support for

searching such images based on the software distributions they support is missing. Users may

want to deploy an application component in a Docker image and that such application requires

some specific versions of software distributions (e.g., Python 2,7, Java 1.8). DOCKERFINDER

permits searching for Docker images based on the versions of software distributions they support.

The deploy-package folder of DOCKERFINDER contains three files: the analysis.py (List-

ing 5.3), the requirements.txt file that contains only the docker==2.2.1 python library depen-

dency (used by the analysis function for interacting with Docker daemon), and the software.json

JSON (Listing 5.4) file containing the list of software distributions to be searched in each image.

The JSON file contains a list of triples, where each triple is composed of the name of the software

distribution, the command to be executed in order to know the version of the software, and a

regular expression used to search the matching version (if it exists).

The analysis function of DOCKERFINDER is detailed in Listing 5.3. Lines 1-4 import the

Python libraries json, docker, re, and os used by the function7. Line 6 creates the Docker client

object exploited for interacting with Docker daemon. Line 8 defines the analysis function that

takes as input the image to be analysed and the context. Lines 12-14 pull the image locally

using the docker client, then create and start an infinite sleeping container. Lines 16-20 open

software.json file contained in the deploy package folder and for each software distribution

(line 18) takes the command (e.g., python version) to be executed and run the command into

the already running container. Line 19 the output variable that contains the result of execu-

tion of the command inside the container. Lines 20-26 use the regular expression to search

the version of the software in the output variable (if it exists). Lines 27 adds the software

distribution found (if any) in the JSON that will then sent to the images server. Line 28 uses

the client_images.post_image(json) to post the JSON object containing the results of the

analysis into the Images Service. Line 29-30 stop the sleeping container and remove it. Line 31

removes also the Docker image analysed. Both the container and the image are removed for

freeing storage space.

Users can search Docker images based on the software distributions they support calling

the RESTful API of the Images Service. The parameters of the Images Service API are obtained

looking at the fields contained in the JSON object that describe the images analysed. For

example, in order to retrieve the Docker images supporting both Java and Python users can

query the Images Service with the GET api/images?python=2.7&java=1.8 method. DOCKER-

FINDER can be exploited by other tools for obtaining the list of Docker images that satisfy the

software distributions required by an application component that needs to be deployed in Docker

7The analysis function can import (in addition to the library present into the requirements.txt) any of the
standard library provided by Python (e.g., json, re, os).
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1 import json
2 import docker
3 import re
4 import os
5

6 client_docker= docker.DockerClient(base_url="unix://var/run/docker.sock")
7

8 def analysis(image_json, context):
9 logger = context['logger']

10 client_images = context['images']
11 try:
12 image = client_docker.images.pull(images_json['name'])
13 container = client_docker.containers.create(images_json['name'],
14 entrypoint="sleep infinity")
15 container.start()
16 softwares = {}
17 with open(os.path.join(os.path.dirname(__file__), 'softwares.json')) as softwares_json:
18 software = json.load(softwares_json)
19 for sw in software:
20 output = container.exec_run(cmd=sw['cmd']).decode()
21 match = re.search(sw['regex'], output)
22 if match:
23 version = match.group(0)
24 softwares[sw['name']] = match.group(0)
25 else:
26 logger.debug("[{0}] NOT found in ".format(sw['name']))
27

28 images_json['softwares'] = softwares
29 client_images.post_image(images_json)
30 container.stop(timeout=2)
31 container.remove()
32 client_docker.images.remove(images_json['name'], force=True)
33 except docker.errors.ImageNotFound as e:
34 logger.exception("{} image not found".format(images_json['name']))
35 return False
36 return True

LISTING 5.3: analysis.py function of DOCKERFINDER.

1 [{
2 "name": "python",
3 "cmd": "python --version",
4 "regex": "[0-9]+[.][0-9]*[.0-9]*"
5 }, {
6 "name": "java",
7 "cmd": "java -version",
8 "regex": "[0-9]+[.][0-9]*[.0-9]*"
9 }]

LISTING 5.4: Some of the software distributions listed in the software.json
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FIGURE 5.3. Time performances registered for analysing a set of 100 images randomly
sampled from the Docker Hub, where each image was analysed by Scanners by
checking the availability of 16 different software distributions. In both plots, the x-
axes represent the amount of replicas of Scanners actually running in the running
instance of DOCKERFINDER. The y-axes instead represent the (a) completion time
and the (b) corresponding speed-up.

containers (e.g., TOSKERISER [26]).

By running DOCKERFINDER, we discovered that the most time consuming task is that of

Scanner, which have to spend time in downloading images and in analysing them to produce

their descriptions. Images can be scanned independently and Scanner can hence be easily scaled

out to improve the time performances of DOCKERFINDER (as shown8 in Fig. 5.3). Exploiting

the scalability property of microservice-based architecture, and given the fact that DOCKER-

FINDER is a multi-container Docker application scaling Scanners just corresponds to manually

increasing/decreasing the amount of corresponding Docker containers running.

5.4.2 DOCKERGRAPH

Docker permits reusing an already existing image for building other images. An image reused by

another image is called parent image. Most of the Docker images stored in Docker Hub are built

by reusing already existing images. However, the support for knowing the parent relationship

occurring between images is missing. Knowing which are the images that are more used by other

images or knowing the images use a single parent image can be exploited for many applications.

For example, if a parent image is affected by a security flaw, having the graph of all the images

that reused the affected image as parent image can be useful for patching the flaw in such images.

8The results displayed in Fig. 5.3 have been obtained by running DOCKERFINDER on a Ubuntu 16.04 LTS
workstation having a AMD A8-5600K APU (3.6 GHz) and 4 GBs of RAM.
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DOCKERGRAPH can be also used by other tools that require to implement a smart caching policy

of images. For instance, the graph can be exploited for maintaining the images locally that are

more used as parent image without deleting them.

DOCKERGRAPH constructs a directed graph of images where the nodes are the repository

names of images and a link from an image s to an image p is added if the image p is the parent

image of s. DOCKERGRAPH retrieves the repository name of the parent image by looking at the

FROM option in the Dockerfile used to create an image.

The deploy package folder of DOCKERGRAPH is composed by the analysis.py file and an empty

requirements.txt because the analysis function requires no external libraries. The analysis

function of DOCKERGRAPH is shown in Listing 5.5. Lines 1-2 import the requests and re Python

libraries used to interact with the GitHub API and for handling regular expression, respectively.

Lines 4-24 defines the analysis function of DOCKERGRAPH. Lines 5-6 gets the logger and the

client_images objects. Line 10 checks whether the image has been already analysed by calling

the is_new() method of the client_images object provided by the context. If the image has not

been already analysed, line 13 calls the get_dockerfile(repo) method that retrieve the image’s

Dockerfile stored into Docker Hub (if it is present). Line 14 calls extract_FROM(dockerfile)

method that use a regular expression for extracting the FROM option present into the Dock-

erfile. It returns a couple of strings where the first is the repository name and the second

is the tag of the parent image. Lines 15 adds the repository name (from_repo) and the tag

(from_tag) of the parent image name Python dictionary describing the image. In line 17 the

client_images.post_image(JSON) method is called to add the node_image dictionary to the

Images Service.

DOCKERGRAPH has been executed9 to crawl sequentially the repository stored in Docker Hub. At

the time of executing DOCKERGRAPH, Docker Hub contained approximately 600000 repositories.

The graph constructed by DOCKERGRAPH counts 87570 repository names because DOCKER-

GRAPH discarded all the repositories in Docker Hub whose Dockerfiles are not present or badly

formatted. Fig. 5.4 shows only the top 10 images used as parent images by other images. The

most used image is ubuntu with 15208 images using it as parent image, while nginx is used as

parent image by 1697 images.

It is worth nothing that the image descriptions obtained by an analyser are returned as raw

data (i.e., JSON objects). It is left to the users to post-process the raw data and to visualise it

(like in the chart in Fig. 5.4) using data visualisation tools. The data visualisation of the obtained

images descriptions is outside of the scope of this work.

9DOCKERFINDER has been executed on a Ubuntu 16.04 LTS workstation having a AMD A8-5600K APU (3.6 GHz)
and 4 GBs of RAM.
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1 import requests
2 import re
3

4 def analysis(image_json, context):
5 logger = context['logger']
6 client_images = context['images']
7

8 repo = image_json["repo_name"]
9 logger.info("Received image to be analysed: {} ".format(repo))

10 if client_images.is_new(repo):
11 node_image = {'name': repo}
12 try:
13 dockerfile = get_dockerfile(repo)
14 from_repo, from_tag = extract_FROM(dockerfile)
15 node_image['from_repo'] = from_repo
16 node_image['from_tag'] = from_tag
17 client_images.post_image(node_image)
18 except ValueError as e:
19 logger.error(str(e))
20 return False
21 return True
22 else:
23 logger.info("{} already present into local database ".format(repo))
24 return False
25

26 def extract_FROM(dockerfile):
27 search = re.search('FROM ([^\s]+)', dockerfile)
28 if search:
29 from_image = search.group(1)
30 if ":" in from_image:
31 from_repo, from_tag = from_image.split(":")
32 else:
33 from_repo = from_image
34 from_tag = None
35 return from_repo, from_tag
36 else:
37 raise ValueError("FROM value not found in DockerFile")
38

39

40 def get_dockerfile(repo_name):
41

42 docker_url = "https://hub.docker.com/v2/repositories/{}/dockerfile/"
43 try:
44 response = requests.get(docker_url.format(repo_name))
45 dockerfile = response.json()['contents']
46 return dockerfile
47 except ConnectionError as e:
48 raise e

LISTING 5.5: analysis.py function of DOCKERGRAPH
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FIGURE 5.4. Top ten Docker images used as parent images.

5.4.3 Discussion

In this section, we discuss the advantages of using DOCKERANALYSER versus building Docker

images analysers from scratch. We evaluated the usefulness of DOCKERANALYSER by considering

(i) the number of functionalities to be developed, (ii) the reusability of the code, and (iii) the time

required to obtain new analysers starting from already existing analysers.

DOCKERANALYSER reduces the number of functionalities to be developed with respect to

build the analyser from scratch. Table 5.1 reports four of the main functionalities that an

analyser should support: Image crawling is how the images are crawled from a Docker registry,

Image analysis is how the images are analysed, Storage of results is how the results are stored,

and Scalable architecture is how to implement a scalable architecture. As shown by Table 5.1,

DOCKERANALYSER considerably simplifies the building of analysers by requiring to only account

for the Image analysis, as the others functionalities are provided by the architecture. Image

crawling is carried out by the Crawler, Storage of results is provided by the local storage database,

and the Scalable architecture is permitted by scaling the Scanner microservice. Instead, building

an analyser from scratch would require to develop all the four functionalities.

We also evaluated the reusability of DOCKERANALYSER by considering both the number of

reusable components and the amount of reusable code of the architecture. DOCKERANALYSER is

composed by five components (Crawler, Message Broker, Scanner, Images Service, and Images

Database). A new analyser is obtained from DOCKERANALYSER by only replacing the Scanner

component, hence reusing the other four components. We also evaluated the amount of reusable

code with the following metric (taken from [68]):

R = lines of reused code
total lines of code

We exploited such metric for evaluating the percentage of reused code for both the analysers we
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Using DockerAnalyser From Scratch

Image crawling no yes
Image analysis yes yes
Storage of results no yes
Scalable architecture no yes

TABLE 5.1. Functionalities to implement during the design of new Docker images
analysers.

developed, viz., DOCKERFINDER (Rd f ) and DOCKERGRAPH (Rdg). For both DOCKERFINDER and

DOCKERGRAPH the reused code is around 94%:

Rd f =
locda

locd f
= 1861

1971
= 0.944

Rdg =
locda

locdg
= 1861

1976
= 0.941

Notice that, in both formulas, the value of lines of reused code is the amount locda of lines

of code of DOCKERANALYSER (which are all included also in both the analysers we developed).

The values of total lines of code are instead the amounts locd f and locdg of all lines of code

of DOCKERFINDER and DOCKERGRAPH, respectively.

Finally, DOCKERANALYSER can reduce the time required to obtain new analysers starting from

already existing analysers. For example, by reusing the code of DOCKERFINDER, a user may

create a new analyser by only modifying the files analysis.py and software.json that we

provided. She can customise the commands executed by DOCKERFINDER by modifying the

software.json file or she can modify the lines 15-25 of Listing 5.3 in order to execute a different

type of analysis on the images.

5.5 Related work

MicroBadger [117] is an on-line service that shows the contents of public Docker images, including

metadata and layer information. Using MicroBadger a user can also add personalized metadata

to images in order to retrieve them successively. MicroBadger differs from DOCKERANALYSER

because it only permits to assign metadata to images but it does not provide a way to run

customised analysis of Docker images.

Another approach that allows assigning custom properties to Docker images is JFrog [97].

JFrog’s Artifactory is a universal Artefact Repository working as a single access point to software

packages including Docker. JFrog can search Docker images by their name, tag or digest. Users

can also assign custom properties to images, which can then be exploited to specify and resolve
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queries. JFrog differs from DOCKERANALYSER since permits only to assign manually custom

metadata to images. DOCKERANALYSER architecture fully automates the process of assigning

properties to the images based on what they feature.

Works in [86, 93, 105, 149] are frameworks that follow the serverless architecture [140] for

running custom functions. The serverless functions are functions written in any language that

are mapped to event triggers (e.g., HTTP requests) and scaled when needed.

Snafu [149], or Snake Functions, is a modular system to host, execute and manage language-

level functions offered as stateless microservices to diverse external triggers. Functions can be

executed in-memory/in-process, through external interpreters (Python 2, Java), and dynamically

allocated Docker containers.

OpenLambda [86] is an Apache-licensed serverless computing project, written in Go and

based on Linux containers. One of the goals of OpenLambda is to enable exploration of new

approaches to serverless computing.

kubeless [105] is a Kubernetes-native serverless framework. Kubeless permits creating

functions and run them on a in-cluster controller that watches and launches the functions

on-demand.

IronFunctions [93] is an open source serverless platform. It can run any languages as functions

and it supports AWS lambda format. Prerequisites: Docker 1.12 or later installed and running.

The common characteristic of DOCKERANALYSER and serverless architectures is that both

approaches allow users to provide only an analysis function while the architecture is responsible to

run, scale, and manage the execution of such function. DOCKERANALYSER differs from serverless

architecture because it provides also an internal storage where the description of the images

produced by the analysis function are stored. The previous approaches of serverless architecture,

instead, do not provide any support for storing the results of the functions.

Our work shares with Wettinger et al. [161] the general objective of contributing to ease the

discovery of DevOps “knowledge” (which includes Docker images). [161] proposes a collaborative

approach to store DevOps knowledge in a shared, taxonomy-based knowledge base. More precisely,

[161] proposes to build the knowledge-base in a semi-automated way, by (automatically) crawling

heterogeneous artefacts from different sources, and by requiring DevOps experts to share their

knowledge and (manually) associate metadata to the artefacts in the knowledge-base. DOCKER-

ANALYSER instead focuses only on container images, and it permits building analyser that creates

description of such images in a fully-automated way.

Finally, is worth noting that there exist solutions that try resolve the problems addressed by the

two use cases presented in Sect. 5.4.

Docker Store [61] is a repository containing trusted and verified Docker images. Similar

to Docker Hub, Docker store offers a search web-based interface that returns the images that

match the image name, description, or the publisher name. In addition, Docker Store permits

limiting the results by category (e.g., programming languages, base images, Operating System).
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With Docker Store it is not possible to distinguish, for instance, whether an image support a

software distribution (e.g., Python, Java) since all images supporting such languages fall in the

same category. DOCKERFINDER does not suffer of the same limitation, as it permits explicitly

searching for images supporting either Java or Python, or both.

ImageLayers [116] is an on-line service that analyses Docker images stored in Docker Hub

and shows the layers that compose them and layers that are shared by multiple images. While

ImageLayers considers the layers composing an image, DOCKERGRAPH instead considers the

parent image of an image. DOCKERGRAPH permits analysing all the images contained in a

Docker Registry and constructs a graph of images. ImageLayers permits only analysing the layers

a single image at the time and returns a flat description of a single image.

5.6 Conclusions

Docker images are stored in Docker Registries that allow to add, remove, distribute, and search

such images. Images stored inside Docker registries are described by fixed attributes (e.g., name,

description, owner of the image), which may not be enough to permit users to select the images

satisfying their needs. Currently, users are required to manually download the images from

remote registries and look for images satisfying the desired functionalities.

