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Abstract. For various motives such as routing around scheduled down-
times or escaping price surges, operations engineers of cloud applications
are occasionally conducting zero-downtime live migrations. For mono-
lithic virtual machine-based applications, this process has been stud-
ied extensively. In contrast, for composite microservice applications new
challenges arise due to the need for a transactional migration of all
constituent microservice implementations such as platform-specific light-
weight containers and volumes. This paper outlines the challenges in the
general heterogeneous case and solves them partially for a specialised
inhomogeneous case based on the OpenShift and Kubernetes applica-
tion models. Specifically, the paper describes our contributions in terms
of tangible application models, tool designs, and migration evaluation.
From the results, we reason about possible solutions for the general het-
erogeneous case.

1 Introduction

Cloud applications are complex software applications which require a cloud en-
vironment to operate and to become programmable and configurable through
well-defined and uniform service interfaces. Typically, applications are deployed
in the form of virtual machines, containers or runtime-specific archives into envi-
ronments such as infrastructure or platform offered as a service (IaaS and PaaS,
respectively). Recently, container platforms (CaaS) which combine infrastructure
and higher-level platform elements such as on-demand volumes and scheduling
policies have become popular especially for composite microservice-based appli-
cations [1].

The concern of continuous deployment in these environments is then to keep
the applications up to date from the latest development activities [2]. Another
concern is to maintain flexibility in where the applications are deployed and how
quickly and easily they can be re-deployed into another environment. When a
new deployment from the development environment is not desired or simply not
possible due to the lack of prerequisites, a direct migration from a source to a
target environment may be a solution despite hurdles to full automation [3].

Cloud application migration from this viewpoint can be divided into different
categories: Homogeneous and heterogeneous migrations, referring to differences



in the source and target environment technologies, same-provider and cross-
provider migrations, referring to the ability to migrate beyond the boundaries of
a single hosting services provider, as well as offline and online/live migrations,
referring to the continuity of application service provisioning while the migration
goes on. On the spectrum between homogeneity and heterogeneity, inhomoge-
neous migrations are concerned with minor automatable differences. This paper
is concerned with live, heterogeneous/inhomogeneous, cross-provider migrations
as shown in Fig. 1.

Fig. 1. Positioning within the multi-dimensional categories of cloud application migra-
tions

An additional distinction is the representation of applications. Most of the lit-
erature covers monolithic applications which run as instances of virtual machine
images where the main concern is pre-copy/post-copy main memory synchro-
nisation [4]. Few emerging approaches exist for more lightweight compositions
of stateless containers, where main memory is no longer a concern, and further
platform-level components such as database services, volumes, secrets, routes
and templates, some of which keep the actual state [5]. This paper is therefore
concerned with migrating applications based on container compositions between
diverse cloud platforms.

Consequently, the main contribution of the paper is a discussion of migra-
tion tool designs and prototypes for containerised Docker Compose, OpenShift
and Kubernetes applications across providers. OpenShift is one of the most
advanced open source PaaS stacks based on Kubernetes, a management and
scheduling platform for containers, and in production use at several commer-
cial cloud providers including RedHat’s OpenShift Online, the APPUiO Swiss
Container Platform, and numerous on-premise deployments [6]. Additional pure
Kubernetes hosting is offered by the Google Cloud Platform, by Azure Con-
tainer Services and by the overlay platform Tectonic for AWS and Azure, among
other providers [7]. Both platforms orchestrate, place, schedule and scale ideally-



stateless Docker containers, while simpler compositions can also be achieved with
Docker Compose.

The possibility to have the same containerised application deployed and run-
ning in different cloud providers and using different container platforms or or-
chestration tools is useful for both researcher and for companies. It facilitates
the comparison of different cloud providers or different orchestration tools. For
companies, it facilitates to run the applications in the most attractive hosting
options by cost or other internal constraints. Key questions to which the use
of our tools gives answers typically are: Is the migration feasible? Is it lossless?
How fast is it? Does the order matter?

