Skip to main content

Towards Interference-Aware Dynamic Scheduling in Virtualized Environments

  • Conference paper
  • First Online:
Book cover Job Scheduling Strategies for Parallel Processing (JSSPP 2020)

Abstract

Our previous work shows that multiple applications contending for shared resources in virtualized environments are susceptible to cross-application interference, which can lead to significant performance degradation and consequently an increase in the number of broken SLAs. Nevertheless, state of the art in resource scheduling in virtualized environments still relies mainly on resource capacity, adopting heuristics such as bin packing, overlooking this source of overhead. However, in recent years interference-aware scheduling has gained traction, with the investigation of ways to classify applications regarding their interference levels and the proposal of static cost models and policies for scheduling co-hosted cloud applications. Preliminary results in this area already show a considerable improvement on resource usage and in the reduction of broken SLAs, but we strongly believe that there are still opportunities for improvement in the areas of application classification and pro-active dynamic scheduling strategies. This paper presents the state of the art in interference-aware scheduling for virtualized environments and the challenges and advantages of a dynamic scheme.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    https://xenproject.org/.

  2. 2.

    https://www.linux-kvm.org/.

  3. 3.

    http://www.docker.com.

  4. 4.

    https://linuxcontainers.org/.

  5. 5.

    https://openvz.org/.

  6. 6.

    http://www.linux-vserver.org.

  7. 7.

    https://github.com/uillianluiz/node-tiers.

  8. 8.

    https://github.com/uillianluiz/ciapa.

  9. 9.

    https://projects.ow2.org/view/bench4q.

  10. 10.

    https://storm.apache.org/.

  11. 11.

    http://www.tpc.org/tpch/.

  12. 12.

    https://github.com/facebookarchive/linkbench.

  13. 13.

    http://ita.ee.lbl.gov/html/contrib/.

References

  1. Chen, X., et al.: CloudScope: diagnosing and managing performance interference in multi-tenant clouds. In: IEEE 23rd International Symposium on Modeling, Analysis, and Simulation of Computer and Telecommunication Systems, pp. 164–173 (2015)

    Google Scholar 

  2. Gollapudi, S.: Practical Machine Learning. Packt Publishing Ltd., Birmingham (2016)

    Google Scholar 

  3. Herdrich, A.: Cache Qos: from concept to reality in the intel® xeon® processor e5–2600 v3 product family. In: 2016 IEEE International Symposium on High Performance Computer Architecture (HPCA), pp. 657–668. IEEE (2016)

    Google Scholar 

  4. Huang, S., Huang, J., Dai, J., Xie, T., Huang, B.: The HiBench benchmark suite: characterization of the MapReduce-based data analysis. In: Agrawal, D., Candan, K.S., Li, W.-S. (eds.) New Frontiers in Information and Software as Services. LNBIP, vol. 74, pp. 209–228. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-19294-4_9

    Chapter  Google Scholar 

  5. Iqbal, W., Erradi, A., Mahmood, A.: Dynamic workload patterns prediction for proactive auto-scaling of web applications. J. Netw. Comput. Appl. 124, 94–107 (2018)

    Article  Google Scholar 

  6. Javadi, S.A., Gandhi, A.: Dial: reducing tail latencies for cloud applications via dynamic interference-aware load balancing. In: IEEE International Conference on Autonomic Computing (ICAC), pp. 135–144 (2017)

    Google Scholar 

  7. Jersak, L.C., Ferreto, T.: Performance-aware server consolidation with adjustable interference levels. In: 31st ACM Symposium on Applied Computing, pp. 420–425 (2016)

    Google Scholar 

  8. Keller, A., Ludwig, H.: The WSLA framework: specifying and monitoring service level agreements for web services. J. Netw. Syst. Manag. 11, 57–81 (2003)

    Article  Google Scholar 

  9. Kirchoff, F.D., Xavier, M.G., Mastella, J., De Rose, C.A.: A preliminary study of machine learning workload prediction techniques for cloud applications. In: 27th Euromicro International Conference on Parallel, Distributed, and Network-Based Processing, pp. 253–260 (2019)