In order to solve the aforementioned problem, we presented DOCKERANALYSER a tool to

build customised analysers of Docker images in a fully automated way. Users are required to

provide only the analysis function and any other files needed by the analysis function, whilst

DOCKERANALYSER disposes of the functionalities for crawling the images from a Docker registry,

running the provided analysis on every image, storing the results of the analysis in a local storage,

and searching the obtained results.

We believe that the actual value of DOCKERANALYSER is that it can be exploited by users

(e.g., researchers, developers and data miners) interested in building their own analysers of

Docker images. Users are only required to provide the analysis function, in the form of a Python

function that, given the name of a Docker image, scans such image to extract some metadata for

generating the description of the image.

We identified three main classes of analysers that can be obtained from DOCKERANALYSER,

namely:

1. Analysers that execute commands inside Docker images for extracting features,

2. analysers that inspect the source code of Docker images, and

3. analysers that scan the compiled/binaries version of Docker images.

In this chapter, we have shown a concrete example of analyser for class (1) and a concrete

example for class (2). For (1) we presented DOCKERFINDER, an analyser that extracts the
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versions of the software supported by the images. For (2) we presented DOCKERGRAPH that

analyses the source code stored in the GitHub repository (the Dockerfile of the image) in order

to construct a graph of parent images. The development of an analyser in class (3), and (more

generally) the development of other analysers and the identification of other classes of analysers

that can be defined is left for future work.

The use cases also showed that the choice of implementing DOCKERANALYSER with a

microservice-based architecture eases building customisable and scalable analysers. We indeed

experimented the benefits of the scalability and replaceability properties of microservice-based

architectures. In particular, replaceability allows obtaining DOCKERFINDER and DOCKERGRA-

PH by only replacing the Docker image of the scanner microservice. Instead, by exploiting the

scalability property, we scaled the number of Scanner microservices of DOCKERFINDER in order

to reduce the time needed to analyse the images.

We believe that DOCKERANALYSER can also take advantage of the extensibility property of

microservice-based architectures that permit adding new microservices. For instance, DOCKER-

ANALYSER can be extended with a checker microservice (such as in [27]) that maintains the

consistency of the images stored in the local storage of DOCKERFINDER and those in Docker Hub.

As part of our future work we want to build DOCKERANALYSER as a web-based service where

users can upload the deploy package folder F through a GUI and the web-based service creates

the analyser with the provided deploy package, starts the analyser, and visualises the obtained

images descriptions in a dashboard (e.g., with customisable charts, like that in Fig. 5.4).

In addition, we plan to extend DOCKERANALYSER in such a way, that (i) it permits analysing

other container-based technologies (such as [50, 87]), and (ii) it permits specifying the analysis

function in other programming languages (e.g., Java, Go, Bash), Finally, we plan also to implement

other analysers of Docker images. For instance, a security analyser can be built by using one of

the existing static analyser of Docker images (such as [49]) in order to analyse the images stored

in Docker Hub discovering the images affected by security flaws.
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COMPONENT-AWARE ORCHESTRATION OF CLOUD-BASED

ENTERPRISE APPLICATIONS, FROM TOSCA TO DOCKER AND

KUBERNETES

Enterprise IT is currently facing the challenge of coordinating the management of complex,

multi-component applications across heterogeneous cloud platforms. Containers and

container orchestrators provide a valuable solution to deploy multi-component applica-

tions over cloud platforms, by coupling the lifecycle of each application component to that of

its hosting container. We hereby propose a solution for going beyond such a coupling, based on

the OASIS standard TOSCA and on Docker. We indeed propose a novel approach for deploying

multi-component applications on top of existing container orchestrators, which allows to manage

each component independently from the container used to run it. We also present prototype tools

implementing our approach, and we show how we effectively exploited them to carry out two

concrete case studies.

The results in this Chapter are currently submitted for publication [20].

6.1 Introduction

Cloud computing is a flexible, cost-effective and proven delivery platform for running on-demand

distributed applications [65]. To fully exploit the potentials of cloud computing and facilitate the

scalability, reliability and portability of applications, various cloud-native architectural styles

have emerged (with microservices being one of the most prominent examples). This has resulted

in a growth of the complexity of applications, which nowadays integrate dozens (if not hundreds)

of interacting components [147]. The problem of automating the deployment and management

of such complex, multi-component applications over heterogeneous cloud platforms has hence

97



CHAPTER 6. COMPONENT-AWARE ORCHESTRATION OF CLOUD-BASED ENTERPRISE
APPLICATIONS, FROM TOSCA TO DOCKER AND KUBERNETES

become one of the main challenges in enterprise IT [45, 96].

The components forming an application are typically deployed on cloud platforms by re-

lying on virtualisation technologies. Container-based virtualisation [148] is getting more and

more momentum in this scenario, as it provides an isolated and lightweight virtual runtime

environment [127]. Docker (https://www.docker.com) constitutes the de-facto standard for

container-based virtualisation, and it permits packaging software components (together with

all software dependencies they need to run) in Docker images, which are then exploited as read-

only templates to create and run Docker containers. Container orchestrators are then used to

automate the deployment and management of containerised applications at a large scale. Docker

Swarm (https://docs.docker.com/engine/swarm) and Kubernetes (https://kubernetes.io)

are currently the most popular solutions for orchestrating Docker containers, providing all neces-

sary abstractions for scaling, discovering, load-balancing and interconnecting Docker containers

over single and multi-host systems [88, 114].

Docker containers are however treated as a sort of "black-boxes", since they constitute the

minimal entity that can be orchestrated. Container orchestrators can indeed create, start, stop

and delete containers, but they do not provide support for coordinating the management of

the components running within containers. The lifecycle of the software components forming a

containerised application is hence tightly coupled to that of their hosting containers. For instance,

when the orchestrator creates and starts a container, all the software components it contains

have to be created and started as well, as the orchestrator does not provide a support for creating

or starting them afterwards. The same holds when containers are stopped or deleted, as the

components they are hosting get stopped and deleted as well. This is because currently existing

container orchestrators do not provide a support for coordinating the management of software

components independently from that of their hosting containers [30].

Decoupling the management of application components from that of the containers hosting

them can anyway bring various advantages. For instance, this allows to employ Docker containers

as so-called system containers, i.e., a lightweight portable alternative to virtual machines [158]. It

also enables inter-process communication within the components running in the same container,

without requiring them to necessarily communicate over the network [46]. This helps saving

resources, thus containing costs or enabling a fine-grained orchestration on infrastructures

where computing and networking resources are costly and limited, e.g., in edge clusters [129].

Other known advantages of decoupling application components from their hosting containers

are maintainability and reuse [26]. Deployment requirements of multi-component applications

change over time. If components are coupled to their hosting containers, this requires to re-

package them from scratch whenever their deployment requirements change.

Following this idea, we hereafter propose a solution for managing the software components

forming an application independently from the containers used to run them. The proposed

solution is intended to allow a more flexible, component-aware management of multi-component
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applications on top of existing Docker-based container orchestrators, and it does so by relying on

the OASIS standard TOSCA for specifying and orchestrating multi-component applications. More

precisely, starting from an existing representation of multi-component applications in TOSCA

(taken from our previous work [30]), we provide the following contributions:

• We propose a novel approach for managing the lifecycle of software components forming a

multi-component application independently from that of the containers used to host such

components.

• We present the prototype tools implementing our approach. These include a service en-

abling the component-aware runtime management of multi-component applications and a

packager for generating the deployment artifacts needed to ship and manage applications

on existing Docker-based container orchestrators.

• We showcase the effectiveness of our approach and prototype tools by reporting on how we

exploited them to run two concrete case studies based on existing benchmark applications.

It is worth highlighting that our solution is not intended to implement a new orchestrator

from scratch, as for instance we did with the TosKer orchestration engine [30]. We instead aim at

enabling a component-aware management of multi-component applications on top of existing,

production-ready container orchestrator (e.g., Docker Swarm or Kubernetes), in order to exploit

all features they already provide, e.g., multi-host deployment and network overlays. In this way

we do not need to re-implement such features from scratch, and we can hence focus on seamlessly

extending the orchestration support they provide.

6.2 Background

6.2.1 TOSCA

TOSCA [124] (Topology and Orchestration Specification for Cloud Applications) is an OASIS

standard whose main goals are to enable (i) the specification of portable cloud applications

and (ii) the automation of their deployment and management. TOSCA provides a YAML-based

and machine-readable modelling language that allows to describe cloud applications. Obtained

specifications can then be processed to automate the deployment and management of the specified

applications.

TOSCA allows to specify a cloud application as a service template, that is in turn composed

by a topology template, and by the types needed to build such a topology template (Fig. 6.1). The

topology template is a typed directed graph that describes the topological structure of a multi-

component application. Its nodes (called node templates) model the application components, while

its edges (called relationship templates) model the relations occurring among such components.
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FIGURE 6.1. The TOSCA metamodel [124].

Node templates and relationship templates are typed by means of node types and relationship

types, respectively. A node type defines the observable properties of a component, its possible

requirements, the capabilities it may offer to satisfy other components’ requirements, and the

interfaces through which it offers its management operations. Requirements and capabilities

are also typed, to permit specifying the properties characterising them. A relationship type

instead describes the observable properties of a relationship occurring between two application

components. As the TOSCA type system supports inheritance, a node/relationship type can

be defined by extending another, thus allowing the former to inherit the latter’s properties,

requirements, capabilities, interfaces, and operations (if any).

Node templates and relationship templates also specify the artifacts needed to actually realise

their deployment or to implement their management operations. As TOSCA allows artifacts to

represent contents of any type (e.g., scripts, executables, images, configuration files, etc.), the

metadata needed to properly access and process them is described by means of artifact types.

Finally, to enable their actual deployment, TOSCA applications are packaged and distributed

in CSARs (Cloud Service ARchives). A CSAR is a zip archive containing an application specifica-

tion along with the concrete artifacts realising the deployment and management operations of its

components.

6.2.2 Modelling Multi-component, Docker-based Applications with TOSCA

In our previous work [31], we defined a TOSCA-based representation for specifying the software

components forming an application, as well as the Docker containers and Docker volumes used to

form their runtime infrastructure. More precisely, three different TOSCA node types (Fig. 6.2)

allow to distinguish among the Docker containers, Docker volumes and software components

forming a multi-component application.

• tosker.nodes.Container allows to describe Docker containers, by indicating whether a con-

tainer requires a connection (to another Docker container or to an application component),

whether it has a generic dependency on another node in the topology, or whether it needs

some persistent storage (hence requiring to be attached to a Docker volume). tosker.no-
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FIGURE 6.2. TOSCA node types for multi-component, Docker-based applications,
viz., tosker.nodes.Container, tosker.nodes.Software, and tosker.nodes.Volume.

des.Container also permits indicating whether a container can host an application com-

ponent, whether it offers an endpoint where to connect to, or whether it offers a generic

feature (to satisfy a generic dependency requirement of another container/application com-

ponent). To complete the description, tosker.nodes.Container can contain properties (ports,

env_variables, command, and share_data, respectively) for specifying the port mappings,

the environment variables, the command to be executed when running the corresponding

Docker container, the list of files and folders to share with the host. Finally, tosker.no-

des.Container lists the operations to manage a container (which corresponds to the basic

operations offered by the Docker platform to manage Docker containers [114]).

• tosker.nodes.Volume allows to specify Docker volumes, and it defines a capability attachment

to indicate that a Docker volume can satisfy the storage requirements of Docker containers.

It also lists the operations to manage a Docker volume (which corresponds to the operations

to create and delete Docker volumes offered by the Docker platform [114]).

• tosker.nodes.Software allows to represent the software components forming a multi-component

application. It allows to specify whether an application component requires a connection

(to a Docker container or to another application component), whether it has a generic

dependency on another node in the topology, and that it has to be hosted on a Docker

container or on another component. tosker.nodes.Software also permits indicating whether

an application component can host another application component, whether it provides an

endpoint where to connect to, or whether it offers a generic feature (to satisfy a generic

dependency requirement of a container/application component). Finally, tosker.nodes.Soft-

ware lists the operations to manage an application component by exploiting the TOSCA

standard lifecycle interface [124] (viz., create, configure, start, stop, delete).

The interconnections and interdependencies among the nodes forming a multi-component appli-

cation can instead be specified by exploiting the TOSCA normative relationship types [124]. The

relationship type tosca.relationships.AttachesTo allows to attach a Docker volume to a Docker

container. tosca.relationships.ConnectsTo allows to describe the network connections to establish

between Docker containers and/or application components. tosca.relationships.HostedOn allows to

indicate that an application component is hosted on another component or on a Docker container
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(e.g., to indicate that a web service is hosted on a web server, which is in turn hosted on a Docker

container). Finally, tosca.relationships.DependsOn allows to represent generic dependencies be-

tween the nodes of a multi-component application (e.g., to denote that a component must be

deployed before another, as the latter depends on the availability of the former to properly work).

Concrete examples of modelling of multi-component applications with the above recapped

TOSCA representation can be found in Sect. 6.7.

6.3 Bird-eye view of our approach

Our ultimate objective is to enable a component-aware management of multi-component ap-

plications by piggybacking on existing container orchestrators (such as Docker Swarm and

Kubernetes). We indeed aim at seamlessly extending the support they provide for orchestrating

containers, so that the lifecycle of application components is not entangled to that of their hosting

containers, but rather allowing components to be managed independently.

Fig. 6.3 provides an high-level overview on the orchestration approach we propose. The

input is the TOSCA specification of a multi-component application. In the figure, the considered

application is composed by three services (i.e., s1, s2 and s3) and three containers (i.e., c1, c2

and c3). Containers c1 and c2 are used as system containers [158], i.e., as lightweight virtual

environments for hosting services s1 and s2 and service s3, respectively. The container c3 is

instead a standalone container running its default main process. Services s1 and s3 also connect

to s2 and to s2 and c3 to deliver their businesses.

Given such a TOSCA application specification, a Packager generates the Docker Compose

file allowing to deploy the application on top of Docker-compliant container orchestrators. The

obtained artifact not only packages the components forming an application within the containers

hosting them, but also seamlessly extends the application deployment by introducing some

additional components enabling the desired component-aware orchestration.

• A Unit is included in each container packaging some application component (i.e., c1 and c2).

Each Unit is responsible of managing the lifecycle of the components packaged within the

container it appears in, by launching the concrete artifacts (e.g., bash scripts) implementing

their management operations.

• A Manager is included and packaged within a newly added container (i.e., c4). The Manager

is responsible of interacting and coordinating the Units, in order to manage the components

forming an application, and based on the commands issued by an application administrator.

With our approach, an application administrator can continue to deploy and manage the

containers in an application by exploiting existing container orchestrators. She can then deploy

and manage each software component forming her application by issuing commands to the
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FIGURE 6.3. Bird-eye view of our approach for enabling a component-aware orchestra-
tion of the management multi-component applications on top of existing container
orchestrators.

containerised Manager, which will then properly forward it to the Units to enact the correspond-

ing management operation. For instance, once the containers in Fig. 6.3 are all running, an

application administrator may issue the commands to install and start service s1 to the Manager.

The latter will forward the corresponding requests to the Unit in the container c1, which will

launch the bash scripts implementing the to-be-enacted management operations.

It is worth noting that our approach seamlessly integrates with any Docker-compliant con-

tainer orchestrator, as the newly introduced components (i.e., the Manager and the Units) are

themselves packaged within Docker containers. In addition, by piggybacking on existing container

orchestrator, our approach allows to uniformly manage containers, independently on whether

they are used as lightweight virtual hosting environments for application components (as c1

e c2 in the figure) or whether they are used as standalone services (as c3 in the figure). This

allows application administrators to choose whether to enable the fine-grain management of

components or to couple their lifecycle to the containers they appear in. In the former case,

she has to distinguish components and containers in the TOSCA application specification (and

provide the artifacts implementing the lifecycle operations of such components), while in the

latter case she just packages the components within the corresponding containers (by writing

proper Dockerfiles — as she would be doing with current Docker-based orchestrators).

In the following, we illustrate how we concretely obtained the above illustrated orchestration

solution, by designing and developing the TOSKOSE open-source toolset. We first show the issues

and design choices for allowing Units to independently manage the software components packaged

within a container (Sect. 6.4). We then show how we designed and developed the Manager

to enable the orchestration of multi-component applications on top of existing orchestrators
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(Sect. 6.5), and how we implemented the Packager for generating a Docker-based artifacts from

the TOSCA specification of an application (Sect. 6.6).

