Skip to main content

Machine Learning for the Complex, Multi-scale Datasets in Fusion Energy

  • Conference paper
  • First Online:
Driving Scientific and Engineering Discoveries Through the Convergence of HPC, Big Data and AI (SMC 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1315))

Included in the following conference series:

Abstract

ML/AI techniques, particularly based on deep learning, will increasingly be used to accelerate scientific discovery for fusion experiment and simulation. Fusion energy devices have many disparate diagnostic instruments, capturing a broad range of interacting physics phenomena over multiple time and spatial scales. Also, fusion experiments are increasingly built to run longer pulses, with a goal of eventually running a reactor continuously. The confluence of these facts leads to large, complex datasets with phenomena manifest over long sequences. A key challenge is enabling scientists/engineers to utilize these datasets, for example to automatically catalog events of interest, predict the onset of phenomena such as tokamak disruptions, and enable comparisons to models/simulation. Given the size, multiple modalities, and multi-scale nature of fusion data, deep learning models are attractive, but at these scales requires utilizing HPC resources. Many ML/AI techniques not fully utilized now will demand even more HPC resources, such as self-supervised learning to help fusion scientists create AI models with less labelled data, and advanced sequence models which use less GPU memory at the expense of increased compute. Additionally, deep learning models will enable faster, more in-depth analysis than previously available, such as extracting physics model parameters from data using conditional variational autoencoders, instead of slower techniques such as Markov chain Monte Carlo (MCMC). Comparison to simulation will also be enhanced through direct acceleration of simulation kernels using deep learning. These ML/AI techniques will give fusion scientists faster results, allowing more efficient machine use, and faster scientific discovery.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. NervanaSystems/distiller: Neural Network Distiller by Intel AI Lab: a Python package for neural network compression research. https://nervanasystems.github.io/distiller. https://github.com/NervanaSystems/distiller

  2. Ahmad, S., Lavin, A., Purdy, S., Agha, Z.: Unsupervised real-time anomaly detection for streaming data. Neurocomputing 262, 134–147 (2017). https://doi.org/10.1016/j.neucom.2017.04.070

    Article  Google Scholar 

  3. Bai, S., Kolter, J.Z., Koltun, V.: An empirical evaluation of generic convolutional and recurrent networks for sequence modeling. arXiv e-prints arXiv:1803.01271 (2018). URL http://arxiv.org/abs/1803.01271

  4. Bai, S., Kolter, J.Z., Koltun, V.: Deep equilibrium models. arXiv e-prints arXiv:1909.01377 (2019). http://arxiv.org/abs/1909.01377

  5. Bar-Sinai, Y., Hoyer, S., Hickey, J., Brenner, M.P.: Learning data-driven discretizations for partial differential equations. Proc. Natl. Acad. Sci. U. S. A. 116(31), 15344–15349 (2019). https://doi.org/10.1073/pnas.1814058116. http://www.ncbi.nlm.nih.gov/pubmed/31311866

  6. Ben-Nun, T., Hoefler, T.: Demystifying parallel and distributed deep learning: an in-depth concurrency analysis. arXiv e-prints arXiv:1802.09941 (2018). URL http://arxiv.org/abs/1802.09941

  7. Berg, J., Nyström, K.: A unified deep artificial neural network approach to partial differential equations in complex geometries. arXiv::1711.06464 (2017). https://doi.org/10.1016/j.neucom.2018.06.056. http://dx.doi.org/10.1016/j.neucom.2018.06.056

  8. Beucler, T., Pritchard, M., Rasp, S., Gentine, P., Ott, J., Baldi, P.: Enforcing analytic constraints in neural-networks emulating physical systems. arXiv::1909.00912 (2019). URL http://arxiv.org/abs/1909.00912

  9. Bishop, C.M., Roach, C.M., von Hellermann, M.G.: Automatic analysis of JET charge exchange spectra using neural networks. Plasma Phys. Control. Fusion 35(6), 765–773 (1993). https://doi.org/10.1088/0741-3335/35/6/010. http://iopscience.iop.org/0741-3335/35/6/010

  10. Boozer, A.H.: Theory of tokamak disruptions. Phys. Plasmas 19(5), 058–101 (2012). https://doi.org/10.1063/1.3703327. http://aip.scitation.org/doi/10.1063/1.3703327

  11. Brehmer, J., Mishra-Sharma, S., Hermans, J., Louppe, G., Cranmer, K.: Mining for dark matter substructure: inferring subhalo population properties from strong lenses with machine learning. Astrophys. J. 886(1), 49 (2019). https://doi.org/10.3847/1538-4357/ab4c41. http://dx.doi.org/10.3847/1538-4357/ab4c41

  12. Chalapathy, R., Chawla, S.: Deep learning for anomaly detection: a survey. arXiv e-prints arXiv:1901.03407 (2019). http://arxiv.org/abs/1901.03407

  13. Choi, J.Y., et al.: Stream processing for near real-time scientific data analysis. In: 2016 New York Sci. Data Summit, pp. 1–8. IEEE (2016). https://doi.org/10.1109/NYSDS.2016.7747804. http://ieeexplore.ieee.org/document/7747804/