The paper is structured as follows. First, we analyse contemporary applica-
tion compositions to derive requirements for the generalised live heterogeneous
migration process (Sect. 2), followed by outlining the tool design principles (Sect.
3) and architecture (Sect. 4) for a simpler subset, inhomogeneous migration. The
implemented tools are furthermore described (Sect. 5) and evaluated with real
application examples (Sect. 6). The paper concludes with a summary of achieve-
ments (Sect. 7) and a discussion on filling the gap to truly heterogeneous live
migration.

2 Analysis

In the definition given in a ten-year review of cloud-native applications [8], such
applications are designed using self-contained deployment units. In currents ap-
plications the consensus is to use containers for reasonable isolation and almost
native performance. Among the container technologies, Docker containers are
the most common technology, although there are alternatives including Rkt,
Containerd or CRI-O, as well as research-inspired prototypical engines such as
SCONE [9]. In the following, we define a well-designed cloud application as a
blueprint-described application, using containers to encapsulate the logic in mi-
croservices bound to the data confined in volumes. For deploying these applica-
tions in production into the cloud, just the container technology is not enough.
Generally, a proper containerised application also uses an advanced container
platform or an orchestration solution to add self-healing, auto-scaling, load bal-
ancing, service discovery and other properties which make it easier and faster to
develop and deploy applications in the cloud. The platform also leverages more
resilience, higher availability and scalability in the application itself. Among
the most popular tools and platforms used to orchestrate containers are Docker
Swarm, Docker Compose, Kubernetes, OpenShift, Rancher, and similar plat-
forms. All of these can run in different cloud providers or on-premise. Moreover,
usually each cloud provider has their own container platform. In Fig. 2 a dia-
gram about the main container platforms and container orchestrators with their
different associated composition blueprints is shown. The diagram also reveals
relations and classifies the approaches by licencing (open source or proprietary)
and by fitness for production. This complex technological landscape leads to dif-
ferent blueprints for the same containerised application depending which causes



practical difficulties for migrations. Despite fast ongoing consolidation, including
the announced discontinuation of Docker Cloud in 2018, minor variations such as
installed Kubernetes extensions continue to be a hurdle for seamless migration.

Fig. 2. Map of major container platforms and orchestration tools

The planning of the migration of a containerised application thus encom-
passes two key points which restrain the ability to automate the process:

– The blueprints: Even though containers encapsulate all the code in images
which are meant to be portable and run everywhere, most of the real ap-
plications will need an orchestration tool to exploit all advantages that the
cloud environment introduces: service discovery, definition of the number of
replicas or persistence configuration. As most orchestration tools will intro-
duce specific blueprints or deployment descriptors, the migration tool will
need to convert between blueprint formats through transformation, perform
minor modifications such as additions and removals of expressions, or rewrite
limits and group associations (requirement R1).

– The data: Migration of the persisted data and other state information is
non-trivial. In most container engines, the persistence of the data is confined
to volumes. Depending of the cloud provider, the blueprints processed by the
orchestration tools could reference volumes differently even for homogeneous
orchestration tools, leading to slight differences and thus inhomogeneity (re-
quirement R2).

To address these two points and increase the automation, the design of a
suitable migration tool needs to account specifically for blueprint conversion
and properly inlined data migration. We formalise a simplified composite appli-
cation deployment as D = {b, c, v, . . . }, respectively, where: b: blueprint; c: set
of associated containers; v: set of associated volumes. For example, a simplified
OpenShift application is represented as Dopenshift = {b, c, v, t, is, r, . . . }, where:



t: set of templates; is: set of image streams; r: set of routes. The goal of ideal
heterogeneous migration m is to find migration paths from any arbitrary source
deployment to any target deployment: m = D → D′.