6.4 Managing containerised components

6.4.1 Managing Multiple Components in a Container

The first challenge to tackle for enabling an approach like ours consists in allowing multiple com-

ponents to coexist within a same Docker container, with each component also being independently

manageable from the other components and from the container hosting them. Docker envisions

the possibility of running multiple components in the same container [3], by also recommending

two possible solutions for doing so.

A naïve solution consists in wrapping all commands to install, configure and start the

components to be hosted on a Docker container in a shell script. Bash job control can also be

exploited to write down the shell script, e.g., to delay the starting of some components, or to

execute processes implementing some of their management operations. The obtained shell script

can then be executed as the main process of the container, hence meaning that the container

continues to run until the shell script continues to run. This means that the shell script must

not terminate until at least one of the components running in the container has to continue to

run. Hence, even if the naïve solution allows to run multiple components in the same container,

their management lifecycle is still coupled to that of their hosting container. Another example

supporting this statement comes from the restarting of a component that got stopped, which

requires an application administrator to force a new execution of the shell script by tearing down

its hosting container and starting a new container. The naïve approach indeed does not support

remotely orchestrating the lifecycle of application components, in a way that is independent from

the lifecycle of their hosting containers.

The other suggested solution is to exploit a process management system, like Supervisor.

Supervisor (http://supervisord.org) allows users to control multiple processes on Unix-like

operating systems, based on a client/server model. A server (called supervisord) is indeed re-

sponsible of starting sub-processes on demand, under client invocation or for handling some

events (e.g., for restarting a child process that crashed or exited). supervisord manages each

spawned sub-process for the entirety of its lifetime, by also taking care of signal management,

logging and configuration (including auto-starting and restarting policies). Clients can then ask

supervisord to spawn sub-processes through a command-line interface (called supervisorctl) or via

a XML-RPC API (served by an HTTP server). Users can also customise supervisord by exploiting

a configuration file, called supervisord.conf. The latter is loaded when Supevisor starts, and it

is exploited to configure supervisord, supervisorctl and the HTTP-served XML-RPC API. This

includes the definition of so-called program section, allowing to define and configure sub-processes

that can be spawned on demand.
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The Supervisor-based solution is hence more suited to our needs. Ad-hoc programs can be

defined to allow independently executing the artifacts implementing the management operations

of the components (with each program section devoted to a different lifecycle operation of a

different component). Such operations can then be remotely orchestrated using the XML-RPC

API natively offered by Supervisor. Following this initial idea, we hereafter show how we exploited

Supervisor to implement the Units in our orchestration approach (Fig. 6.3). More precisely, we

first discuss the issues characterising the management of multiple components within a same

container and how Supervisor can help solving them (Sect. 6.4.2). We then illustrate how we

implement Units as Supervisor instances (Sect. 6.4.3).

6.4.2 Signal Management and Zombie Reaping

Managing multiple components in a same container inherently requires to be able to manage

multiple processes in such container. A process indeed runs as the main process of the container

(i.e., the process with PID 1), and each operation to manage a component requires to spawn a

corresponding sub-process, e.g., executing the shell script implementing such operation. Two

subsequent, potential issues must be taken into account while managing multiple processes

within the same container, i.e., signal management and zombie reaping [47].

6.4.2.1 Signal Management

Signals sent to a Docker container are forwarded to its main process, which has hence to be

configured so as to allow it to decide whether and how to forward them to its sub-processes. A

striking example in this direction is the following: Suppose that a Docker container is stopped,

by issuing the docker stop command. The latter sends a SIGTERM to the main process of the

container for terminating its execution [4]. If the main process has not been configured to handle

SIGTERM, it does not forward such signal to its child processes, which are hence not aware that

the container is going to be dismissed. Afterwards, the Docker runtime dismisses the container

by sending a SIGKILL signal, which results in killing uncleanly all processes running within

the container. SIGKILL cannot be trapped, blocked or ignored and the processes are interrupted

abnormally, possibly causing inconsistencies or data corruption [118].

The main process of the container has hence to be configured to handle the signals it receives,

by properly forwarding them to the processes running in the container. If adopting the naïve

solution, this drastically complicates the writing of the shell script running as the main process

of the Docker container, for which we would still have the issue of not being able to remotely

orchestrate the lifecycle of the components running within the container. Supervisor instead

natively supports signal management, hence making it more suitable to our needs.
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6.4.2.2 Zombie Reaping

Another challenge while trying to manage multiple processes within the same Docker container

comes from the well-know PID 1 zombie reaping problem. In Unix-like systems, zombie processes

are processes in a terminated state, waiting for their parent to exit completely and get their

descriptor removed from the process table. The descriptor of a terminate process is kept in the

process table until its parent reads its exit status and remove its descriptor from the table, hence

"reaping the zombie" process [118]. Unix-based systems are typically provided with full-fledged

PID 1 processes (e.g., systemd in Debian), which support routines for reaping zombie processes.

However, the PID 1 process of a Docker container is user-defined, and typically consists in the

main process of the application running within the container. The latter typically does not feature

any routine addressing the zombie reaping problem [47].

Zombie processes are however harmful. Even if they are only consuming a little amount of

memory to store their process descriptor, they keep their PID occupied. As Unix-like systems have

a finite pool of PIDs, if zombies are accumulated at a very quick rate, the pool of available PIDs

can be rapidly exhausted. This would result in preventing the spawning of other processes [118].

Given that we aim to managing multiple components within the same container, and since

each call to lifecycle operation of a component results in new processes getting launched, zombie

reaping has to be addressed [47]. However, neither the naïve solution nor that based on Supervisor

are supporting zombie reaping [3].

6.4.2.3 Existing Approaches

Several solutions are addressing signal management and zombie reaping in Docker containers,

with dumb-init (https://github.com/Yelp/dumb-init), baseimage-docker (https://github.

com/phusion/baseimage-docker) and tini (https://github.com/krallin/tini) perhaps be-

ing the most prominent examples. They all share the baseline idea of wrapping the main process

of a Docker container with a process acting as a proxy for signals and featuring a routing address-

ing zombie reaping. From developers’ viewpoint, they provide a much lighter and usable solution

with respect to including full-fledged init process systems (e.g., sysvinit, upstart or systemd)

within Docker containers [3].

The usage of dumb-init and tini is analogous. Both must be packaged within a Docker image

and they must be used as main processes (wrapping the main process of the application) when a

container is spawned from such image. dumb-init and tini will then take care of zombie reaping

in a seamless way, by also forwarding signals to the process they wrap. Differently from dumb-

init, tini is integrated with the Docker platform (since version 1.13). A boolean flag --init is

supported by the commands dockerd and docker run, which allows to seamlessly feature signal

forwarding and zombie reaping in a container spawned from an existing image, backed by tini.

Solutions like dumb-init and tini allow to resolve issues related to signal management and

zombie reaping, but they however still lack of other essential features, e.g., remote control and
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logging. baseimage-docker is a step forward in this direction, as it offers an all-in-one Docker

image based on Ubuntu, featuring an init process for signal management and zombie reaping.

6.4.3 Our Solution

For addressing both signal management and zombie reaping, we exploited the Supervisor-based

solution recommended by Docker [3], in conjunction with tini (as the latter is already fully

integrated with Docker). More precisely, we use tini as the main process of Docker containers,

wrapping a Supervisor instance implementing the Units of our approach. In this way, tini cares

about zombie reaping, and Supervisor cares about signal management, while at the same time

enabling to remotely manage multiple processes within a same container. Such an approach

brings other valuable advantages with respect to the main competitor among other existing

approaches, i.e., baseimage-docker. Among such advantages, two are worth highligthing:

• baseimage-docker is coming only with a given distribution of Ubuntu, while Supervisor

and tini work with any operating system distribution featured by a Docker container. This

hence makes our approach applicable to a wider set of scenaria.

• baseimage-docker only support SSH to remotely access the internals of a container. Su-

pervisor instead exposes a customisable XML-RPC API on top of a HTTP server. The API

exposes methods for managing the lifecycle of both supervisord and its child processes,

and it can be customised by exploiting an external INI-style configuration file. In particu-

lar, it is possible to define program sections, which result in offering remotely accessible

methods that can be invoked on demand. The latter acts as an enabler for our orchestration

approach, as the management operations associated with the components of an application

can be implemented as Supervisor programs.

Units are implemented by packaging a (tini-wrapped) standalone instance of Supervisor in

each container running one or more application components. It runs as the main process of the

container, and it is configured to allow executing (on demand) the artifacts implementing the

management operations of the components hosted by the container. The latter is obtained by

providing the Supervisor instance with a configuration file containing a different program section

for each management operation supported by the components hosted by the container, hence con-

figuring the XML-RPC API of the Supervisor instance to feature a remotely accessible operation

for each management operation of hosted components. The configuration file is automatically

generated from the TOSCA specification of an application, and it is automatically packaged

within each container of an application together with Supervisor (Sect. 6.6).

To enable the packaging of a standalone instance of Supervisor, we developed TOSKOSE

UNIT (https://github.com/di-unipi-socc/toskose-unit). TOSKOSE UNIT is a Docker im-

age bundling a standalone instance of Supervisor, which is publicly available on the Docker Hub

(https://hub.docker.com/r/diunipisocc/toskose-unit). Its purpose is to allow including a
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suitably configured instance of Supervisor in any Docker image of the containers forming the

infrastructure of an application, which can be obtained by means of multi-stage Docker builds.

While developing TOSKOSE UNIT, we had to address an issue inherent to the usage of

Supervisor within a Docker container. Supervisor is a Python application, hence requiring Python

runtime to be available in the container running it. However, installing a Python interpreter

in a Docker image can generate conflicts, if the Docker image is already featuring some Python

interpreter. To address this issue, we exploited the PyInstaller “freezing” tool. PyInstaller “freezes”

an existing Python program by creating a single-file executable that contains the application code

and the Python interpreter to run it. In this way, we “freezed” Supervisor and created a bundle

not needing any Python interpreter or module to be installed in the Docker containers running it,

hence avoiding the risk for conflicts.

6.5 Orchestrating multi-component applications

The second challenge to tackle consists in allowing to seamlessly manage the lifecycle of the

components forming a TOSCA application, by enabling the remote invocation of their manage-

ment operations, and by running them on top of existing Docker container orchestrators. Of

course, the latter is because we wish to avoid reinventing the wheel, i.e., instead of re-designing

a container orchestrator from scratch, we wish to piggyback on top of existing, production-ready

orchestrators, also for allowing to reuse the capabilities they feature.

Existing container orchestrators already allow deploying and managing containers. For

instance, given a specification of the containers to run and of their configuration, both Docker

Swarm and Kubernetes can deploy such containers on a cluster of hosts by also configuring them

as indicated. Docker Swarm and Kubernetes then proceed by orchestrating deployed containers,

e.g., by applying them load balancing and scaling policies, for recovering failed instances, and to

manage overlay networks or provisioning resources [47].

At the same time, Docker containers are treated as "black-boxes" by existing container orches-

trators, as the minimal entity that can be orchestrated is the container itself [31]. Our objective is

to go a step forward, by enabling a component-aware orchestration of containerised applications,

i.e., we aim at allowing to orchestrate the management of components running within the same

container. To this end, we introduced Units (i.e., suitably configured Supervisor instances —

Sect. 6.4) in each container running some component, so as to offer an XML-RPC API allowing to

remotely invoke the operations for managing the lifecycle of the components it hosts. The next

step is hence to find a suitable implementation of the Manager in our orchestration approach

(Fig. 6.3), i.e., to introduce a containerised component in an application, which allows coordinating

the management of each of its components by suitably interacting with the corresponding Unit.

Our baseline idea for doing so is illustrated in Fig. 6.4. Whenever the user wishes to execute

a management operation on a component of her application, she invokes the Manager asking it
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FIGURE 6.4. Interactions among Manager and Units for managing the lifecycle of
containerised application components.

to execute such operation. The Manager then forwards the request to the Unit managing such

component (i.e., it invokes the XML-RPC API of the Supervisor instance running within the

container hosting the component). The interaction between the Manager and the Unit occurs

through a Docker overlay network, and as soon as the Unit receives the request, it executes the

required management operation (i.e., it runs the corresponding program section of the Supervisor

configuration file). We hereafter illustrate a possible realisation of such an idea, given by the

TOSKOSE MANAGER.

6.5.1 The Architecture of the TOSKOSE MANAGER

The TOSKOSE MANAGER realises the Manager in our orchestration approach (Fig. 6.3), hence

being responsible of coordinating Units to allow remotely managing the containerised components

of an application, based on its TOSCA specification. The TOSKOSE MANAGER is intended to be

included in an application as an additional containerised component, as this will allow managing

it with Docker-based container orchestrators, together with all other containers forming an

application.

Given that we are piggybacking on top of existing container orchestrators, we can exploit

their capabilities for setting up the overlay network where the containers of an application will

run (both for single-host and multi-host settings). This also means that, by properly setting

network aliases, containers can intercommunicate by simply exploiting their hostnames on the

overlay network, which will be automatically resolved by the network DNS. In addition, Docker-

based container orchestrators allow running different applications in different virtual private

networks. This has two main advantages for our purposes, namely (i) it permits securing the

interactions among the components of an application, including the TOSKOSE MANAGER, and

(ii) even if multiple instances of TOSKOSE MANAGER run on the same overlay network, they will

not interfere one another.

With the above setting, TOSKOSE MANAGER only requires to know which container is hosting

which components (to be able to interact with the Unit running in the same container) and the
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FIGURE 6.5. The architecture of the TOSKOSE MANAGER.

network aliases associated to the containers of an application. Such information is provided

to TOSKOSE MANAGER by feeding it with the TOSCA application specification (from which it

can retrieve the relations among components and containers) and an additional configuration

file containing the network aliases associated to the container. The configuration file can be

automatically generated, and both files are automatically injected to the TOSKOSE MANAGER by

the TOSKOSE PACKAGER (Sect. 6.3).

To concretely implement the baseline idea shown in Fig. 6.4, the TOSKOSE MANAGER must

hence feature (i) a remotely accessible API for allowing an application administrator to invoke

the operation to manage the components of her application, (ii) a core processing module for

identifying the Units where to forward requests, and (iii) a client for the XML-RPC API offered

by the Unit, to concretely forward requests. It must also be capable of (iv) processing TOSCA

application specifications. Fig. 6.5 shows the architecture of TOSKOSE MANAGER, designed to

feature (i-iv), as well as to comply with the separation of concerns design principles to make it

modular and extensible [106].

RESTful API. A RESTful API allows the application administrator to invoke the execution of

a management operation on a component of her application. The API is designed by following

the Web API design paradigm [2], by partitioning it in three main logical layers, i.e., Application,

Business and Data. The Application layer contains the controllers for translating HTTP incoming

requests and outgoing responses, and for encoding and decoding their payloads, by also validating

them. The Business layer is where the business logic of the API resides, with business rules and

workflows defined to suitably interact with the Data layer and with the core of TOSKOSE MANA-
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GER. The Data layer provides a storage of all information needed to orchestrate an application

(i.e., component and container names, network aliases, etc.).

To enhance data encapsulation in inter-layer communications, DTOs and Entities are defined.

These are used in the communication between the Application and Business layers, and between

the Business and Data layers, respectively. Two other standalone modules are used for logging

and error handling of the API, i.e., Logging and Exceptions, which are organised as cross-cutting

concerns.

Management. The Management area contains the core module of TOSKOSE MANAGER, i.e.,

App Manager. The latter acts as a proxy between the RESTful API and the Client modules. It

indeed receives requests from the API (e.g., executing a management operation on a component,

or getting the status of all components), and it suitably interacts with the Client modules so that

they interact and coordinate Units to carry out the requests.

The Management is also responsible of configuring the environment for allowing App Manager

to run. It indeed contains the App Config and Entrypoint modules, which configure the runtime

environment and run a web server used to host the App Manager (with the web server also being

the main process run in the container of the TOSKOSE MANAGER). It also contains the the Loader

and Validator modules, used for loading and validating the TOSCA application specification and

the Toskose configuration file, which contain the information needed to orchestrate the specified

application.

Client. The Client is responsible of communicating with the Units on the containers hosting

the components of an application. It hence contains a XML-RPC Client allowing to invoke the

XML-RPC API offered by the Supervisor instances implementing the Units. Whenever the XML-

RPC Client is required by the App Manager to invoke an operation offered by a Unit, it builds

and sends a HTTP request to the API of such Unit, which payload is structured according to the

XML structure expected by the API of Supervisor. The XML-RPC Client is returned XML data

representing the outcome of its request from the Unit, and it communicates the App Manager

such an outcome.