    Google Scholar 

  10. Kougkas, A., Devarajan, H., Sun, X., Lofstead, J.: Harmonia: an interference-aware dynamic I/O scheduler for shared non-volatile burst buffers. In: IEEE International Conference on Cluster Computing (CLUSTER), pp. 290–301 (2018)

    Google Scholar 

  11. Krzywda, J., et al.: Modeling and simulation of QoS-aware power budgeting in cloud data centers. In: 28th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), pp. 88–93 (2020)

    Google Scholar 

  12. Kumar, J., Singh, A.K.: Workload prediction in cloud using artificial neural network and adaptive differential evolution. Future Gener. Comput. Syst. 81, 41–52 (2018)

    Article  Google Scholar 

  13. Kumar, R., Setia, S.: Interface aware scheduling of tasks on cloud. In: 4th International Conference on Signal Processing, Computing and Control (ISPCC), pp. 654–658 (2017)

    Google Scholar 

  14. LTT: Linux trace toolkit. https://opersys.com/LTT/. Accessed 01 June 2020

  15. Lu, K., et al.: Fault-tolerant service level agreement lifecycle management in clouds using actor system. Future Gener. Comput. Syst. 54, 247–259 (2016)

    Article  Google Scholar 

  16. Ludwig, U.L., Xavier, M.G., Kirchoff, D.F., Cezar, I.B., De Rose, C.A.F.: Optimizing multi-tier application performance with interference and affinity-aware placement algorithms. Concurr. Comput. Pract. Exper. 31, e5098 (2019)

    Google Scholar 

  17. Meyer, V., Kirchoff, D.F., Da Silva, M.L., De Rose, C.A.F.: An interference-aware application classifier based on machine learning to improve scheduling in clouds. In: 28th Euromicro International Conference on Parallel, Distributed and Network-Based Processing (PDP), pp. 80–87 (2020)

    Google Scholar 

  18. Meyer, V., Xavier, M.G., Kirchoff, D.F., da R. Righi, R., De Rose, C.A.F.: Performance and cost analysis between elasticity strategies over pipeline-structured applications. In: International Conference on Cloud Computing and Services Science (CLOSER), pp. 404–411 (2019)

    Google Scholar 

  19. Nathuji, R., Kansal, A., Ghaffarkhah, A.: Q-clouds: managing performance interference effects for QoS-aware clouds. In: Proceedings of the 5th European Conference on Computer Systems, pp. 237–250 (2010)

    Google Scholar 

  20. Potter, K.H.: Dynamic addressing mapping to eliminate memory resource contention in a symmetric multiprocessor system, uS Patent 6,505,269, 7 January 2003

    Google Scholar 

  21. Rosen, R.: Linux containers and the future cloud (2014). https://www.linuxjournal.com/content/linux-containers-and-future-cloud

  22. Scheepers, M.J.: Virtualization and containerization of application infrastructure: a comparison. In: 21st Twente Student Conference on IT, pp. 1–7 (2014)

    Google Scholar 

  23. Shah, A., Wolf, F., Zhumatiy, S., Voevodin, V.: Capturing inter-application interference on clusters. In: IEEE International Conference on Cluster Computing, pp. 1–5 (2013)

    Google Scholar 

  24. Shekhar, S., Abdel-Aziz, H., Bhattacharjee, A., Gokhale, A., Koutsoukos, X.: Performance interference-aware vertical elasticity for cloud-hosted latency-sensitive applications. In: 2018 IEEE 11th International Conference on Cloud Computing, pp. 82–89 (2018)

    Google Scholar 

  25. Shoreditch, O.L.: Artillery (2020). https://artillery.io/. Accessed 05 June 2020

  26. Somani, G., Khandelwal, P., Phatnani, K.: VUPIC: virtual machine usage based placement in IaaS cloud. arXiv preprint arXiv:1212.0085 (2012)