Fig. 3 summarises the different realistically resulting inhomogeneous migra-
tion paths between the three possible configurations Dkubernetes, Dopenshift and
Dcompose. Through various modifications applied to the orchestration descrip-
tors, sources and targets can be largely different while mostly avoiding a loss of
deployment information in fulfilment of R1.

Fig. 3. Inhomogeneous application migration paths between three systems

3 General Application Migration Workflows

Requirement R1 calls for a dedicated blueprint extraction, conversion and re-
deployment process. We consider four steps in this process (see Fig. 4) which
shall be implemented by a migration tool:

– Step 1. Downloading the blueprints of the composite application: The tool
will connect to the source platform the application is running on, will identify
all the components of the application and download the blueprints to a
temporary location.

– Step 2. Converting the blueprints: A conversion from source to target format
takes place. Even when homogeneous technologies are in place on both sides,
re-sizing and re-grouping of components can be enforced according to the
constraints on the target side (fulfilling R1).

– Step 3. Deploying the application: The tool will connect to the new orches-
tration platform and deploy the application there.

– Step 4. Deleting the application: Once the new application instance is run-
ning in the new place, the tool can delete the old application instance from
the previous place. This step is optional and only executed under move se-
mantics as opposed to copy semantics.

A major issue is the transactional guarantee of achieving a complex running
and serving application on the target platform which in all regards equals the
source. To make this process successful in all cases, the tool algorithm must
further fulfil the following three requirements:
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Fig. 4. Blueprints process diagram

– Connect to each of the different platforms in scope for heterogeneous migra-
tion.

– Convert between all the blueprints.
– Download and upload the application components from/to all the platforms,

ensuring a re-deployment in the right order and a smooth hand-over by
name service records which are typically external to both source and target
platform.

With the previously described workflow, the tool can migrate stateless ap-
plication or the stateless components of a stateful application. To complete the
migration, the data in the containers needs to be migrated as well according
to R2. In practice, this refers to volumes attached to containers, but also to
databases and message queues which must be persisted in volume format be-
forehand. The process of the migration of a volume will be as follows:

– Step 1. Find the list of volumes linked to an application and for each one
the path to the data.

– Step 2. Download the data to a temporary location. Due to the size, differ-
ential file transfer will be used.

– Step 3. Identify the same volume in the new deployment and pre-allocate
the required storage space.

– Step 4. Upload the data to the new volume.

Now, we devise a fictive tool to express how the combined fulfilment of R1
and R2 in the context of heterogeneous application migration can be realised,
expressed by Fig. 5 which highlights the separation into blueprints and data.

Although practicioners and researchers would benefit greatly from such a
generic and all-encompassing tool, its conception and engineering would take
many person months of software development work, needlessly delaying a proto-
type to answer the previously identified questions many companies in the field
have right now. Instead, to focus on key research questions as outlined in the
introduction follows a divide-and-conquer strategy. We subdivide the overall fic-
tive tool into a set of smaller tools logically grouped into three categories, as
shown in Fig. 6. Thus, we put our own prototypical work into context of a wider
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ecosystem with some existing tools and further ongoing and future developments,
making it possible to evaluate migration scenarios already now. The tools are:

– Homogeneously migrating containerised applications between multiple in-
stances of the same orchestration tool: os2os (our work).

– Converting blueprints between the formats required by the platforms related
to R1: Kompose (existing work).

– Rewriting Kubernetes blueprints to accomodate quotas: descriptorrewriter
(our work).

– Migrating volumes related to R2: volume2volume (our work).
– Homogeneous transactional integration of volume and data migration for

OpenShift as a service: openshifter (our early stage work).
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Fig. 6. Implementation strategy for fictive heterogeneous migration tool

We contribute in this paper the architectural design, implementation and
combined evaluation of four tools referring to inhomogeneous OpenShift/Kuber-
netes/Docker Compose-to-OpenShift/Kubernetes migration. Use cases encom-
pass intra-region replication and region switching within one provider, migration



from one provider to another, and developer-centric migration of local test ap-
plications into a cloud environment. All tools are publicly available for download
and experimentation1.