For enforcing fine-grained failure management, and in accordance to separation of concerns

design principles, error handling is kept separate from the rest of the application [106]. Errors

are indeed handled by the Exceptions module, which is also part of the Client area.

TOSCA. The TOSCA area is responsible of the processing of TOSCA application specifications.

It indeed features two modules, i.e., TOSCA parser and TOSCA modelling, intended to allow

parsing TOSCA application specifications and to build an in-memory representation of specified

applications.

6.5.2 A Prototype Implementation of the TOSKOSE MANAGER

An open-source prototype implementation of the TOSKOSE MANAGER is publicly available on

GitHub (https://github.com/di-unipi-socc/toskose-manager), and it is also shipped as a
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FIGURE 6.6. Architecture of the prototype implementation of the RESTful API of
TOSKOSE MANAGER.

Docker image publicly available on the Docker Hub (https://hub.docker.com/r/diunipisocc/

toskose-manager). The prototype of TOSKOSE MANAGER is written in Python (v3.7.1), and we

hereafter detail its implementation. More precisely, given that the TOSCA modules have been

obtained by suitably extending the OpenStack TOSCA parser (https://github.com/openstack/

tosca-parser), we shall focus on the implementation of the RESTful API and of the Management

and Client areas.

RESTful API. Fig. 6.6 illustrates the architecture of the RESTful API featured by the prototype

implementation of TOSKOSE MANAGER. The topmost component is a Python WSGI HTTP Server,

where WSGI stands for "Web Server Gateway Interface" (which is a specification describing how a

web server communicates with the web applications it hosts, and how they can be chained together

to process a request). The HTTP Server is powered by Gunicorn (https://gunicorn.org), it

implements the WSGI interface, and it permits running the web application implementing the

API to be offered.

The Application layer of the API is then implemented by exploiting the Flask Python

framework (https://palletsprojects.com/p/flask), extended with Flask-RESTPlus (https:

//flask-restplus.readthedocs.io). The latter has been included as it provides a collection of

Python decorators and tools for quickly building RESTful APIs and exposing their documentation

using the Swagger UI (https://swagger.io). In addition, Flask-RESTPluse enforces modularity

of built APIs, hence making the current implementation of the Application layer of the RESTful

API extensible for further developments.

The above setting has been obtained by suitably configuring the Flask Application Factory,

which acts as the entrypoint of an application, by initialising the Flask environment where

the application will run. This includes mounting extensions (such as Flask-RESTplus), as well

as registering blueprints (i.e., logical groups partitioning the modules of an application based
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FIGURE 6.7. Snapshot of the HTTP methods offered by a running instance of the
RESTful API of TOSKOSE MANAGER, obtained from the Swagger UI featured by
Flask RESTPlus.

on the concerns they relate to, to enforce separation of concerns [106]). For instructing the

Flask Application Factory to loading the current prototype of the API, we hence developed a

Blueprint /api/v1. Notice that adding a different version of the API, or running different versions

simultaneously, simply require to change or add another blueprint among those registered.

In addition, by exploiting the Flask RESTPlus extension, we logically organised the Blueprint

using so-called "namespaces". A Node Namespace is indeed used, which is exploited to mark the

Node Controller related to the resource /node. The latter is the root resource of RESTful API, and

the Node Controller has been implemented so as to offer all methods shown in Fig. 6.7 The Node

Controller is hence responsible of accepting incoming requests, which it decodes and validates by

checking their payload against an expected schema. Non-valid requests are refused, while valid

requests are passed to the business layer for processing. Such a forwarding involves exchanging

complex structured data, which is done by exploiting DTOs for enforcing data encapsulation.

The Business layer is implemented by the Node Service, which business rules allow to process

incoming requests. Intuitively, it processes each request by retrieving information on involved

application components, aggregating such data in the form of DTOs, and passing the request

and retrieved data to the core of TOSKOSE MANAGER. In addition, the Node Service fetches and

manipulates the logs of the RESTful API.

Management. The App Manager module in the Management area (Fig. 6.5) is the core module for

managing multi-component application with TOSKOSE. Such a module maintains an in-memory

representation of the managed application built from its TOSCA specification and enriched

according to the Toskose configuration file, both loaded and validated during the initialization of
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the module. The TOSCA parsing is done by exploiting another Python module (i.e., TOSCAParser),

which implementation is essentially wrapping the OpenStack TOSCA Parser library. Logging

and error handling are also configured during the initialization of App Manager, by exploting the

standalone Loader module.

After the initialization, the App Manager starts waiting for incoming requests for the (Node

Service of the) RESTful API. Upon the receiving of a request, it instructs the XML-RPC Client to

contact the Unit managing the component involved by the request.

Client. The Client area is implemented following the Factory method pattern, with the App

Manager delegating to the Client Factory the decision to determine the concrete implementation of

the client that must be used to interact with a Unit. Currently, the only available implementation

is that for the XML-RPC API of Supervisor, which is obtained by exploiting the Python built-in

xmlrpc.client. We anyway decided to implement clients using the Factory method pattern to

allow TOSKOSE MANAGER to be extended to support multiple interaction protocols, in view of

further developments.

6.6 Generating deployable artifacts

The last brick needed for enabling our orchestration approach is the Packager, i.e., a solution

that, given the TOSCA specification of an application, automatically generates the deployable

artifacts needed to actually enact its deployment on top of existing, production-ready container

orchestrators. The deployable artifacts must be such that Units (i.e., suitably configured Super-

visor instances) are included within the containers hosting application components, and that

a containerised TOSKOSE MANAGER is added to the application. The Units and the TOSKOSE

MANAGER are indeed needed to enable a component-aware orchestration on top of the targeted

container orchestrator. We hereafter present our solution for doing so, by first illustrating a solu-

tion for automating the generation of deployable artifacts, and by then presenting its prototype

implementation, i.e.,TOSKOSE PACKAGER.

6.6.1 Automating the Generation of Deployable Artifacts

Fig. 6.8 illustrates a workflow that, given the TOSCA specification of an application, auto-

matically generates the deployable artifacts for enabling a component-aware orchestration of

multi-component applications on top of an existing container orchestrator. The workflow be-

gins with the activities TOSCA validation and Model generation, which validate the TOSCA

application specification and generate an in-memory representation of the specified application,

respectively. If the given TOSCA specification is not valid, or if the Model generation fails, the

workflow exits by returning error information.

The workflow then proceeds by dealing with the Configuration management, i.e., with the

file indicating the configuration of the containers forming the application, including the network
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FIGURE 6.8. Workflow for automatically generating deployable artifacts, depicted ac-
cording to the BPMN graphical notation [1].

aliases and ports for reaching the components they host. If such a configuration file is missing

or partial, the workflow automatically sets the missing fields to default values. The obtained

configuration file is then used by the Toskosing model activity, which enriches the in-memory

application representation with the information contained in the configuration file, as well as by

adding the additional container packaging the TOSKOSE MANAGER.

The subsequent phase (Contexts generation) is repeated for each container of the application

hosting some component (either being some original application component or the newly intro-

duced TOSKOSE MANAGER). For each of such container, a Docker build context is prepared, by

setting up a folder containing all files needed to build a Docker image. If a container is hosting

application components, a so-called Toskose Unit Context is generated. The latter contains all

the artifacts needed for deploying and managing the application components hosted on the

container, i.e., the artifacts implementing an application component and those implementing

its management operations. An automatically generated Supervisor configuration file is also

included within the build context, which will then be used to configure the Supervisor instance

implementing the Unit on the container (e.g., for ensuring that its XML-RPC API will offer

methods for remotely invoking the management operations of the hosted components). If the
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processed container is instead that hosting the TOSKOSE MANAGER, the build context only

contains the TOSCA specification and the Toskose configuration file of the application under

processing.

The workflow then proceeds by Toskosing Docker images, i.e., preparing the Docker images

of each containers of the application. If the container is a standalone container, the original

image is kept. If instead the container is hosting some application component, two different

activities are enacted, depending on whether the hosted components are original application

components or the TOSKOSE MANAGER. In the former case, a new Docker image is built by

combining the corresponding build context and the Supervisor bundle fetched from the TOSKOSE

UNIT Docker image, by means of a multi-stage Dockerfile. In the latter case, the build context is

instead combined with the Docker image packaging the TOSKOSE MANAGER, still by means of a

multi-stage Dockerfile.

The deployable artifact generation process then completes with the Deployment artifact

generation activity, which essentially takes the newly generated images of Docker containers

(hereafter called toskosed images, for brevity) and combines them in a multi-container application

deployment, e.g., a Docker Compose file. The toskosed images are configured in accordance with

the in-memory application representation, so as to allow them to properly intercommunicate

(both for running the application business and for allowing the TOSKOSE MANAGER to interact

with the Supevisor instances implementing the Units).

6.6.2 The Architecture of the TOSKOSE PACKAGER

Fig. 6.9 illustrates the architecture of TOSKOSE PACKAGER, our solution for generating the

artifacts enabling the component-aware orchestration of an application on existing Docker-based

container orchestrators, based on the workflow in Fig. 6.8. Still pursuing the aim of obtaining a

modular and extensible solution, the architecture is designed in accordance with the separation

of concerns design principles [106]. The architecture is indeed partitioned by devoting different

sets of modules to different stages of the workflow.

A CLI module allows users to provide the TOSKOSE PACKAGER with the necessary input

for starting the process for automating the generation of deployable artifacts, i.e., a TOSCA

application specification and (optionally) a Toskose configuration file. The input is then passed

to the Main module, which is in charge of coordinating the modules forming the architecture of

TOSKOSE PACKAGER to suitably execute the activities of the workflow. It then first processes the

input, by invoking the Loader module for actually importing the input files, and the modules in

the TOSCA area for validating the TOSCA application specification and generating an in-memory

representation the application.

The Main Module then interacts with the modules in the Configuration management area.

The Validator module allows the Main module to validate the input Toskose configuration

file, if any. The Completer module instead allows the Main module to complete the Toskose
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FIGURE 6.9. The architecture of the TOSKOSE PACKAGER.

configuration file with default configurations, or to generate it from scratch if no configuration file

is provided. Both the Validator and the Completer relies on a Schema module, indicating how the

Toskose configuration file has to be structured, and which default values to employ for missing

configurations. Once the configuration is ready, the Model Updater is used by the Main Module to

enrich the in-memory application representation with the configuration information.

The Main Module continues by interacting with the Contexts module, which creates the

build contexts for each container hosting some component, including that hosting the TOS-

KOSE MANAGER. For the containers hosting original application components, Contexts interacts

with the Configurator, which allows to create the file for configuring the Supervisor instances

implementing the Units, based on existing Templates.

Finally, the Main Module interacts with the modules in the Docker area. It first requires to

the Manager to build the Docker images for the containers forming the application, which the

Manager carries out by relying on the build features of the Docker Engine. The Main Module then

requires the generation of the final Deployment artifact to the Deployment Artifact Generator.

6.6.3 A Prototype Implementation of the TOSKOSE PACKAGER

An open-source prototype implementation of the TOSKOSE PACKAGER is publicly available on

GitHub (https://github.com/di-unipi-socc/toskose-packager). The prototype is written

in Python (v3.6) and it has been released on the Python Package Index (https://pypi.org/

project/toskose), to allow installing it with the command pip install toskose.

The prototype provides a command-line interface that takes as input a Cloud Service ARchive

and (optionally) a Toskose configuration file, and it returns a Docker Compose artifact. The latter
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allows to deploy the application on Docker-based container orchestrators, with the latter being

used to orchestrate the components of the application, while the orchestration of the components

hosted on the containers being enabled by the RESTful API of TOSKOSE MANAGER (Sect. 6.5).

Currently, the generated Docker Compose artifact is tested and fully working on Docker Swarm

and on Kubernetes, with the latter requiring to first run Kompose (https://kompose.io) or

Compose Object (https://github.com/docker/compose-on-kubernetes) to actually enact the

deployment of the application.

We hereafter detail our prototype implementation of the TOSKOSE PACKAGER, by showing

how each component of the architecture in Fig. 6.9 has been implemented.

CLI. The command-line interface (CLI) offers the following interface:

toskose [OPTIONS] CSAR_PATH [CONFIG_PATH]

where the optional argument OPTIONS is a list of options for customising the run of toskose.

In particular, -o and --output-path PATH allow to specify the path where to place the output

deployment artifacts, -p and --enable-push activate the automatic pushing of toskosed images

on a Docker registry, --docker-url URL allows to define a custom entrypoint for the Docker

Engine API, -q and --quiet reduce the output information messages, and --debug activates the

debug mode.

The other arguments instead indicate the paths to the input files for the TOSKOSE PACKAGER.

More precisely, CSAR_PATH indicates the path to a Cloud Service ARchive (CSAR), containing

the TOSCA specification of an application and the artifacts realising the application and its

management operations. The optional argument CONFIG_PATH instead provides the path to a

Toskose configuration file.

Main Module. The Main Module is implemented as a Python module that is invoked by the

command-line interface, which passes it the paths to the input files to be processed, and the

processing options. It then starts coordinating the other modules of our prototype implementation

of TOSKOSE PACKAGER to carry out the activities of the workflow in Fig. 6.8, in the given order.

The Main Module also generates to temporary directories using the Python tempfile library.

A directory is used for storing the content of the (unpacked) CSAR archive, while the other one is

used for storing the Docker build contexts. Both the directories are stored under /tmp and they

are removed once the Main Module reaches the end of the workflow.

TOSCA. The implementation of the Validator provides the necessary for checking whether the

input CSAR archive complies with the TOSCA standard [124]. It indeed allows to check whether

the extension of the archive complies with admitted ones (i.e., .csar or .zip), as well as the

directories composing the archive are organised as indicated by the TOSCA standard.

The Parser and TOSCA Model instead allow parsing the YAML file defining the TOSCA

specification of an application and building an in-memory representation of the application.

They are implemented by extending the OpenStack TOSCA parser (https://github.com/
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openstack/tosca-parser), in order to allow processing the TOSCA-based representation given

by TosKer [31].

Configuration. Toskose configuration files are specified in YAML, and they are structured in

two YAML objects, i.e., nodes and manager. The object nodes is devoted to the configuration of

the containers hosting application components, with one nested YAML object for each of such

containers. Each nested object is given the same name as that of the container in the TOSCA

application specification, and it allows to specify the alias associated to the container and the

port where the XML-RPC API of the Supervisor instance implementing a Unit is offered. These

are then used by the used by the TOSKOSE MANAGER for communicating with the Unit managing

the components running in the container.

The object manager instead allows to provide the configuration information for the Docker

container running the TOSKOSE MANAGER. It indeed allows specifying its alias on the Docker

network, as well as the port, username and password for accessing the RESTful API of the

TOSKOSE MANAGER

A Toskose configuration file can be optionally provided to our prototype implementation of

the TOSKOSE PACKAGER. If provided, it is validated against the above illustrated schema by the

implementation of the Validator. If something is missing, or if no configuration file is given, an

auto-completion routine implementing the Completer allows to fill it with default values.

Model Updater. The implementation of the Model Updater adds the information contained in

the Toskose configuration file to the in-memory representation of the processed application. More

precisely, it first extends the application representation by setting environment variables to be

defined in each container hosting a component, in such a way that the instance of Supervisor

it runs is configured to listen on the indicated port. It also extends the representation of each

container by setting properties needed for naming and tagging the correspondingly generated

toskosed image (and optionally pushing it to a Docker registry).

The implementation of the Model Updater also includes an additional container to the in-

memory application representation, devoted to hosting the TOSKOSE MANAGER. Such a container

is then configured according to the specified configuration information, in a way similar to that

described above. The choice of injecting the addition container during this activity simplifies the

subsequent steps, which have to process only the in-memory application representation instead

of fetching information from different sources.

Contexts generation. The Contexts module of our prototype implementation of the TOSKOSE

PACKAGER fills a temporary folder devoted to Docker build contexts with a Toskose Manager

Context for the container hosting the TOSKOSE MANAGER and a Toskose Unit Context for each

container hosting some original application component. The Toskose Manager Context is devoted

to storing the Toskose configuration file and the TOSCA specification of the application under

processing, which are needed by the TOSKOSE MANAGER for enacting the management of the

application.
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FIGURE 6.10. Template of the configuration of Supervisor injected in Docker containers
to implement Units.