  27. Su, K., Xu, L., Chen, C., Chen, W., Wang, Z.: Affinity and conflict-aware placement of virtual machines in heterogeneous data centers. In: IEEE Twelfth International Symposium on Autonomous Decentralized Systems (ISADS), pp. 289–294 (2015)

    Google Scholar 

  28. Terpstra, D., Jagode, H., You, H., Dongarra, J.: Collecting performance data with PAPI-C. In: Müller, M.S., Resch, M.M., Schulz, A., Nagel, W.E. (eds.) Tools for High Performance Computing 2009, pp. 157–173 (2010)

    Google Scholar 

  29. Thamsen, L., et al.: Hugo: a cluster scheduler that efficiently learns to select complementary data-parallel jobs. In: Schwardmann, U., et al. (eds.) Euro-Par 2019. LNCS, vol. 11997, pp. 519–530. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-48340-1_40

    Chapter  Google Scholar 

  30. Tosatto, A., Ruiu, P., Attanasio, A.: Container-based orchestration in cloud: state of the art and challenges. In: 2015 Ninth International Conference on Complex, Intelligent, and Software Intensive Systems, pp. 70–75 (2015)

    Google Scholar 

  31. Urgaonkar, B., Shenoy, P., Roscoe, T.: Resource overbooking and application profiling in shared hosting platforms. SIGOPS Oper. Syst. Rev. 36, 239–254 (2003)

    Google Scholar 

  32. Vavilapalli, V.K., et al.: Apache hadoop yarn: yet another resource negotiator. In: 4th Symposium on Cloud Computing (2013)

    Google Scholar 

  33. Wang, K., Khan, M.M.H., Nguyen, N., Gokhale, S.: Design and implementation of an analytical framework for interference aware job scheduling on apache spark platform. Cluster Comput. 22, 2223–2237 (2019). https://doi.org/10.1007/s10586-017-1466-3

    Article  Google Scholar 

  34. Xavier, M.G.: Data processing with cross-application interference control via system-level instrumentation. Ph.D. thesis, Pontifical Catholic University of Rio Grande do Sul, Porto Alegre, Brazil (2019)

    Google Scholar 

  35. Zhang, F., Tang, X., Li, X., Khan, S.U., Li, Z.: Quantifying cloud elasticity with container-based autoscaling. Future Gener. Comput. Syst. 98, 672–681 (2019)

    Article  Google Scholar 

  36. Zhang, Q., Cheng, L., Boutaba, R.: Cloud computing: state-of-the-art and research challenges. J. Internet Serv. Appl. 1(1), 7–18 (2010). https://doi.org/10.1007/s13174-010-0007-6

    Article  Google Scholar 

  37. Zhang, W., Rajasekaran, S., Wood, T., Zhu, M.: MIMP: deadline and interference aware scheduling of Hadoop virtual machines. In: 2014 14th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing, pp. 394–403 (2014)

    Google Scholar 

  38. Zhuravlev, S., Blagodurov, S., Fedorova, A.: Addressing shared resource contention in multicore processors via scheduling. ACM SIGARCH Comput. Architect. News 45, 129–142 (2010)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES Brazil and also by the Green-Cloud project (#16/2551-0000 488-9), from FAPERGS and CNPq Brazil, PRONEX 12/2014 program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cesar A. F. De Rose .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Meyer, V., Ludwig, U.L., Xavier, M.G., Kirchoff, D.F., De Rose, C.A.F. (2020). Towards Interference-Aware Dynamic Scheduling in Virtualized Environments. In: Klusáček, D., Cirne, W., Desai, N. (eds) Job Scheduling Strategies for Parallel Processing. JSSPP 2020. Lecture Notes in Computer Science(), vol 12326. Springer, Cham. https://doi.org/10.1007/978-3-030-63171-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63171-0_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63170-3

  • Online ISBN: 978-3-030-63171-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics