Skip to main content

Part of the book series: Studies in Systems, Decision and Control ((SSDC,volume 322))

Abstract

As the COVID-19 pandemic grows, the shortening of clinical hardware is expanding. A key bit of hardware getting out of sight has been ventilators. The contrast among the organic market is significant to be dealt with ordinary creation strategies, particularly under social removing measures set up. The examination investigates the method of reasoning of human-robot groups to increase creation utilizing preferences of both the simplicity of coordination and keeping up social removing. This chapter highlights the role of social robotic in fighting COVID-19. Also, it presents the requirements of social robotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. World Health Organization, others: Coronavirus disease 2019 (COVID-19): situation report, 70 (2020)

    Google Scholar 

  2. Chatburn, R.L.: Understanding mechanical ventilators. Expert Rev. Respir. Med. 4, 809–819 (2010). https://doi.org/10.1586/ers.10.66

    Article  Google Scholar 

  3. Mechanical Ventilators Market Size, Share & Trends Analysis Report. https://www.grandviewresearch.com/industry-analysis/mechanical-ventilators-market. Accessed 31 Mar 2020

  4. Formula 1 Helps Boris Johnson Edge Closer to 30,000 Ventilator Target. https://www.bloomberg.com/news/articles/2020-03-24/formula-1-helps-johnson-edge-closer-to-30-000-ventilator-target. Accessed 29 Mar 2020

  5. Ebrahim, S.H., Ahmed, Q.A., Gozzer, E., Schlagenhauf, P., Memish, Z.A.: Covid-19 and community mitigation strategies in a pandemic. BMJ. 368, m1066 (2020). https://doi.org/10.1136/bmj.m1066

  6. Ventilators Market Industry Updates—See How Industry Players are preparing against Covid-19 depression. https://www.marketwatch.com/press-release/ventilators-market-industry-updates–see-how-industryplayers-are-preparing-against-covid-19-depression-medtronic-bd-getinge-ab-fisher-paykel-healthcarelimited-dragerwerk-ag-co-kgaa-smiths-group-hamilton-medical-general-electric-company-air-liquide-2020-03-30?mod=mw_quote_news&tesla=y. Accessed 8 Apr 2020

  7. Ford, GE plan to produce 50,000 ventilators in 100 days. https://www.cnbc.com/2020/03/30/ford-ge-plan-toproduce-50000-ventilators-in-100-days.html. Accessed 31 Mar 2020

  8. James Dyson designed a new ventilator in 10 days. https://edition.cnn.com/2020/03/26/tech/dysonventilators-coronavirus/index.html. Accessed 15 Apr 2020

  9. Edmondson, N.F., Redford, A.H.: Generic flexible assembly system design. Assembly Autom. 22(2),139–152 (2002). https://doi.org/10.1108/01445150210423189

  10. ElMaraghy, H., ElMaraghy, W.: Smart adaptable assembly systems. Procedia CIRP 44, 4–13 (2016)

    Article  Google Scholar 

  11. Joergensen, S.N., Hvilshøj, M., Madsen, O.: Designing modular manufacturing systems using mass customization theories and methods. Int. J. Mass Customisation 4, 171–194 (2012)

    Article  Google Scholar 

  12. Parasuraman, R., Wickens, C.D.: Humans: Still vital after all these years of automation. Hum. Factors J. Hum. Factors Ergon. Soc. 50, 511 (2008)

    Article  Google Scholar 

  13. Bahns, E.: It Began with the Pulmotor: The History of Mechanical Ventilation, pp. 10–55. Drägerwerk, Lübeck, Germany, (2015)

    Google Scholar 

  14. Krüger, J., Lien, T.K., Verl, A.: Cooperation of humans and machines in assembly lines. CIRP Ann. Manuf. Technol. 58, 628–646 (2009)

    Article  Google Scholar 

  15. Garcia, M.A.R., Rojas, R., Gualtieri, L., et al.: A human-in-the-loop cyber-physical system for collaborative assembly in smart manufacturing. Procedia CIRP 81, 600–605 (2019)