Each Toskose Unit Context is assigned the name of the corresponding container. It is devoted

to contain the artifacts realising the components hosted on the container, as well as the scripts

implementing their management operations. The folder also contains a file supervisor.conf,

providing all configuration information needed by the Supervisor instance running on the con-

tainer for suitably implementing a Unit. The file supervisor.conf is generated by automatically

extending a base template, which schema is in Fig. 6.10. The HTTP settings section configures

the HTTP server used for offering the XML-RPC API of Supervisor by expanding the enviroment

variables defining its configuration in the in-memory application representation. The supervi-

sord settings section configures supervisord (the main process of Supervisor) with some default

configurations, except for the logging level, which is fetched from the information stored in the

in-memory application representation. The RPC interface settings section initialises the XML-

RPC API of the Supervisor instance to run. The file is completed by including program sections

allowing to remotely invoke the management operations of the application component hosted on

the container.

Docker. The toskosed Docker images are built by the Manager module. The latter is implemented

by exploiting the docker-py Python library (https://docker-py.readthedocs.io), which al-

lows to interact with the API of the Docker Engine installed on a host, also for building Docker

images. For each container to be toskosed (including the TOSKOSE MANAGER), the Manager

implementation proceeds as follows. Firstly, it pulls the toskose-unit or toskose-manager

Docker image from the Docker Hub and the Docker image associated with the container in the

in-memory application from the specified registry, if they are not already available locally. It then
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instructs the Docker Engine to build the toskosed image, by passing it the application context,

the pulled images and a multi-stage Dockerfile. If explicitly required by the user, the Manager

module also proceeds with pushing toskosed images to a Docker registry.

The implementation of the Deployment Artifact Generator completes the workflow, by generat-

ing the Docker Compose file from the in-memory application representation. The containers of the

application (including standalone containers) are added to the Docker compose file as services

and configured as specified (e.g., by setting their network aliases and environment variables as

indicated in the in-memory application representation). The automatically generated toskosed

images are then used to implement the services corresponding to containers hosting some ap-

plication component, while the Docker images originally indicated in the TOSCA application

specification are used to implement those corresponding to standalone containers. In addition,

Docker volumes are included in accordance to the in-memory application representation, and a

Docker overlay network is set for allowing the deployment of the application in both single-host

and multi-host infrastructure. The resulting Docker Compose file follows the schema shown in

Fig. 6.11.

6.7 Case studies

We hereby illustrate two case study based on two different multi-component applications, both de-

signed for testing application orchestrators in practice. We first consider the Thinking application

(https://github.com/di-unipi-socc/thinking), which we developed in the scope of our previ-

ous research [22], and we then consider Sock Shop (https://microservices-demo.github.io),

a third-party application developed and maintained by Weaveworks and Container solutions. We

show how TOSKOSE enables a component-aware orchestration of such applications on Docker

Swarm and Kubernetes, in a multi-host setting.

6.7.1 The Thinking Case Study

Thinking is an open-source web application allowing its users to share thoughts on a web-based

portal, so that other users can read them. Thinking is composed by three main components:

• A MongoDB database storing the collection of thoughts shared by users. The database is

obtained by directly instantiating a MongoDB container, which needs to be attached to a

volume where shared thoughts are persistently stored.

• A Java-based RESTful Web API to remotely access the database of shared thoughts. The

API is hosted on a Maven container, and it requires to be connected to the MongoDB

container (for remotely accessing the database of shared thoughts).

• A web-based GUI visualising all shared thoughts and allowing to insert new thoughts into

the database. The GUI is hosted on a NodeJS container, and it depends on the availability
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---
version: '3.7'

networks:
toskose-network: # DOCKER NETWORK DEVOTED TO THE APPLICATION

driver: "overlay" # setting the network to be an overlay network
attachable: true

services:

toskose-manager: # CONTAINER HOSTING THE TOSKOSE MANAGER
image: <toskosed_image> # setting starting image to corresponding toskosed image
networks:

toskose-network: # attaching the container to the overlay network
aliases:
- <alias> # setting the alias of the container on the overlay network

environment:
- TOSKOSE_MANAGER_PORT=<port> # setting env. vars. needed by the Toskose Manager
- TOSKOSE_APP_MODE=<mode>
- SECRET_KEY=<secret_key>
ports:
- <api_port_mapping> # setting port mapping to expose the RESTful API to users

<container_node_name>: # CONTAINER HOSTING SOME APPLICATION COMPONENT
image: <toskosed_image> # setting starting image to corresponding toskosed image
init: true # enabling Tini as init process
networks:

toskose-network: # attaching the container to the overlay network
aliases:
- <alias> # setting the alias of the container on the overlay network

volumes:
- <volume_mapping> # attaching container to specified volumes (if any)
environment:
- SUPERVISORD_ALIAS=<alias> # setting env. vars. for the Unit (i.e., Supervisor instance)
- SUPERVISORD_PORT=<http_port>
- SUPERVISORD_USER=<user>
- SUPERVISORD_PASSWORD=<password>
- SUPERVISORD_LOG_LEVEL=<log_level>
- ... # setting other env. vars. needed by the hosted components
ports:
- ... # setting specified port mappings (if any)

<standalone_container_node_name> # STANDALONE CONTAINER
image: <base_image> # setting starting image to that indicated in the TOSCA spec
networks:

toskose-network: # attaching the container to the overlay network
aliases:
- <alias> # setting the alias of the container on the overlay network

volumes:
- <volume_mapping> # attaching container to specified volumes (if any)

volumes: # DOCKER VOLUMES (if any)
...

FIGURE 6.11. Schema of the Docker Compose file generated by our prototype imple-
mentation of the TOSKOSE PACKAGER.
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FIGURE 6.12. TOSCA-based representation of Thinking, obtained by exploiting the
TOSCA types defined by TosKer [31].

of the API to properly work (as it sends HTTP requests to the API to retrieve/add shared

thoughts).

For the purposes of this case study, and following the sidecar pattern, the application also includes

a Logsniffer in the Maven container running the API of Thinking, which provides a web-based

GUI for visualising and filtering the logs of the API.

The GUI, API and Logsniffer are also provided with a set of shell scripts implementing their

lifecycle operations. The operation to install, configure, start, stop and uninstall each of such com-

ponents are indeed implemented by the scripts install.sh, configure.sh, start.sh, stop.sh

and uninstall.sh, respectively. The API is also equipped with the script push_default.sh,

which can be optionally executed when the API is configured (but not running) to add a default

set of thoughts to the MongoDB database.

6.7.1.1 Modelling Thinking with TOSCA

By exploiting the TOSCA-based representation given by TosKer [31] (and recapped in Sect. 6.2.2

for making this article self-contained), the Thinking application can be modelled in TOSCA as

shown in Fig. 6.12. MongoDB is modelled as a component of type tosker.nodes.Container and it is

attached to the needed volume (MongoDB) through a relationship of type tosca.relationships.At-

tachesTo. API and Logsniffer are modelled as software components hosted on a component of

type tosker.nodes.Container (i.e., Maven), with API being also connected to MongoDB. Notice that,

while Logsniffer is of type tosker.nodes.Software, API is of type tosker.nodes.APISoftware, which

extends tosker.nodes.Software to include the push_default operation featured by API. Finally, GUI

is modelled as a component of type tosker.nodes.Software, which is hosted on a component of type

tosker.nodes.Container (i.e., Node). The GUI is also indicated as depending on the availability of

API to suitably serve its clients.

The corresponding TOSCA application specification is publicly available on GitHub, in the

CSAR packaging such specification together with the artifacts implementing the components of
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Thinking and their management operations (https://github.com/di-unipi-socc/toskose-

packager/blob/master/tests/data/thinking-v2/thinking-v2.csar). Concerning artifacts,

it is worth noting that the artifact type used to implement MongoDB differ from those of Maven

and Node, as MongoDB is qualified to be a standalone container, while Maven and Node are used

as system containers for hosting application components. In addition, no artifact is provided for

implementing the lifecycle operations of the containers and volume in Thinking, as our aim is to

piggyback on existing container orchestrators, which natively feature such operations.

6.7.1.2 Generating a Deployable Artifact for Thinking

We generated a Docker Compose file enabling a component-aware orchestration of the manage-

ment of Thinking on Docker-based container orchestrators by running the TOSKOSE PACKAGER

as follows:

$ toskose -p thinking.csar toskose.yml

where thinking.csar was a local copy of the CSAR packaging Thinking available on GitHub

(see Sect. 6.7.1.1), and toskose.yml was the Toskose configuration file shown in Fig. 6.13(a).

Fig. 6.13(b) instead shows the Toskose configuration file automatically generated by the TOSKOSE

PACKAGER, which we obtained by not specifying any Toskose configuration file while running the

TOSKOSE PACKAGER

$ toskose -p thinking.csar

In both cases, -p was set to instruct the TOSKOSE PACKAGER to automatically push toskosed

images to the Docker Hub.

Both runs of the TOSKOSE PACKAGER successfully generated a Docker Compose file for

deploying Thinking on a Docker-based container orchestrator. Fig. 6.14 shows the Docker Com-

pose file obtained by running the TOSKOSE PACKAGER with the Toskose configuration file in

Fig. 6.13(a). The file shows that the TOSKOSE MANAGER is automatically included among the

containers to be deployed and how each container hosting some application component is im-

plemented by a toskosed image, with the latter being suitably configured to run a Supervisor

instance as a Unit managing the hosted components.

The Docker compose file in Fig. 6.14 is considered hereafter, as the docker-compose.yml

file in the rest of our case study. For the sake of completeness, it is worth highlighting that all

activities shown hereafter were successfully executed also with the Docker Compose file obtained

by running the TOSKOSE PACKAGER with the Toskose configuration file in Fig. 6.13(b).
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nodes:
maven:

alias: maven
port: 9456
user: user_21ty5
password: 1t5mYp4ss
log_level: INFO
docker:

name: giulen/thinking-maven-toskosed
tag: 0.1.3

node:
alias: node
port: 13450
user: user_a4bc2
password: p4ssw0rd
log_level: DEBUG
docker:

name: giulen/thinking-node-toskosed
tag: 2.1.5

manager:
alias: toskose-manager
port: 12000
user: admin_manager
password: password_manager
mode: production
secret_key: my_secret
docker:

name: giulen/thinking-manager-toskosed
tag: latest

nodes:
maven:

alias: maven
port: 9001
user: admin
password: admin
log_level: INFO
docker:

name: giulen/thinking-maven-toskosed
tag: 0.1.3
registry_password:

node:
alias: node
port: 9001
user: admin
password: admin
log_level: INFO
docker:

name: giulen/thinking-node-toskosed
tag: 2.1.5
registry_password:

manager:
alias: toskose-manager
port: 10000
user: admin
password: admin
mode: production
secret_key: secret
docker:

name: giulen/thinking-manager-toskosed
tag: latest
registry_password:

(a) (b)

FIGURE 6.13. Toskose configuration files used for generating a deployment of Thinking,
with (a) being manually created and (b) being automatically generated by the
TOSKOSE PACKAGER.

6.7.1.3 Deploying and Managing Thinking with Docker Swarm

To deploy the obtained Docker Compose file (i.e., docker-compose.yml) with Docker Swarm, we

first exploited the Docker Machine tool (https://docs.docker.com/machine) to create Swarm

cluster composed by four virtual machines (Fig. 6.15).

Following the Docker documentation [5], we then exploited the Docker Stack abstraction for

actually enacting the deployment of Thinking on the Swarm cluster.

$ docker stack deploy --compose-file docker-compose.yml \\

--orchestrator swarm thinking-stack

Fig. 6.16 shows the execution and outcomes of the above command. Docker Swarm cared

about spawning the containers in the Thinking application, and of distributing them on the

Swarm cluster. Such containers were however only running their main processes, i.e., the TOS-

KOSE MANAGER in the case of thinking-stack_toskose-manager, the mongo application in
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the case of the standalone container thinking-stack_mongodb, and the Supervisor instances

implementing the Units for the remaining two containers. The GUI, API and Logsniffer were

instead not deployed yet, as the actual management of their lifecycle was to be orchestrated

through the TOSKOSE MANAGER.

We hence completed the deployment of the Thinking application by exploiting the cURL

command-line tool (https://curl.haxx.se) for interacting with the RESTful API offered by

the TOSKOSE MANAGER. The latter was running on the virtual machine with IP address

192.168.99.115 (Figs. 6.15 and 6.16), and the API was configured to listen on port 12000

(Fig. 6.14). We hence installed the API by executing the following command:

$ curl -X POST -H "accept: application/json" \

"http://192.168.99.115:12000/api/v1/node/maven/api/create"

Once installed, we configured the API and instructed it to populate the database with default

thoughts by issuing:

$ curl -X POST -H "accept: application/json" \

"http://192.168.99.115:12000/api/v1/node/maven/api/configure"

$ curl -X POST -H "accept: application/json" \

"http://192.168.99.115:12000/api/v1/node/maven/api/push_default"

We then started the API by executing

$ curl -X POST -H "accept: application/json" \

"http://192.168.99.115:12000/api/v1/node/maven/api/start"

Similarly, we installed and started Logsniffer by executing

$ curl -X POST -H "accept: application/json" \

"http://192.168.99.115:12000/api/v1/node/maven/logsniffer/create"

$ curl -X POST -H "accept: application/json" \

"http://192.168.99.115:12000/api/v1/node/maven/logsniffer/start"

and we installed, configured and started the GUI by executing

$ curl -X POST -H "accept: application/json" \

"http://192.168.99.115:12000/api/v1/node/node/gui/create"

$ curl -X POST -H "accept: application/json" \

"http://192.168.99.115:12000/api/v1/node/node/gui/configure"

$ curl -X POST -H "accept: application/json" \

"http://192.168.99.115:12000/api/v1/node/node/gui/start"
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As a result, we were able to reach the web-based portal of Thinking both for visualising shared

thoughts and for sharing new thoughts (Fig. 6.17).

It is worth highlighting how we came to complete the deployment of Thinking. We first

fully relied on the capabilities of Docker Swarm to spawn and manage the Docker containers in

Thinking, and the Docker volume needed by MongoDB. The TOSKOSE MANAGER then allowed

us to manage the rest of the application at component-level, as we were able to remotely invoke

the operations managing the lifecycle of the software components in Thinking.

To further experiment the component-aware orchestration enabled by our approach with the

deployed instance of Thinking, we wished to stop and restart its API, by also observing the

changes actually happening to the application. We hence stopped the API of Thinking by remotely

invoking its stop management operation through the TOSKOSE MANAGER:

$ curl -X POST -H "accept: application/json" \

"http://192.168.99.115:12000/api/v1/node/maven/api/stop"

As a result, if connecting to the web-portal shown by Thinking, none of the shared thoughts

was displayed. Fig. 6.18(a) shows the reason for this, with the console of the browser notifying

the failure of the GET request sent to the API for retrieving shared thoughts. Such an error is

due to the fact that the API was successfully stopped, as indicated by the logs visualised by the

Logsniffer (shown at the bottom of the same figure).

To proceed with our experiment, we restarted the API, i.e., we remotely invoked its manage-

ment operation start through the RESTful API offered by TOSKOSE MANAGER.

$ curl -X POST -H "accept: application/json" \

"http://192.168.99.115:12000/api/v1/node/maven/api/start"

Fig. 6.18(b) shows the outcomes of such an invocation, i.e., the web-portal returned to visualise

the shared thoughts, and the logs visualised by Logsniffer showed that the API was successfully

restarted and returned serving HTTP requests.

Even if simple, the above experiment further highlights how our approach enables a component-

aware orchestration of the management of a multi-component application. We were indeed able

to stop and restart a component (i.e., API), without requiring to stop the container running it or

interfering with the other components running on the same container. Logsniffer continued to

run during the whole experiment, allowing us to visualise the logs of the API. This also means

that the container hosting Logsniffer and API continued to run, as expected (as its main process

is the Supervisor instance implementing the Unit managing API and Logsniffer).

6.7.1.4 Deploying and Managing Thinking with Kubernetes

We run two different experiments for deploying the Docker Compose file obtained from the

TOSKOSE PACKAGER (i.e., docker-compose.yaml) on Kubernetes, differing on the tool exploited
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for doing so, i.e., Kompose (https://kompose.io/) and Compose Object (https://github.com/

docker/compose-on-kubernetes). For the sake of conciseness, we hereafter only report on that

based on Kompose.

After creating a Kubernetes cluster, we exploited Kompose to deploy the docker-compose.yaml

file on the cluster. This was done by running

$ kompose up docker-compose.yml

which outcomes are shown in Fig. 6.19. We then exploited the Kubernetes client (i.e., kubectl) to

specify that the TOSKOSE MANAGER acts as Ingress node for our deployment [88], hence allowing

us to reach the RESTful API it offers.

