
Techniques for Searching, Parsing, and Matching

123

Alberto Pettorossi

Techniques for Searching,
Parsing, and Matching

Alberto Pettorossi

DICII

Rome, Italy

ISBN 978-3-030-63188-8 ISBN 978-3-030-63189-5 (eBook)

https://doi.org/10.1007/978-3-030-63189-5

© Springer Nature Switzerland AG 2021

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the material is concerned,

specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or

in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or

by similar or dissimilar methodology now known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even

in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and

therefore free for general use.

The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be

true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or

implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher

remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG

The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

University of Rome “Tor Vergata”

https://doi.org/10.1007/978-3-030-63189-5

Preface

In this book we present some techniques for exploring trees and graphs. We illustrate
the linear search technique and the backtracking technique, and as instances of tree
exploration methods, we present various algorithms for parsing subclasses of context-
free languages. They include: (i) the chop-and-expand parsers for LL(k) languages,
(ii) the shift-and-reduce parsers for LR(k) languages and, among them, the LR(0),
the SLR(1), the LR(1), and the LALR(1), and (iii) the operator-precedence parsers.
We illustrate the use of the parser generators Bison and Yacc, and the lexical analyzer
generator Flex.

We also illustrate some tree exploration and manipulation methods by presenting
algorithms for visiting trees, evaluating boolean expressions, proving propositional
formulas, and encoding trees. We consider the minimal spanning tree problem in
undirected graphs and the shortest path problem in directed graphs. For the latter
problem we present the solutions based on boolean matrix multiplication, semirings,
and dynamic programming.

Finally, we consider the pattern-matching problem and we analyze the Knuth-
Morris-Pratt algorithm. In Chapter 10 we present some parsing programs written in
Prolog, and we briefly recall some decidability results concerning the LL(k) languages
and the LR(k) languages.

This book was written for a course on Automata, Languages, and Translators,
taught at the University of Rome “Tor Vergata”. We assume that the reader is familiar
with the basic notions of Automata Theory and Formal Languages.

Some of the algorithms we have presented are written in Java 1.5 and some oth-
ers in Prolog. For the Java language the reader may refer to the Java Tutorial at
http://java.sun.com/docs/books/tutorial/. All Java programs have been com-
piled using the Java compiler 1.8.0 25 running under Mac OS X 10.15.4 Darwin 19.4.0.
For the Prolog language the reader may refer to http://lpn.swi-prolog.org/. The
Prolog language incorporates a backtracking mechanism that can be used for explor-
ing search spaces and solving parsing and matching problems.

I am grateful to Professor Leslie Valiant for teaching me some of the techniques
presented in Chapter 8 while I was a student at the University of Edinburgh in 1979.

Many thanks to my colleagues of the Department of Civil Engineering and Infor-
matics of the University of Rome “Tor Vergata” and the IASI Institute of the National
Research Council of Italy. I am also grateful to all my students and co-workers, and
in particular to Lorenzo Clemente, Emanuele De Angelis, Corrado Di Pietro, Fabio
Fioravanti, Fulvio Forni, Fabio Lecca, Maurizio Proietti, and Valerio Senni for their
support and encouragement.

v

http://java.sun.com/docs/books/tutorial/
http://lpn.swi-prolog.org/

vi PREFACE

My warmest thanks go also to my student Alessandro Cacciotti for building a
tool for the manipulation of context-free grammars and the construction of LR(1)
and LALR(1) parsers. That tool was very useful for checking many of the parsing
examples presented in the book.

Thanks also to Mr. Ronan Nugent of Springer for his most appreciated coopera-
tion and help.

Previous editions of this book were published by the Aracne Publishing Company,
Ariccia (RM), Italy.