4 Migration Tools Design and Architecture

The general design of all tool ensures user-friendly abstraction over existing low-
level tools such as oc and kubectl, the command line interfaces to OpenShift
and Kubernetes, as well as auxiliary tools such as rsync for differential data
transfer. Common migration and copy/replication workflows are available as
powerful single commands. In Openshifter, these are complemented with full
transaction support so that partial migrations can be gracefully interrupted or
rolled back in case of ocurring issues.

As Fig. 7 shows on the left side, os2os uses oc to communicate with the
source and target OpenShift clusters and temporarily stores all artefacts in local
templates and volumes folders. This choice ensures that only a single provider
configuration file needs to be maintained and that any features added to oc

will be transparently available. On the right side of Fig. 7, the Openshifter
tool is depicted which follows a service-oriented design. This choice ensures that
the migration code itself runs as stateless, resilient and auto-scaled service. A
further difference between the tools is that for Openshifter, we have explored
a conceptual extension of packaged template and configuration data archives,
called Helm charts, into fat charts which include a snapshot of the data, closing
the gap to monolithic virtual machines.

OpenShift source cluster
OpenShift target cluster

os2os/templates
/volumes 

oc

My project/namespace

My application

blueprint volume volume

volume2volume

rsync

Migration space

openshifter

oc rsync

openshifterclient

/templates
/volumes 
/charts

Fig. 7. OS2OS/Volume2Volume architectures (left); Openshifter architecture (right)

Exemplarily for all tools, os2os is composed of the following commands:

1 Tools website: https://github.com/serviceprototypinglab/



– export: Connect to one cluster and export all the components (objects) of
one application in one project, saved locally in a folder called templates.

– up: Connect to one cluster and upload all the components of one application
in one project which are saved in templates.

– down: Connect to one cluster and delete all the components of one applica-
tion in one project.

– migrate: Combine all the commands chronologically for a full migration in
a single workflow.

The tools are implemented in different ways following the different designs.
Both os2os and volume2volume are inspired by Kompose. They are imple-
mented as command-line tools using Go with Cobra as library for handling the
command-line parameters. Furthermore, the command names are derived from
Kompose, making it easy to learn the tool for existing Kompose users. As usual
in applications using Cobra, the configuration of the tool is stored in a YAML
file. It contains the credentials to connect to the clusters, the cluster endpoints,
the projects and the object types to migrate, overriding the default value of all
object types. The openshifter prototype is implemented in Python using the
AIO-HTTP web library to expose RESTful methods and works without any
configuration file by receiving all parameters at invocation time.

5 Evaluation

When evaluating cloud migration tools, three important questions arise on whether
the migration is lossless, performing and developer-acceptable. The measurable
evaluation criteria are:

– C1 / Losslessness: The migration needs to avoid loss of critical application
deployment information even after several roundtrips of migration between
inhomogeneous systems. This is a challenge especially in the absence of fea-
tures on some platforms. For instance, Kubernetes offers auto-scaling while
Docker Swarm does not, leading to the question of how to preserve the in-
formation in case a migration from Kubernetes to Docker Swarm is followed
by a reverse migration while the original source platform has vanished.

– C2 / Performance: A quantitative metric to express which time is needed
both overall and for the individual migration steps. Further, can this time
be pre-calculated or predicted in order to generate automated downtime
messages, or can any downtime be alleviated.

– C3 / Acceptance: The migration needs to be easy to use for developers and
operators as well as in modern DevOps environments.

A testbed with two local virtual machines running OpenShift 3.6 (setup S1)
as well as a hosted OpenShift environment provided by the Swiss container plat-
form APPUiO (S2) were set up to evaluate our tools experimentally according
to the defined criteria C1 and C2. A synthetic scenario application consisting
of three deployments and three services was prepared for that matter (A1), and
the existing Snafu application (A2) was used for the comparison. The evaluation
of C3 is left for future work.



