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Preface

In this book we present some techniques for exploring trees and graphs. We illustrate
the linear search technique and the backtracking technique, and as instances of tree
exploration methods, we present various algorithms for parsing subclasses of context-
free languages. They include: (i) the chop-and-expand parsers for LL(k) languages,
(ii) the shift-and-reduce parsers for LR(k) languages and, among them, the LR(0),
the SLR(1), the LR(1), and the LALR(1), and (iii) the operator-precedence parsers.
We illustrate the use of the parser generators Bison and Yacc, and the lexical analyzer
generator Flex.

We also illustrate some tree exploration and manipulation methods by presenting
algorithms for visiting trees, evaluating boolean expressions, proving propositional
formulas, and encoding trees. We consider the minimal spanning tree problem in
undirected graphs and the shortest path problem in directed graphs. For the latter
problem we present the solutions based on boolean matrix multiplication, semirings,
and dynamic programming.

Finally, we consider the pattern-matching problem and we analyze the Knuth-
Morris-Pratt algorithm. In Chapter 10 we present some parsing programs written in
Prolog, and we briefly recall some decidability results concerning the LL(k) languages
and the LR(k) languages.

This book was written for a course on Automata, Languages, and Translators,
taught at the University of Rome “Tor Vergata”. We assume that the reader is familiar
with the basic notions of Automata Theory and Formal Languages.

Some of the algorithms we have presented are written in Java 1.5 and some oth-
ers in Prolog. For the Java language the reader may refer to the Java Tutorial at
http://java.sun.com/docs/books/tutorial/. All Java programs have been com-
piled using the Java compiler 1.8.0 25 running under Mac OS X 10.15.4 Darwin 19.4.0.
For the Prolog language the reader may refer to http://lpn.swi-prolog.org/. The
Prolog language incorporates a backtracking mechanism that can be used for explor-
ing search spaces and solving parsing and matching problems.

I am grateful to Professor Leslie Valiant for teaching me some of the techniques
presented in Chapter 8 while I was a student at the University of Edinburgh in 1979.

Many thanks to my colleagues of the Department of Civil Engineering and Infor-
matics of the University of Rome “Tor Vergata” and the IASI Institute of the National
Research Council of Italy. I am also grateful to all my students and co-workers, and
in particular to Lorenzo Clemente, Emanuele De Angelis, Corrado Di Pietro, Fabio
Fioravanti, Fulvio Forni, Fabio Lecca, Maurizio Proietti, and Valerio Senni for their
support and encouragement.
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My warmest thanks go also to my student Alessandro Cacciotti for building a
tool for the manipulation of context-free grammars and the construction of LR(1)
and LALR(1) parsers. That tool was very useful for checking many of the parsing
examples presented in the book.

Thanks also to Mr. Ronan Nugent of Springer for his most appreciated coopera-
tion and help.

Previous editions of this book were published by the Aracne Publishing Company,
Ariccia (RM), Italy.

Roma, October 2021 Alberto Pettorossi
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