$ kubectl patch svc toskose-manager -p '{"spec":{"type":"LoadBalancer"}}'

We issued analogous commands to allow remotely accessing GUI and API, and this completed

the deployment and configuration of the containers in Thinking, fully carried out by exploiting

existing capabilities featured by the Kubernetes environment.

We then repeated the activities for deploying the software components in Thinking, and

for stopping and restarting its API. In other words, we repeated the same sequence of curl

commands shown in Sect. 6.7.1.3, with the only difference given by the IP address where the

TOSKOSE MANAGER was listening (10.97.103.166 in this case, as shown in Fig. 6.19). All

such commands successfully executed and resulted in the same outcomes as those presented in

Sect. 6.7.1.3.

The above, together with the fact that the experiment run by exploiting Compose Object

produced the same outcomes, show that we successfully ported the TOSKOSE-based orchestration

approach on different Docker-based container orchestrators. It also shows that, while the man-

agement of containers changed accordingly to the employed container orchestrator, the actual

management of the components running on such containers remained unchanged, as it was

independent from the employed container orchestrator.

6.7.2 The Sock Shop Case Study

Sock Shop is an open-source web-based application simulating the user-facing part of an e-

commerce website selling socks. It is developed and maintained by Weaveworks and Container

Solutions, and its goal is to allow to test and showcase solutions and tools for orchestrating multi-

component applications. Sock Shop is indeed a multi-component application, which components

are the followings:

• A Frontend displays a web-based graphical user interface for e-shopping socks.

• Different pairs of services and databases allow to store and manage the catalogue of

available socks (i.e., Catalogue and CatalogueDB), the users of the application (i.e., Users
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and UsersDB), the users’ shopping carts (i.e., Carts and CartsDB), and the users’ orders

(i.e., Orders and OrdersDB).

• Two services (i.e., Payment and Shipping) simulate the payment and shipping of orders.

• A message queue (i.e., RabbitMQ) allows to enqueue shipping requests, which are then

consumed by a service (i.e., Queue Master) simulating the actual shipping of orders.

6.7.2.1 Modelling Sock Shop with TOSCA

We specified Sock Shop in TOSCA by exploiting the TOSCA-based representation given by

TosKer [31] (Sect. 6.2.2). We modelled all databases and infrastructure components as nodes

of type tosker.nodes.Container, which actual implementations were given by the Docker con-

tainers already configured by WeaveWorks and Container Solutions. We instead specified the

services Frontend, Catalogue, Users, Carts, Orders, Payment and Shipping as nodes of type

tosker.nodes.Software, each hosted on a node of type tosker.nodes.Container providing the runtime

environment it needs (e.g., as Frontend requires NodeJS, it is hosted on a container implemented

with the Docker image node:6). The resulting TOSCA-based representation of the application is

shown in Fig. 6.20.

We also implemented the operations to install, configure, start, stop and uninstall the

above mentioned services, each with a different shell script. In other words, for each service,

the shell script install.sh installs the service in a dedicated folder of its hosting container,

by cloning the GitHub repository containing its sources within such folder and by compiling

(if needed) such sources. The script configure.sh configures the endpoints to be offered by

the service. The scripts start.sh and stop.sh start and kill the process corresponding to the

service, respectively. Finally, the script uninstall.sh deletes the folder containing the service

installation.

The CSAR archive packaging the above described TOSCA application specification is publicly

available on GitHub (https://github.com/di-unipi-socc/toskose-packager/blob/master/

tests/data/sockshop/sockshop.csar).

6.7.2.2 Generating a Deployable Artifact for Sock Shop

We generated the Docker Compose file enabling a component-aware orchestration of Sock Shop

on Docker-based container orchestrators by executing the TOSKOSE PACKAGER as follows:

$ toskose -p sockshop.csar toskose.yml

The archive sockshop.csar listed above was a local copy of the CSAR packaging Sock Shop

available on GitHub (see Sect. 6.7.2.1), while toskose.yml is the Toskose configuration file shown

in Fig. 6.21. The option -p is used to force pushing the automatically generated toskosed images

to the Docker Hub.
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A snippet of the Docker Compose file automatically generated by the TOSKOSE PACKAGER is

shown in Fig. 6.22. The TOSKOSE PACKAGER introduced and suitably configured each container

from the original Sock Shop application, and it also includes an additional container running the

TOSKOSE MANAGER. All such containers are specified as services running on the same overlay

network, i.e., toskose-network.

6.7.2.3 Deploying and Managing Sock Shop on Existing Container Orchestrators

We exploited the Docker Compose file obtained from the TOSKOSE PACKAGER to deploy Sock

Shop with Docker Compose on the same cluster of virtual machines as that used for Thinking

(Sect. 6.7.1.3), and for repeating the activities of stopping and restarting its components by

keeping their hosting containers up and running. We also deployed and managed Sock Shop with

Kubernetes on a cluster composed by four cloud-hosted virtual machines (i.e., four nodes hosted

by Microsoft Azure with the Azure Kubernetes Service), in order to test whether our approach

can also effectively in a real-world cloud scenario. For the sake of brevity, we hereafter only report

on the Azure-based deployment and management of Sock Shop.

To enact a deployment of Sock Shop with the Azure Kubernetes Service, we were first required

to setup a cluster on Azure where to run Sock Shop. We hence locally launched a containerised

instance of the Azure CLI, which we first used to log into the platform:

$ docker run -it -v ${HOME}/.ssh:/root/.ssh mcr.microsoft.com/azure-cli

$ az login

We then exploited the Azure CLI to create our own resource group, which we used to create a

cluster of four virtual machines. The latter was done by directly exploiting Azure Kubernetes

Service (i.e., aks):

$ az group create --name MyResourceGroup --location eastus

$ az aks create --resource-group myResourceGroup --name AKSCluster \

--dns-name-prefix AKSCluster-dns --node-count 4 \

--node-vm-size Standard_DS1_v2 --enable-addons monitoring \

--generate-ssh-keys --kubernetes-version 1.13.12

Once created, we were able to connect to the Kubernetes-managed cluster with the command:

$ az aks get-credentials --resource-group myResourceGroup --name AKSCluster

We then deployed the containers in Sock Shop by executing

$ kubectl create -f sockshop

where sockshop was the directory containing the Kubernetes specification automatically obtained

from Kompose, to which we fed the Docker Compose file automatically generated by the TOSKOSE

PACKAGER.
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The above allowed us to deploy the containers of Sock Shop and have them up and running.

The software components hosted on such containers were instead not deployed yet, as their

actual management was to be orchestrated through TOSKOSE MANAGER. We hence completed

the deployment of Sock Shop by (i) starting Shipping and Carts with

$ curl -X POST -H "accept: application/json" \

"http://52.142.38.162:10000/api/v1/node/shipping/shipping-sw/start"

$ curl -X POST -H "accept: application/json" \

"http://52.142.38.162:10000/api/v1/node/carts/carts-sw/start"

(ii) installing and starting Users, Payment and Catalogue with

$ curl -X POST -H "accept: application/json" \

"http://52.142.38.162:10000/api/v1/node/user/user-sw/create"

$ curl -X POST -H "accept: application/json" \

"http://52.142.38.162:10000/api/v1/node/user/user-sw/start"

$ curl -X POST -H "accept: application/json" \

"http://52.142.38.162:10000/api/v1/node/payment/payment-sw/create"

$ curl -X POST -H "accept: application/json" \

"http://52.142.38.162:10000/api/v1/node/payment/payment-sw/start"

$ curl -X POST -H "accept: application/json" \

"http://52.142.38.162:10000/api/v1/node/catalogue/catalogue-sw/create"

$ curl -X POST -H "accept: application/json" \

"http://52.142.38.162:10000/api/v1/node/catalogue/catalogue-sw/start"

(iii) installing and starting Orders with

$ curl -X POST -H "accept: application/json" \

"http://52.142.38.162:10000/api/v1/node/orders/orders-sw/create"

$ curl -X POST -H "accept: application/json" \

"http://52.142.38.162:10000/api/v1/node/orders/orders-sw/start"

and (iv) installing, configuring and starting Frontend with

$ curl -X POST -H "accept: application/json" \

"http://52.142.38.162:10000/api/v1/node/front-end/front-end-sw/create"

$ curl -X POST -H "accept: application/json" \

"http://52.142.38.162:10000/api/v1/node/front-end/front-end-sw/configure"

$ curl -X POST -H "accept: application/json" \

"http://52.142.38.162:10000/api/v1/node/front-end/front-end-sw/start"

As a result, we obtaind a running instance of Sock Shop allowing to browse among the catalogue

of socks e-sold through its web-based portal (Fig. 6.23).
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The above again showed us that we were able to piggyback on an existing Docker-based

container orchestrator for deploying the containers forming an application, and to independently

orchestrate the deployment of the components running on such containers by exploiting the TOS-

KOSE toolset. To further experiment the independent management of components and containers,

we stopped the service managing the catalogue of available socks by issuing the following cURL

command:

$ curl -X POST -H "accept: application/json" \

"http://52.142.38.162:10000/api/v1/node/catalogue/catalogue-sw/stop"

The above resulted in the web-portal no more being able to show the socks that can be e-shopped,

because of the web-based Frontend not being able to connect to Catalogue (Fig. 6.24(a)). This

happened even if the container hosting Catalogue was still working (Fig. 6.24(b)), hence showing

that the lifecycle of Catalogue and of its hosting container were managed independently.

Finally, to return having the instance of Sock Shop properly working, we issued the cURL

command

$ curl -X POST -H "accept: application/json" \

"http://52.142.38.162:10000/api/v1/node/catalogue/catalogue-sw/stop"

which (re-)started the Catalogue and brought the application back to offer a fully working

web-based portal for e-shopping socks (such as that in Fig. 6.23).

6.8 Related work

Various solutions exist for orchestrating the management of multi-component applications, based

on TOSCA or Docker. The closest to ours is TosKer[31], which —to the best of our knowledge—

is currently the only solution enabling a component-aware orchestration of TOSCA-based ap-

plication on top of Docker. It does so by implementing from scratch a new orchestration engine,

allowing to coordinate the management of both the software components and the Docker contain-

ers forming an application. The TosKer engine is designed to run on a single host, which must

be configured to provide root privileges to the engine itself (so as to allow it to spawn Docker

containers and run application components on them). Our approach hence differs from that of

TosKer, as we enable a component-aware management of TOSCA-based applications on top of

existing container orchestrators, which natively support multi-host deployments. In addition, our

approach does not need root priviliges to properly work, hence making it suited also for scenarios

where such privileges cannot be granted (e.g., on Container-as-a-Service platforms).

Another closely related approach is that tackled by the EDMM modelling and transformation

framework [165, 166]. Even if not TOSCA-based, the EDMM modelling and transformation frame-

work allows to specify the software components and Docker containers forming a multi-component

application, and the operation allowing to manage each of components and containers [166]. It
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then support the automated generation of the artifacts for deploying the application on top of

existing orchestrators, including Docker Compose and Kubernetes [165]. The latter essentially

consists in creating deployment scripts coordinating the executable files implementing the man-

agement operations of the components of an application, in such a way that the dependencies

occurring among such components are satisfied. It can hence be viewed as a solution for the

component-aware deployment of multi-component applications on top of existing deployment

platforms. However, once the deployment is enacted on a container orchestrator, the application

is managed through such orchestrator, which considers containers as "black-boxes", i.e., not

allowing to manage the components forming an application independently from the containers

used to host them. Our approach hence differs from that EDMM-based, as we aim at supporting

a component-aware management of multi-component applications during their whole lifecycle.

Considering containers as "black-boxes" is a baseline also shared by all other existing approaches

trying to synergically combine the OASIS standard TOSCA and Docker for orchestrating multi-

component applications. For instance, Kehrer and Blochinger [100] propose to use TOSCA for

specifying the internals of a container, which are then manually built by developers to allow

their orchestration (as "black-boxes") on top of Mesos. Our approach is instead intended to enable

a component-aware management of multi-component applications on top of existing container

orchestrators, by allowing to manage application components independently from their hosting

containers.

Other approaches worth mentioning are OpenTOSCA [16], Alien4Cloud (http://alien4cloud.

github.io), Cloudify (https://cloudify.co), and the Apache ARIA TOSCA incubator (https:

//ariatosca.incubator.apache.org). OpenTOSCA is an open-source engine for deploying and

managing TOSCA applications, which components include containers. Alien4Cloud, Cloudify and

ARIA TOSCA also allow to manage multi-component applications, which components include

Docker containers. However, they all differ from our approach to managing application since they

Docker containers as "black-boxes", i.e., not supporting the management of software components

separately from that of the containers hosting them.

SeaClouds [23] and Apache Brooklyn (https://brooklyn.apache.org) also relate to our

approach. SeaClouds [23] is a middleware solution for deploying and managing multi-component

applications on heterogeneous IaaS/PaaS cloud infrastructure. SeaClouds fully supports TOSCA,

but it lacks a support for Docker containers. The latter makes SeaClouds not suitable to manage

multi-component applications including Docker containers.

Apache Brooklyn (https://brooklyn.apache.org) instead natively supports both TOSCA

and Docker containers. Thanks to its extension called Brooklyn-TOSCA [42], Brooklyn enables

the management of the software components and Docker containers forming an application.

However, Brooklyn treats Docker containers as black-boxes, and this does not permit managing

the components of an application independently of that of the containers used to host them.

It is finally worth relating our approach with currently existing solutions for orchestrating
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multi-container Docker applications. Docker natively supports their orchestration by means of

Docker Compose (https://docs.docker.com/compose), which allows to indicate the images

of the Docker containers forming an application, the virtual network to setup to allow the to

intercommunicate, and the volumes to mount to persist their data. Based on such information,

Docker Compose can enact the deployment of the specified application. Docker Compose however

treats containers as "black-boxes", meaning that there is no information on which components

are running within a container, and since it does not allow to orchestrate the management of ap-

plication components independently from their hosting containers. In addition, no information is

provided on the actual interdependencies and interconnections occurring among the components

and containers of an application. Our approach instead allows to explicitly model the software

components forming an application, to orchestrate their management independently from their

hosting containers, and to explicitly consider the different types of relationships occurring among

the components and containers in an application. This not only makes the interactions occurring

among the components of an application easier to understand, but also brings various advantages

in terms of reuse and maintenance [26].

Other solutions worth mentioning are Docker swarm (https://docs.docker.com/engine/

swarm), Kubernetes (https://kubernetes.io), and Mesos (http://mesos.apache.org). Docker

swarm permits creating a cluster of replicas of a Docker container, and seamlessly managing it

on a cluster of hosts. Kubernetes and Mesos instead permit automating the deployment, scaling,

and management of containerized applications over clusters of hosts. Docker swarm, Kubernetes

and Mesos differ from our orchestration system as they focus on how to schedule and manage

containers (as "black-boxes") on clusters of hosts, while we aim at piggybacking on top of them to

enable a component-aware orchestration of the management of multi-component applications.

Similar considerations apply to ContainerCloudSim [134], which provides support for mod-

elling and simulating containerized computing environments. ContainerCloudSim is based on

CloudSim [36], and it focuses on evaluating resource management techniques, such as container

scheduling, placement and consolidation of containers in a data center, by abstracting from

the application components actually running in such containers. Our solution instead focuses

on allowing to independently manage the components forming an application while delegating

container management to a container orchestrator.

6.9 Conclusions

We presented a solution enabling the component-aware management of multi-component ap-

plication on top of existing Docker-based container orchestrators. More precisely, starting from

an existing TOSCA-based representation for multi-component applications, we illustrated a

novel approach allowing to manage the components forming an application independently from

the Docker containers used to host them. We also introduced three open-source prototype tools
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implementing our approach. These are TOSKOSE UNIT (i.e., a bundling of Supervisor allowing to

remotely manage the components running in a container), TOSKOSE MANAGER (i.e., a container-

ised orchestrator allowing to coordinate the Supervisor instances running in the containers of the

application), and TOSKOSE PACKAGER (i.e., a tool for automatically generating Docker-based

deployable artifacts from the TOSCA specification of a multi-component application).