    Article  Google Scholar 

  16. Faccio, M., Bottin, M., Rosati, G.: Collaborative and traditional robotic assembly: a comparison model. Int. J. Adv. Manuf. Technol. 102, 1355–1372 (2019)

    Article  Google Scholar 

  17. Wang, L., Gao, R., Váncza, J., et al.: Symbiotic human-robot collaborative assembly. CIRP Ann. Manuf. Technol. 68, 701–726 (2019)

    Article  Google Scholar 

  18. Malik, A.A., Bilberg, A.: Complexity-based task allocation in human-robot collaborative assembly. Ind. Robot Int. J. Robot. Res. Appl. 46, 471–480 (2019)

    Article  Google Scholar 

  19. COVID-19 pandemic: Humanity needs leadership and solidarity to defeat the coronavirus. https://www.undp.org/content/undp/en/home/coronavirus.html. (2020, April)

  20. World Health Organization, others: Coronavirus disease 2019 (COVID-19): situation report, 59 (2020)

    Google Scholar 

  21. Landry, M.D., Geddes, L., Moseman, A.P., et al.: Early Reflection on the global impact of COVID19, and Implications for physiotherapy. Physiotherapy (2020)

    Google Scholar 

  22. Coronavirus: What are ventilators and why are they important? https://www.bbc.com/news/health-52036948. Accessed 31 Mar 2020

  23. Ventilators explained: Key device in fight against coronavirus. https://www.aljazeera.com/news/2020/03/ventilators-explained-key-device-fight-coronavirus200329065155185.html. Accessed 31 Mar 2020

  24. Vicentini, F.: Collaborative robotics: a survey. J. Mech. Des. 1–29 (2020)

    Google Scholar 

  25. Malik, A.A., Andersen, M.V., Bilberg, A.: Advances in machine vision for flexible feeding of assembly parts. Procedia Manuf. 38, 1228–1235 (2019)

    Article  Google Scholar 

  26. Masood, T., Weston, R.: An integrated modeling approach in support of next-generation reconfigurable manufacturing systems. Int. J. Comput. Aided Eng. Technol. 3, 372–398 (2011)

    Article  Google Scholar 

  27. Masood, T., Weston, R., Rahimifard, A.: A computer-integrated unified modelling approach to responsive manufacturing. Int. J. Ind. Syst. Eng. 5, 287–312 (2010)

    Google Scholar 

  28. Koren, Y., Gu, X., Guo, W.: Reconfigurable manufacturing systems: principles, design, and future trends. Front. Mech. Eng. (2017)

    Google Scholar 

  29. Koren, Y., Shpitalni, M.: Design of reconfigurable manufacturing systems. J. Manuf. Syst. 29, 130–141 (2010)

    Article  Google Scholar 

  30. Rashid, A., Masood, T., Erkoyuncu, J.A., et al.: Enterprise systems’ life cycle in pursuit of resilient smart factory for emerging aircraft industry: a synthesis of Critical Success Factors’(CSFs), theory, knowledge gaps, and implications. Enterp. Inf. Syst. 12, 96–136 (2018)

    Article  Google Scholar 

  31. Haq, I., Masood, T., Ahmad, B., et al.: Product to process lifecycle management in assembly automation systems. In: 7th CIRP international conference on digital enterprise technology, pp. 476–486 (2011)

    Google Scholar 

  32. Perzylo, A., Rickert, M., Kahl, B., et al.: SMErobotics: smart robots for flexible manufacturing. IEEE Robot. Autom. Mag. 26, 78–90 (2019)

    Article  Google Scholar 

  33. Nof, S.Y.: Springer Handbook of Automation. Springer Science & Business Media (2009)

    Google Scholar 

  34. Malik, A.A., Masood, T., Bilberg, A.: Virtual reality in manufacturing: immersive and collaborative artificialreality in design of human-robot workspace. Int. J. Comput. Integr. Manuf. 1–16 (2019)

    Google Scholar 

  35. Ososky, S., Schuster, D., Phillips, E., Jentsch, F.G.: Building appropriate trust in human-robot teams. In: AAAI Spring Symposium: Trust and Autonomous Systems (2013)