Roma, October 2021 Alberto Pettorossi

Contents

Preface v

Chapter 1. Preliminary Definitions on Languages and Grammars 1
1.1. Free Monoids and Languages 1
1.2. Formal Grammars 2

Chapter 2. Exploring Search Spaces 11
2.1. Exploring Linear Search Spaces 11
2.2. Backtracking Algorithms 15
2.2.1. Dispositions 15
2.2.2. Combinations 19
2.2.3. n-Queens 21
2.3. Visiting Trees While Looking for Good Nodes 24
2.3.1. Depth First Visit of Trees: Basic Version 24
2.3.2. Depth First Visit of Trees: Burstall’s Version 26
2.3.3. Breadth First Visit of Trees 29

Chapter 3. Chop-and-Expand Parsers for Context-Free Languages 31
3.1. Chop-and-Expand Context-Free Parser in a Functional Language 31
3.2. Chop-and-Expand Context-Free Parser in Java 35
3.3. Chop-and-Expand Context-Free Parser in a Logic Language 46

Chapter 4. Parsers for Deterministic Context-Free Languages: LL(k) Parsers 47
4.1. Introduction to LL(k) Parsing 47
4.2. LL(1) Parsers 50
4.3. LL(k) Parsers (for k ≥ 1) 64
4.4. Time Complexity of LL(k) Parsing 80

Chapter 5. Parsers for Deterministic Context-Free Languages: LR(k) Parsers 85
5.1. Introduction to LR(k) Parsing 85
5.2. LR(0) Parsers 87
5.2.1. Avoiding the Powerset Construction for LR(0) Parsing 99
5.2.2. Remarks on the Hypotheses for LR(k) Parsing 101
5.3. SLR(1) Parsers 103
5.4. LR(1) Parsers 108
5.4.1. Avoiding the Powerset Construction for LR(1) Parsing 124
5.4.2. More Remarks on the Hypotheses for LR(k) Parsing 127
5.5. LALR(1) Parsers 132
5.6. Time Complexity of LR(k) Parsing 144
5.7. Complexity of Parsing Subclasses of Context-Free Languages 147

vii

viii CONTENTS

5.8. Subclasses of Context-free Languages 149
5.9. Derivation of Equivalent LR(1) Grammars from LR(k) Grammars 158
5.10. Conventions for LL(k) and LR(k) Parsing 161

Chapter 6. Parsers for Operator Grammars and Parser Generators 163
6.1. Operator-Precedence Parsers 163
6.2. Use of Parser Generators 168
6.2.1. Generation of Parsers Using Bison 168
6.2.2. Generation of Lexical Analyzers Using Flex 183
6.2.3. Suggestions for Constructing Parsers 185
6.3. Summary on Parsers of Context-Free Languages 186
6.3.1. Summary on LR(0) and LR(1) Parsing 188

Chapter 7. Visits of Trees and Graphs and Evaluation of Expressions 193
7.1. Depth First Visit of Trees 193
7.2. Evaluator of Boolean Expressions 203
7.3. A Theorem Prover for the Propositional Calculus 214
7.4. Encoding of n-ary Trees Using Binary Trees 227
7.5. Minimal Spanning Tree of an Undirected Graph 243

Chapter 8. Path Problems in Directed Graphs 255
8.1. Matrix Multiplication Algorithms 255
8.2. Comparing Matrix Multiplication Algorithms 257
8.3. Fast Boolean Matrix Multiplication 258
8.4. IC-Semirings and Path Problems in Directed Graphs 259
8.5. Transitive Closure in Directed Graphs: the Reachability Problem 261
8.6. Reducing Transitive Closure to Boolean Matrix Multiplication 262
8.7. Transitive Closure in IC-Semirings: the Shortest Path Problem 265
8.8. Single Source Shortest Paths in Directed Graphs 267
8.9. From Nondeterministic Finite Automata to Regular Expressions 278

Chapter 9. String Matching 281
9.1. Knuth-Morris-Pratt Pattern Matching 281
9.1.1. Time Complexity Analysis of the Knuth-Morris-Pratt Algorithm 287
9.1.2. Java Implementation of the Knuth-Morris-Pratt Algorithm 289
9.2. String Matching in Prolog 291

Chapter 10. Supplementary Topics 293
10.1. Simple Prolog Programs and Parsing Sentences in Prolog 293
10.2. Decidability Results for LL(k) and LR(k) Grammars and Languages 296

List of Algorithms and Programs 301

Index 303

Bibliography 309

	Preface
	Contents