We also illustrated how our approach and prototype tools effectively enabled the component-

aware management of two existing multi-component applications (i.e., Thinking and Sock Shop)

on top of Docker Swarm and Kubernetes. After representing such applications in TOSCA, we

exploited the TOSKOSE PACKAGER for generating deployable Docker Compose files. The latter

were then effectively deployed with both Docker Swarm and Kubernetes on a cluster of virtual

hosts. This allowed us to showcase that the containers forming the infrastructure of the considered

applications were deployed and managed by relying on the capabilities of existing Docker-

based container orchestrators, while the lifecycle of the software components hosted on such

containers was independently orchestrated through the TOSKOSE MANAGER. The above held

for both considered Docker container orchestrators (i.e., Docker Swarm and Kubernetes), and

independently of whether the cluster of virtual hosts was running on premise or on a real cloud

(i.e., MS Azure Cloud).

We believe that this paper can help researchers and practitioners wishing to independently

orchestrate the components and containers forming an application. For instance, we discussed

several issues while illustrating the development of our solution, e.g., signal management and

zombie reaping, or potential conflicts when packaging multiple components in the same container.

The discussion on issues and their possible solutions can be of help to researchers and practition-

ers needing to face similar problems while developing alternative solutions to ours, or simply

because their applications need multiple components to reside in a single container.

In addition, the TOSKOSE open-source toolset can already be exploited (as-is) by researchers

and practitioners to enable a component-aware orchestration of their applications on existing

container orchestrators. The current prototype of TOSKOSE can also be exploited as the basis for

the development of other research solutions or tools, or for validating existing approaches. For

instance, we exploited TOSKOSE to further validate the outcomes of our former research, i.e., we

exploited it to run TOSCA application specification automatically completed by TOSKERISER [26].

The latter is a tool for completing TOSCA application specifications, which automatically dis-

covers and includes the Docker containers offering all what needed to run the components

of an application, based on the information automatically retrieved by DOCKERFINDER [28].

Application specification generated by TOSKERISER were translated to Docker Compose files,

which were then effectively orchestrated on existing Docker-based container orchestrators in a

component-aware manner.

TOSKERISER, DOCKERFINDER and TOSKOSE actually form an open-source toolchain, which

helps researchers and practitioners in automating the orchestration of multi-component ap-
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plications with TOSCA and Docker (Fig. 6.25). They can indeed focus on only describing the

components forming an application in TOSCA, and their runtime requirements. The TOSCA-

based application representation is then automatically completed by TOSKERISER with the

containers allowing to run its components, and then transformed by the TOSKOSE PACKAGER in

a deployable solution (i.e., a Docker Compose file). The latter includes the TOSKOSE MANAGER

and the toskosed images enabling a component-aware management of the application on top of

existing Docker-based container orchestrators.

At the same time, the TOSKOSE open-source toolset requires to be further engineered to

improve its capabilities. It currently features basic capabilities for scaling and self-healing

components, fully relying on the mechanisms natively featured by the Docker-based container

orchestrator employed for deploying an application. The minimal entity that can be scaled or

self-healed is currently a container, and we are currently working on including support for

component-aware scaling and self-healing.

We also plan to design and develop a support for automatically determining the workflow

of management operations to invoke to allow an application to reach a desired configuration.

Currently, the sequence of operations for reaching a given application configuration is to be

manually issued by the application administrator. We plan to integrate existing analysis and

planning techniques (e.g., based on Aeolus [53] or on management protocols [22]), in such a

way that the administrator just instructs the TOSKOSE MANAGER with the desired application

configuration, and the TOSKOSE MANAGER automatically issues the management operations

allowing to reach and maintain such a configuration, even in presence of unexpected failures.
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---
version: '3.7'
services:

maven:
image: giulen/thinking-maven-toskosed:0.1.3
init: true
networks:

toskose-network: { aliases: [ maven ] }
environment:
- SUPERVISORD_ALIAS=maven
- SUPERVISORD_PORT=9001
- SUPERVISORD_USER=user_21ty5
- SUPERVISORD_PASSWORD=1t5mYp4ss
- SUPERVISORD_LOG_LEVEL=INFO
- INPUT_REPO=https://github.com/matteobogo/thoughts-api
- INPUT_BRANCH=master
- INPUT_DBURL=mongodb
- INPUT_DBPORT=27017
- INPUT_DBNAME=thoughtsSharing
- INPUT_COLLECTIONNAME=thoughts
- INPUT_DATA=/toskose/apps/api/artifacts/default_data.csv
- INPUT_PORT=8080
ports: [ "8000:8080/tcp" ]

node:
image: giulen/thinking-node-toskosed:2.1.5
init: true
networks:

toskose-network: { aliases: [ node ] }
environment:
- SUPERVISORD_ALIAS=node
- SUPERVISORD_PORT=9001
- SUPERVISORD_USER=user_a4bc2
- SUPERVISORD_PASSWORD=p4ssw0rd
- SUPERVISORD_LOG_LEVEL=DEBUG
- INPUT_REPO=https://github.com/matteobogo/thoughts-gui
- INPUT_BRANCH=master
- INPUT_APIURL=localhost
- INPUT_APIPORT=8000
- INPUT_APIRESOURCE=thoughts
ports: [ "8080:3000/tcp" ]

mongodb:
image: mongo:3.4
init: true
networks:

toskose-network: { volumes: [ "dbvolume:/data/db" ] }
toskose-manager:

image: giulen/thinking-manager-toskosed:latest
init: true
deploy: *id001
networks:

toskose-network: { aliases: [ toskose-manager ] }
environment:
- TOSKOSE_MANAGER_PORT=12000
- TOSKOSE_APP_MODE=production
- SECRET_KEY=my_secret
ports: [ "12000:12000/tcp" ]

networks:
toskose-network: { driver: "overlay", attachable: true }

volumes:
dbvolume:

FIGURE 6.14. Docker Compose file for deploying Thinking, automatically generated by
the TOSKOSE PACKAGER.
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FIGURE 6.15. Multi-host cluster provisioned for allowing the deployment of Thinking
with Docker Swarm.

FIGURE 6.16. Execution and outcomes of the command for deploying Thinking on our
Swarm cluster.

138



6.9. CONCLUSIONS

(a) (b)

FIGURE 6.17. Snapshots of the running instance of Thinking obtained after completing
its deployment. The snapshots show the web-based interfaces for (a) reading shared
thoughts and for (b) sharing new thoughts.
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(a) (b)

FIGURE 6.18. Snapshots of the running instance of Thinking and of the logs sniffed by
the Logsniffer, (a) after stopping the GUI and (b) after restarting it.

FIGURE 6.19. Execution and outcomes of the command for deploying Thinking on
Kubernetes (with Kompose).
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FIGURE 6.20. TOSCA-based representation of Sock Shop, obtained by exploting the
TOSCA types defined by TosKer [31].
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nodes:
front-end_container:

alias: front-end
port: 9001
user: admin
password: admin
log_level: INFO
docker: { name: giulen/sockshop-front-end_container-toskosed, tag: latest }

catalogue_container:
alias: catalogue
port: 9002
user: admin
password: admin
log_level: INFO
docker: { name: giulen/sockshop-catalogue_container-toskosed, tag: latest }

user_container:
alias: user
port: 9003
user: admin
password: admin
log_level: INFO
docker: { name: giulen/sockshop-user_container-toskosed, tag: latest }

carts_container:
alias: carts
port: 9004
user: admin
password: admin
log_level: INFO
docker: { name: giulen/carts_container-toskosed, tag: latest }

orders_container:
alias: orders
port: 9005
user: admin
password: admin
log_level: INFO
docker: { name: giulen/orders_container-toskosed, tag: latest }

payment_container:
alias: payment
port: 9006
user: admin
password: admin
log_level: INFO
docker: { name: giulen/payment_container-toskosed, tag: latest }

shipping_container:
alias: shipping
port: 9007
user: admin
password: admin
log_level: INFO
docker: { name: giulen/shipping_container-toskosed, tag: latest }

manager:
alias: toskose-manager
port: 10000
user: admin
password: admin
mode: production
secret_key: secret
docker: { name: giulen/sockshop-manager, tag: latest }

FIGURE 6.21. Toskose configuration file used for generating a deployable artifact for
Sock Shop.
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---
version: '3.7'
services:

orders-db:
image: mongo:latest
init: true
networks:

toskose-network:
front-end_container:

image: giulen/sockshop-front-end_container-toskosed:latest
init: true
networks:

toskose-network: { aliases: [ front-end ] }
environment:
- SUPERVISORD_ALIAS=front-end
- SUPERVISORD_PORT=9001
- SUPERVISORD_USER=admin
- SUPERVISORD_PASSWORD=admin
- SUPERVISORD_LOG_LEVEL=INFO
- INPUT_REPO=https://github.com/matteobogo/front-end.git
- INPUT_CATALOGUE=catalogue
- INPUT_CARTS=carts
- INPUT_USER=user
- INPUT_ORDERS=orders

catalogue_container:
image: giulen/sockshop-catalogue_container-toskosed:latest
init: true
networks:

toskose-network: { aliases: [ catalogue ] }
environment:
- SUPERVISORD_ALIAS=catalogue
- SUPERVISORD_PORT=9001
- SUPERVISORD_USER=admin
- SUPERVISORD_PASSWORD=admin
- SUPERVISORD_LOG_LEVEL=INFO
- INPUT_PORT=80

...
toskose-manager:

image: giulen/sockshop-manager:latest
networks:

toskose-network: { aliases: [ toskose-manager ] }
init: true
environment:
- TOSKOSE_MANAGER_PORT=10000
- TOSKOSE_APP_MODE=production
- SECRET_KEY=secret
ports: [ "10000:10000/tcp" ]

...
networks:

toskose-network: { driver: "overlay", attachable: true }

FIGURE 6.22. A snippet of the Docker Compose file for deploying Sock Shop. The full
version of the file is available on GitHub (https://github.com/di-unipi-socc/
toskose-packager/blob/master/tests/data/sockshop/docker-compose.
yml).
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FIGURE 6.23. Snapshot of the running instance of Sock Shop obtained after completing
its deployment.
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(a)

(b)

FIGURE 6.24. Snapshot of (a) the instance of Sock Shop after stopping its Catalogue,
and of (b) the containers actually running while such instance was not properly
working.

FIGURE 6.25. Open-source toolchain for generating deployable solutions from partial
TOSCA application specifications, i.e., specifications only indicating the components
forming an application and the requirements they need to run.
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CONCLUSIONS

In this chapter we summarise the research contributions contained in this thesis (see Sect. 7.1),

and we discuss the assessment of the contributions (see Sect. 7.2). We also give some perspectives

for future work (see Sect. 7.3).

7.1 Summary of contributions

The aim of this thesis is to enhance the support for designing and deploying microservice-based

applications by advancing the state of the art for (o1) analysing and refactoring microservices,

(o2) automatically packaging microservices, and (o3) enacting the deployment of microservices.

We hereafter summarise the research contributions in this thesis, by separately discussing each

of the three research objectives o1, o2 and o3.

Analysing and refactoring microservices

We illustrated the outcomes of a multivocal review focused on identifying architectural smells

denoting possible violations of key design principles of microservices (viz., independent deploy-

ability, horizontal scalability, fault isolation and decentralisation), as well as the refactorings

allowing to resolve such smells (Chapter 2). We indeed presented a taxonomy organising seven

architectural smells and 16 refactorings, by associating each smell with the possibly violated

design principle, and each refactoring with the smell it resolves. We then discussed the perceived

impact of such smells and refactorings, as well as why an architectural smell violates a design

principle and why an architectural refactoring resolves its corresponding smell —according to

the authors of the selected literature.
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Starting from the outcomes of the above mentioned review, we presented a methodology to

systematically identify the architectural smells that possibly violate key design principles of

microservices (Chapter 3). We first presented µTOSCA, a model (based on the OASIS standard

TOSCA [124]) allowing to specify the architecture of a microservice-based application. Based

on such representation, we formally defined the conditions to identify the occurrence of the

considered architectural smells in a microservice-based application, and we illustrated how to

refactor its architecture to resolve identified smells. We also presented µFRESHENER, a prototype

showcasing our methodology.

Automatically packaging microservices

We presented a TOSCA-based representation for multi-component applications, which allows

developers to describe only the components forming an application, the dependencies among

such components, and the software support needed by each component. We have also presented

TOSKERISER, a tool which permits to automatically package the TOSCA specification, by au-

tomatically discovering and configuring the Docker containers needed to host its microservices

(Chapter 4). We have also shown how TOSKERISER permits changing –when/if needed– the

deployment requirements (e.g., operating system, versions of the libraries) of a microservice and

it automatically searches and updates the corresponding container.

In order to automatically discover the appropriate container for each microservice, TOSKE-

RISER exploits DOCKERFINDER, i.e., a Docker Image analyser built with DOCKERANALYSER.

DOCKERANALYSER (Chapter 5) is a microservice-based tool that permits building customised

analysers of Docker images. We showed how users can build their own image analysers by

instantiating DOCKERANALYSER with a custom analysis function. We have shown two concrete

instance of analysers, namely (i) the DOCKERFINDER analyser exploited by TOSKERISER and

(ii) DOCKERGRAPH, which analyses the sources of Docker images stored in their corresponding

GitHub repository to determine dependencies between existing images.

Enacting the deployment of microservices

We proposed a novel architectural approach for deploying microservice-based applications on

top of existing container orchestrators, by also allowing to manage each microservice indepen-

dently from the container used to run it (Chapter 6). Such an approach allows to (i) manage a

component independently from the container running it, (ii) coordinating the management of

multi-component applications, and (iii) generating application deployments that can be enacted

by existing container orchestrators. We presented the implementation of TOSKOSE, a tool that

takes as input a TOSCA-based representation of an application and packages the components

of the application in their hosting containers together with Supervisor (by exploiting TOSKOSE

UNIT), as well as including an instance of the TOSKOSE MANAGER to enable the component-

aware management of the application. We have also discussed how the deployment artifact
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produced by TOSKOSE can be deployed on top of existing container orchestrators that use Docker

as container-based virtualisation (i.e., Docker Swarm [62], Kubernetes[157]).

7.2 Assessment of contributions

As we discussed in Sect. 1.1, this thesis aims at advancing the state-of-the art for (o1) analysing

and refactoring microservices, (o2) automatically packaging microservices and (o3) enacting the

deployment of microservices. We hereby assess the research contributions in this thesis first with

respect to o1, and then with respect to o2 and o3.

Analysing and refactoring microservices

Our multivocal review of design principles, architectural smells and refactoring of microservices

can provide benefits to researchers interested in microservices. Indeed, a systematic presentation

of the state of the art and practice on architectural smells and refactorings for microservices

provides a body of knowledge to develop new theories and solutions, to analyse and experiment

research implications, and to establish future research directions.

Our review can also help practitioners as, together with the reviews by Carrasco et al. [41]

and by Taibi et al. [154], our results can help them in getting acquainted with the well-known

architectural smells for microservices, and in choosing the refactorings allowing to resolve such

smells. This can have a pragmatic value for practitioners, who can use our study as a starting

point for microservices experimentation or as a guideline for day-by-day work with microservices.

The methodology presented in Chapter 3 can also support researchers and practitioners in

designing microservice-based applications, as it can automatically detect the architectural smells

affecting an application and it can help tp decide which refactorings to apply to resolve identified

smells.

The feasibility of approaches based on our methodology has been illustrated with the

µFRESHENER prototype presented in Sect. 3.4. In order to assess its potential, we have also run

a case study and a controlled experiment, which are presented in the Appendix A.

Automatically packaging microservices

The methodology proposed by TOSKERISER can help developers and operators to containerise

microservices. Indeed, it permits to describe only the components forming an application, the

dependencies occurring among them, and the software support that each component requires,

and TOSKERISER automatically completes such specifications by discovering and including the

proper container. It does so by exploiting the discovery support provided by DOCKERFINDER.

In order to assess our methodology, in Chapter 4 we compared TOSKERISER with respect to

the classical approach for packaging applications into Docker containers, based on three KPIs
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(i.e., lines of code to be added/changed/deleted, files to be added/changed/deleted, and program-

ming languages employed). We indeed evaluated the effort (i) for performing the first deployment

of a newly developed application and for (ii) maintaining an existing, third-party application,

with and without our solution. The results showed that the initial effort required by our solution

is slightly higher (in terms of lines of code and number of files) than that currently required by

Docker, but we also demonstrated that it actually pays off while maintaining an application (e.g.,

when the requirements of components change). Our approach indeed outperformed the Docker-

based deployment in term of application maintainability, since it requires little intervention on

the specification with respect to the classical Docker-based deployment.