    Google Scholar 

  36. Schwartz, T., et al.: Hybrid teams of humans, robots, and virtual agents in a production setting. 12th International Conference on Intelligent Environments (IE), London, 2016, pp. 234–237 (2016). https://doi.org/10.1109/IE.2016.53

  37. Correia, F., Petisca, S., Alves-Oliveira, P., et al.: “I Choose… YOU!” membership preferences in human-robot teams. Auton. Robots 43, 359–373 (2019)

    Article  Google Scholar 

  38. Malik, A.A., Bilberg, A.: Framework to implement collaborative robots in manual assembly: a lean automation approach. In: B. Katalinic (ed.) Proceedings of the 28th DAAAM international symposium. DAAAM International, pp 1726–9679 (2017)

    Google Scholar 

  39. Villani, V., Pini, F., Leali, F., Secchi, C.: Survey on human-robot collaboration in industrial settings: safety, intuitive interfaces and applications. Mechatronics 55, 248–266 (2018)

    Article  Google Scholar 

  40. Bilberg, A., Malik, A.A.: Digital twin driven human-robot collaborative assembly. CIRP Ann. Manuf. Technol. 68, 499–502 (2019)

    Article  Google Scholar 

  41. Rhodes, A., Ferdinande, P., Flaatten, H., et al.: The variability of critical care bed numbers in Europe. Intensive Care Med. 38, 1647–1653 (2012)

    Article  Google Scholar 

  42. Shakoory, B., Carcillo, J.A., Chatham, W.W., et al.: Interleukin-1 receptor blockade is associated with reduced mortality in sepsis patients with features of macrophage activation syndrome: reanalysis of a prior phase iii trial. Crit. Care Med. 44, 275–281 (2016)

    Article  Google Scholar 

  43. Russell, C.D., Millar, J.E., Baillie, J.K.: Clinical evidence does not support corticosteroid treatment for 2019-nCoV lung injury. Lancet 395, 473–475 (2020)

    Article  Google Scholar 

  44. Glass, R.J., Glass, L.M., Beyeler, W.E., Min, H.J.: Targeted social distancing designs for pandemic influenza. Emerg. Infect. Dis. 12, 1671 (2006)

    Article  Google Scholar 

  45. Fenichel, E.P.: Economic considerations for social distancing and behavioral based policies during an epidemic. J. Health Econ. 32, 440–451 (2013)

    Article  Google Scholar 

  46. Mahase, E.: Covid-19: UK starts social distancing after new model points to 260 000 potential deaths (2020)

    Google Scholar 

  47. Thomson, G.: COVID-19: Social distancing, ACE 2 receptors, protease inhibitors and beyond? Int J Clin Pract. 74(7):e13503 (2020). https://doi.org/10.1111/ijcp.13503

  48. Salonitis, K.: Modular design for increasing assembly automation. CIRP Ann. Manuf. Techno. (2014)

    Google Scholar 

  49. Shaik, A.M., Rao, V.V.S.K., Rao, C.S.: Development of modular manufacturing systems—a review. Int J Adv Manuf Technol 76, 789–802 (2015). https://doi.org/10.1007/s00170-014-6289-2

  50. Heilala, J., Voho, P.: Modular reconfigurable flexible final assembly systems. Assembly Autom. 21, 20–30 (2001)

    Article  Google Scholar 

  51. Jackson, M., Zaman, A.: Factory-in-a-box: mobile production capacity on demand. Int. J. Mod. Eng. 8, 12–26 (2007)

    Google Scholar 

  52. (2020) Danish Technological Institute. https://www.dti.dk/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kadry Ali Ezzat .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mahdy, L.N., Ezzat, K.A., Darwish, A., Hassanien, A.E. (2021). The Role of Social Robotics to Combat COVID-19 Pandemic. In: Hassanien, A.E., Darwish, A. (eds) Digital Transformation and Emerging Technologies for Fighting COVID-19 Pandemic: Innovative Approaches. Studies in Systems, Decision and Control, vol 322. Springer, Cham. https://doi.org/10.1007/978-3-030-63307-3_13

Download citation

Publish with us

Policies and ethics