5.1 Evaluation of Losslessness

For Kubernetes and OpenShift, the scenario service consists of shared Service
and ConfigMap objects as well as platform-specific ones which are subject to loss;
for Docker Compose, it consists of roughly equivalent directives. The deployed
service was migrated from source to target and, with swapped roles between the
platforms, back again from target to source. The following table reports on the
loss of information depending on the system type. The Kompose tool incorrectly
omits the lowercasing of object names and furthermore does not automatically
complete the generated descriptors with information not already present in the
Docker Compose files. To address the first issue, we have contributed a patch,
whereas the second one would require a more extensive tool modification. The
upgrade from Kubernetes to OpenShift works although OpenShift merely sup-
ports Deployment objects as a convenience whereas DeploymentConfig objects
would be needed.

Table 1: Losslessness of blueprint transformations

Source Target Loss

OpenShift OpenShift none (assuming equal quotas)
OpenShift Kubernetes (manual) ImageStream,Route,

DeploymentConfig
Kubernetes OpenShift (manual) (Deployment)
Docker Compose Kubernetes (w/ Kompose) none (yet incomplete & incorrect)

As a result, we have been able to automate all migrations except for the down-
grade from OpenShift to Kubernetes using a combination of our tools which is
invoked transparently when using Openshifter. The losslessness further refers to
in-flight import and export of volume data. To avoid data corruption, applica-
tions need to perform modifications on the file level atomically, for instance by
placing uploads into temporary files which are subsequently atomically renamed.
Support for applications not adhering to this requirement is outside the scope
of our work.

5.2 Evaluation of Performance

The synthetic scenario service A1 was exported from the source, re-deployed
at the target, and torn down at the source 10 times with os2os in order to
get information about the performance and its deviation in the local-to-local
migration setup S1. Fig. 8 shows the results of the performance experiments. An
evident characteristic is that exporting objects without changing them is more
stable than running the down/up commands which modify the objects and cause
changes to the scheduling of the remaining objects. A second observation is that,
counter-intuively, the down command consumes most of the time. A plausible
explanation is that instead of simple deletions, objects are rather scheduled for
deletion into a queue.
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Fig. 8. Durations of the individual migration phases – export (left figure), up (middle),
down (right) – between two local Kubernetes clusters

Service A2 was transformed automatically to measure the influence of the
transformation logic on planned live migrations. The creation of Kubernetes de-
scriptors with Kompose takes approximately 0.028 s. The adjustment of quotas
and consolidation of pods, as performed by descriptorrewriter, takes approx-
imately 0.064 s on the resulting Kubernetes descriptors. Both transformations
are thus negligible which implies that apart from blueprint exports, the data
transfer, which is primarily limited by the cluster connectivity, is the dominant
influence on overall performance.

6 Conclusion

We have conducted a first analytical study on migrating cloud-native applica-
tions between inhomogeneous development and production platforms. The anal-
ysis was made possible through prototypical migration tools whose further devel-
opment is in turn made possible by the results of the experiments. The derived
findings from the experimental evaluation suggest that application portability
is still an issue beyond the implementation (container) images. Future cloud
platforms should include portability into the design requirements.

7 Future work

The current prototypes only support Kubernetes-based platforms. All function-
ality to convert other formats has been integrated into the experiments with
external and existing tools. In the future, we want to integrate them in a unified
way into openshifter. Further, we want to work on stricter requirements con-
cerning a production-ready migration. They encompass improved user interfaces
for easier inter-region/-zone migration within one provider, automatic identifi-
cation of associated state and data formats, plugins for databases and message
queues which keep non-volume state, data checksumming, and pre-copy statis-
tics about both expected timing and resource requirements of the process and
the subsequent deployment.
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