The analysis and discovery support provided by DOCKERANALYSER (Chapter 5) can help re-

searchers and practitioners interested in building custom Docker analysers. In order to showcase

the possibility of building such custom Docker analysers, we showed how we exploited DOCKER-

ANALYSER to run two concrete case studies consisting in configuring and running two different

analysers (i.e., DOCKERFINDER and DOCKERGRAPH). Other than that, we showed that the

choice of implementing DOCKERANALYSER with a microservice-based architecture eases building

customisable and scalable analysers, also thanks to the replaceability and scalability natively

supported by its microservice-based architecture. In particular, we showed how replaceability

allows obtaining a different analyser from an existing one by only updating the configuration

of the microservice running the analysis function on Docker images. We also showed how scala-

bility allows improving the performance of obtained analysers, by illustrating how scaling the

microservices of DOCKERFINDER effectively reduced the time needed to analyse Docker images.

It is finally worth noting that, beyond being exploited by TOSKERISER for automatically

discovering containers, the DOCKERFINDER analyser obtained from DOCKERANALYSER has

also been exploited to achieve other research results. For instance, by applying explainable data

mining approaches to the data gathered by DOCKERFINDER, we illustrated how the internals of

a Docker image impact on its popularity [78], and we exploited this relation to develop a support

for designing Docker images with a higher chance of widespreading [79].

Enacting the deployment of microservices

The architectural approach and tools presented in Chapter 6 allows orchestrating the manage-

ment of services independently from that of the containers used to host them. We have shown

how TOSKOSE can be used to manage any type of service-based application (and not only mi-

croservices) by allowing to independently manage each service without stopping the container.

To illustrate and assess what above, we exploited our solution to run two concrete case

studies, based on two different, already existing applications. We processed both applications

with our tool, in order to generate concrete artifacts for deploying and managing them with

Docker, i.e., their specification in Docker Compose. We then deployed both applications by running
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the corresponding deployment artifacts with two reference container orchestrators (i.e., Docker

Swarm and Kubernetes), both in a single-host and in a multi-host setting. Finally, we tested our

orchestration system by managing the lifecycle of the microservices forming the applications

independently from that of their hosting containers. We indeed showed that (in all run application

deployments) our solution effectively enabled the management of a single microservice running

in a container, by allowing to stop and restart the considered microservice without touching its

hosting containers.

7.3 Possible directions for future work

We hereafter elicit some possible directions for future work, geared towards further supporting

software developers and administrators in analysing and deploying their microservice-based

applications.

Enhancing the support for analysing and refactoring microservices. We plan to extend

the set of architectural smells that can be identified and resolved with our methodology (and

with µFRESHENER). For instance, we plan to extend our methodology by allowing to identify the

architectural smells proposed by Carrasco et al. [41] and by Taibi et al. [154], by also including

architectural refactorings allowing to resolve such smells.

Another interesting direction of future work is to extend our methodology in such a way

it suggests the refactoring to apply to resolve an architectural smell, by taking into account

the context and surroundings where such smell is occurring. For example, the occurrence of a

WOBBLY SERVICE INTERACTION smell may be resolved differently depending on whether it is

affecting a synchronous or asynchronous interaction, with circuit breakers being more suited

solution in the former case, and timeouts being more suited in the latter case [44].

We are also already working on considering teams of developers while analysing and refactor-

ing microservice-based applications. We already allow to specify the assignment of microservices

to the team of developers working on them, and we are investigating how team assignment

can impact on the choice of which smells to resolve, and how. Consider, for instance, the case of

adding a Message Broker for resolving an ENDPOINT-BASED SERVICE INTERACTION between two

services. Whether and how to apply such refactoring depends on whether the involved services

are managed by the same team or by different teams. In the first case, the team is owning both

services, and it can proceed by applying the refactoring on its responsibility and control. The

same does not apply if the services are assigned to different teams, as such teams need to interact

among them and with the tribe leader. To support such a kind of reasoning, we have extended

µTOSCA and µFRESHENER to explicitly represent team assignment (i.e., which components are

assigned to which team). We now plan to investigate how to perform team-aware analyses (e.g.,

how team assignment impacts smells and refactorings, smells due to team assignment) and to

extend µFRESHENER correspondingly.
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We are also working on extending our methodology and µFRESHENER to also consider

containers and container orchestration while analysing and refactoring microservice-based

applications. Depending on the chosen container orchestrator (e.g., Docker Compose, Kubernetes)

and of related support (e.g., Istio [94]), some architectural smells may be possibly resolved by the

orchestrator itself. For instance, by simply setting ingress nodes in Kubernetes one can add API

gateways to an application, hence potentially resolving NO API GATEWAY architectural smells.

We already included a support for automatically completing the µTOSCA specification of the

architecture of microservice-based applications based on their Kubernetes-based deployment in

µFRESHENER. We now plan to work on further investigating how container orchestration impacts

on smells and refactorings, as well as on identifying, classifying and resolving architectural

smells related to the container-based orchestration of a given microservice-based application.

In addition, the mapping between software components and containers deals with an impor-

tant clustering problem, occurring whenever N components need to be deployed into M containers

(with N > M). We hence plan to extend our approach in order to support the choice of optimal

deployment configurations. A optimal deployment configuration is a mapping of components into

containers that optimize the used resources of the overall application based on some heuristics.

For example, by using the result obtained in Section 4.6.3, an heuristic can be develop in order to

suggest the optimal groups of multiple components to be deployed into single containers in order

to reduce the overall traffic generated by the application.

It is also worth observing that our methodology uses TOSCA as modelling language but

it can be also applied using other modelling languages. Indeed, out methodology defines the

architecture of microservice-based applications at a high level (e.g., a directed graph with nodes,

relationships, and groups) and it provides formal conditions for identifying smells and resolving

them thorough refactorings. Given the formal definition, the methodology can be defined using

other modelling languages by following the defined definition.

Fostering the usability of our approach. As presented in Chapter 3, our approach allows

to analyse and refactor microservice-based applications for resolving potential architectural

smells. This comes at the price of modelling the architecture of the application in µTOSCA, either

manually or by exploiting the editing support provided by µFRESHENER. Such an approach may,

however, result cumbersome, also because production-ready microservice-based applications can

involve hundreds of interacting components [147].

To further support developers of microservice-based applications, we plan to foster the

usability and scalability of our approach, by developing novel solutions allowing to automatically

determine the architecture of an existing application. We are already developing one such solution,

whose aim is to automatically extract the µTOSCA specification a running microservice-based

application. In line with the tools presented in [136] , starting from the deployment artifacts of

an application (i.e., the Kubernetes and Istio deployment files), the solution we are currently

developing will generate the corresponding µTOSCA specification by monitoring its actual
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runtime behavior (i.e., the interactions occurring among its components).

We are also working on featuring a team-wise usage of µFRESHENER, so that a team of

developers can focus only on analysing and refactoring the microservices under its responsibil-

ity. µFRESHENER has indeed already been extended to explicitly represent team assignment

(i.e., which components are assigned to which team) and it is allowing to restrict the focus of

the editing, analysis and refactoring to only the microservices that are assigned to a team. We

are now working on extending the team-wise usage of µFRESHENER, not only for featuring

team-aware analyses and refactorings (as discussed above), but also to support the interactions

among teams and tribe leaders in a multi-tenant fashion. Having such team-wise support, our

methodology could better support applications consisting of very high numbers of microservices.

Indeed it would permit to view, analyse and refactoring only a subset of the microservices (i.e.,

those related to only a single team of developers) without needing to manage all the microservices

in the architecture.

Finally, we plan to permit to use our methodology for analysing and packaging microservices

even if the application is described using proprietary management languages. In the line of [164],

we want to develop solutions for automatically translating applications described with proprietary

languages into our TOSCA-based modelling. Indeed, a future work is to extend the approach

presented in Section 4 in order to complete also proprietary languages and not only TOSCA-based

specification. In addition, we want to extend the TOSKERISER tool in order to build directly

Docker images based on the information of the TOSCA specification.

Cost and QoS. As per their current formulation, the analysis, refactoring and deployment

approaches proposed in this thesis do not take into account costs and QoS. Interesting questions

to answer would anyway be whether and how an architectural smell can impact on the cost of

running and application, or on its ensured QoS. Similarly, it would be interesting to understand

whether choosing one container or another for packaging a microservice can impact on the overall

cost and QoS of an application, and the same for the employed container orchestration solution.

To answer these questions, we plan to extend our solutions to take into account cost and QoS

as well, in particular to drive the refactoring and packaging of a microservice-based application

based on constraints on acceptable costs (both in terms of implementation costs and runtime

execution costs) and on desired QoS.

Engeneering our toolchain. As mentioned in Chapter 1, the contributions of this thesis can

form a toolchain (Fig 6.25) aimed at supporting developers and operators of microservices, from

the design to deployment. The first step is to engineer our toolchain, to improve its usability

and reliability. We indeed plan to provide an integrated dashboard for jointly managing and

configuring the tools forming our toolchain. Currently, users are required to use such tools

separately, by taking care of manually configuring and executing each of them. The availability

of a dashboard would allow developers and operators to use our tools as an integrated solution,

by also automating the process of configuration and management.
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Another improvement in this direction comes from allowing users to seamlessly alternate

between the TOSCA-based modellings employed for analysing and deploying microservice-based

applications. Our toolchain currently employs the µTOSCA modelling for describing the architec-

ture of a microservice-based application, and the TosKer modelling for describing the mapping of

microservices into containers. As µTOSCA and TosKer are both TOSCA-based, and since they

represent similar entities in different ways, the process of switching from µTOSCA to TosKer (and

vice versa) can be easily automated. We plan to develop an intermediate translator, allowing the

µTOSCA output of µFRESHENER to be automatically translated to the TosKer input of TosKeriser,

to enable their seamless integration.
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A
EVALUATING OUR ANALYSIS AND REFACTORING METHODOLOGY

In Chapter 3 we presented a methodology for automatically detecting the architectural smells

affecting a microservice-based applicatoions and for applying architectural refactorings

in order to resolve identified smells. We also illustrated the feasibility of our approach by

presenting its prototype implementation, i.e., µFRESHENER, in Sect. 3.4. To further assess its

potential, we have also run a case study and a controlled experiment, which we present hereafter.

A.1 Case study

We applied our methodology to a case study based on a real-world application developed and

maintained by an italian IT company we are cooperating with. The considered application is a

platform involving 21 components, whose purpose is to allow to monitor, manage and configure

a smart factory. As a result, we were able to identify five architectural smells affecting the

considered application, which have been resolved by the company in accordance to what we

presented in Sect. 3.3.

Fig. A.1 illustrates the 12 services, 7 data stores and 2 message brokers composing the

considered platform, anonymised for privacy reasons. The figure also illustrates the interactions

between them, with service-to-service interactions being such that the endpoint of the target of

the interaction is dynamically resolved by exploiting a service discovery, and that timeouts are

exploited to enhance the fault resilience of the source of the interaction.

Even if the considered topology is small, the amount of components and interactions makes

it not easy to manually identify all occurrences of architectural smells. We hence modelled

the application topology with µFRESHENER, and this allowed to identify the five instances of

architectural smells affecting the considered topology, i.e., four instances of the no API gateway
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Figure A.1: Anonymised architecture of the considered application. Labels on relationships
indicate which properties are true (with the other being false).

smell (regarding m1, m2, s1 and s2), and one instance of the shared persistence smell (due to

services s6, s7, s8 and s9 all accessing the same data store d6).1

The identified architectural smells were to be refactored, and solutions were found by ex-

ploiting µFRESHENER. The company indeed exploited µFRESHENER to explore the possible

architectural refactorings, and it decided which refactoring to apply based on its business require-

ments and on the actual cost for implementing an architectural refactoring (i.e., for refactoring

the application sources by following the guidelines given by an architectural refactoring). The

resulting, refactored architecture is in Fig. A.2.

A message router g1 was first introduced for resolving the no API gateway smell indicated

by m1. Then, given that the external clients placing messages in m1 and m2 were the same

(i.e., smart production machines sending monitored data to the platform), the gateway g1 was

exploited to resolve also the no API gateway smell indicated m2. Similarly, since s1 and s2 were

services accessed by the same clients, a message router g2 was introduced for managing the

access to s1 and s2 from outside of the platform.

The shared persistence smell due to services s6, s7, s8 and s9 all accessing the same data store

d6 was instead resolved by introducing a novel service s13, acting as data manager for d6. Services

s6, s7, s8 and s9 were then directly interacting with s13 to access the data in d6, and this resulted

in adding novel architectural smells (as each newly introduced service-to-service interaction was

endpoint-based and wobbly). To resolve such smells, and similarly to the other service-to-service

interactions in the considered topology, the newly introduced interactions were refactored in such

a way that the endpoint of the target of the interaction was dynamically resolved and that proper

timeouts were set.

1The TOSCA specifications of both the initial and the refactored topologies are publicly available at https:
//github.com/di-unipi-socc/microFreshener-core/tree/master/data/examples/case-study.
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Figure A.2: Refactoring of the architecture in Fig. A.1. Labels on relationships indicate which
properties are true (with the other being false). Updates due to refactorings are in grey.

A.2 Controlled experiment

We have also run a small controlled experiment, whose aim was to provide a first quantitative

evaluation of how much our approach can be of help in identifying and resolving the architectural

smells affecting a microservice-based application.

The experiment was requiring participants to perform two main tasks, namely:

(t1) discovering all the architectural smells initially affecting an existing, third-party microservice-

based application, and

(t2) identifying a sequence of architectural refactorings resolving all the architectural smells

affecting an application (i.e., making it "smell-free").

Both t1 and t2 were intended to be run with and without the support provided by µFRESHENER,

on two existing, third-party applications, i.e., FTGO2 and Sock Shop3.

We submitted the tasks t1 and t2 to 24 volounteers students of the MSc in Computer Science

(and all holding a BSc in Computer Science) and knowing the basics of microservices. The

volounteers were partitioned into two groups, i.e., A and B, and each group was working in two

rounds, with each round lasting in 45 minutes.

Round 1 → Group A was working on Sock Shop and group B was working on FTGO. Both groups

were working without µFRESHENER.

Round 2 → Group A was working on FTGO and group B was working on Sock Shop. Both groups

were allowed to exploit the support offered by µFRESHENER.

2https://github.com/microservices-patterns/ftgo-application.
3https://github.com/microservices-demo/
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In this way, group A was acting as control group for group B, and vice versa.4

The goal of the experiment was to compare the success rate for solving tasks t1 and t2 first

without using µFRESHENER and then by exploiting the support it provides. The obtained success

rates are reported in Fig. A.1, which shows that the group exploiting the support provided by

µFRESHENER was outperforming with respect to that not using it. Indeed, in both cases, the group

identified resolving remaining
smells all smells smells

average stand. number of perc. of average stand.
perc. dev. particip. particip. count dev.

without µFRESHENER 94.23% 15.77% 6 50.00% 3.7 4.2
with µFRESHENER 100.00% 0 12 100.00% 0.0 0.0

(a)
identified resolving remaining

smells all smells smells
average stand. number of perc. of average stand.

perc. dev. particip. particip. count dev.
without µFRESHENER 48.96% 32.29% 1 8.33% 9.8 4.7

with µFRESHENER 100.00% 0 10 83.33% 0.2 0.4
(b)

TABLE A.1. Results of the controlled experiments on (a) FTGO and (b) Sock Shop.

exploiting µFRESHENER was capable of identifying all architectural smells initially affecting

the considered application, while the same does not hold for the group not using µFRESHENER.

In the case of Sock Shop, not even a half of the smells initially affecting the application were

recognised by the group manually analysing it.

µFRESHENER was also definitely of help for resolving the identified smells and obtaining

"smell-free" applications. Almost all participants exploiting µFRESHENER were able to identify

and resolve the architectural smells affecting the considered application, with only two partic-

ipants not being able to resolve 1 of the smells affecting Sock Shop. Instead, only half of the

participants working on FTGO without µFRESHENER were capable of resolving the architectural

smells affecting it, and only 1 out of 12 participants was capable of doing the same for Sock

Shop. In those cases, the average number of remaining smells were indeed 3.7 for FTGO (with a

standard deviation of 4.2) and 9.8 for Sock Shop (with a standard deviation of 4.2).

The small experiment (24 participants at work on 2 applications, each involving 13 or 14

components) that we conducted clearly indicates that the group using µFRESHENER completed

the tasks with a higher success rate, even if the time for analysing and resolving architectural

smells was limited to 45-minutes. This was more evident in the case of Sock Shop which includes

a higher amount of interactions among microservices.
4A copy of the form submitted to the volounteers participating in the study is publicly available at https:

//github.com/di-unipi-socc/microFreshener/blob/master/docs/the-microFreshener-experiment.pdf.
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