  14. Choi, M.J., et al.: Improved accuracy in the estimation of the tearing mode stability parameters (\(\Delta \)’ and w c ) using 2D ECEI data in KSTAR. Nucl. Fusion 54(8), 083,010 (2014). https://doi.org/10.1088/0029-5515/54/8/083010. http://stacks.iop.org/0029-5515/54/i=8/a=083010?key=crossref.88a6457ca7434ceddf6b6be95522512a

  15. Chua, A.J., Vallisneri, M.: Learning bayesian posteriors with neural networks for gravitational-wave inference. Phys. Rev. Lett. 124(4), 041–102 (2020). https://doi.org/10.1103/PhysRevLett.124.041102

  16. Churchill, R., et al: A framework for international collaboration on ITER using large-scale data transfer to enable near real-time analysis. In: IAEA, Fusion Data Process, p. 2019. Tech. Meet, Validation, Anal (2019)

    Google Scholar 

  17. Churchill, R., Tobias, B., Zhu, Y.: The DIII-D Team: deep convolutional neural networks for multi-scale time-series classification and application to tokamak disruption prediction using raw, high temporal resolution diagnostic data. Phys. Plasmas 27 (2020)

    Google Scholar 

  18. Churchill, R.M.: The DIII-D Team: deep convolutional neural networks for multi-scale time-series classification and application to disruption prediction in fusion devices. Second Work. Mach. Learn. Phys. Sci. (NeurIPS 2019) (2019). http://arxiv.org/abs/1911.00149

  19. Cranmer, K., Brehmer, J., Louppe, G.: The frontier of simulation-based inference. arXiv e-prints arXiv:1911.01429 (2019). http://arxiv.org/abs/1911.01429

  20. Devlin, J., Chang, M.W., Lee, K., Toutanova, K.: BERT: pre-training of deep bidirectional transformers for language understanding. arXiv e-prints arXiv:1810.04805 (2018). http://arxiv.org/abs/1810.04805

  21. Dinklage, A., Dreier, H., Fischer, R., Gori, S., Preuss, R., Toussaint, U.V.: Integrated data analysis for fusion: a Bayesian tutorial for fusion diagnosticians. In: AIP Conference Proceedings, vol. 988, pp. 471–480. AIP (2008). https://doi.org/10.1063/1.2905117. http://aip.scitation.org/doi/abs/10.1063/1.2905117

  22. Dumoulin, V., et al: Feature-wise transformations. Distill. 3(7), e11 (2018). https://doi.org/10.23915/distill.00011. https://distill.pub/2018/feature-wise-transformations

  23. Ferraro, N., Lyons, B., Kim, C., Liu, Y., Jardin, S.: 3D two-temperature magnetohydrodynamic modeling of fast thermal quenches due to injected impurities in tokamaks. Nucl. Fusion 59(1), 016,001 (2019). https://doi.org/10.1088/1741-4326/AAE990

  24. Ferreira, D.R.: Applications of deep learning to nuclear fusion research. arXiv e-prints arXiv:1811.00333 (2018). http://arxiv.org/abs/1811.00333

  25. Gabbard, H., Messenger, C., Heng, I.S., Tonolini, F., Murray-Smith, R.: Bayesian parameter estimation using conditional variational autoencoders for gravitational-wave astronomy. arXiv e-prints arXiv:1909.06296 (2019). http://arxiv.org/abs/1909.06296

  26. Green, S.R., Simpson, C., Gair, J.: Gravitational-wave parameter estimation with autoregressive neural network flows. arXiv e-prints arXiv:2002.07656 (2020). http://arxiv.org/abs/2002.07656

  27. Hager, R., Yoon, E., Ku, S., D’Azevedo, E., Worley, P., Chang, C.: A fully non-linear multi-species Fokker-Landau collision operator for simulation of fusion plasma. J. Comput. Phys. 315, 644–660 (2016). https://doi.org/10.1016/J.JCP.2016.03.064. https://www.sciencedirect.com/science/article/pii/S0021999116300298?via%3Dihub

  28. Han, J., Ma, C., Ma, Z., Weinan, E.: Uniformly accurate machine learning-based hydrodynamic models for kinetic equations. Proc. Natl. Acad. Sci. 116(44), 21983–21991 (2019). https://doi.org/10.1073/pnas.1909854116. http://www.pnas.org/lookup/doi/10.1073/pnas.1909854116

  29. Hogg, D.W., Foreman-Mackey, D.: Data analysis recipes: using Markov Chain Monte Carlo. Astrophys. J. Suppl. Ser. 236(1), 11 (2018). https://doi.org/10.3847/1538-4365/aab76e. http://stacks.iop.org/0067-0049/236/i=1/a=11?key=crossref.0a2b61f395b98c90f2d746466846903c

  30. Hortua, H.J., Volpi, R., Marinelli, D., Malagò, L.: Parameters estimation for the cosmic microwave background with bayesian neural networks. arXiv e-prints arXiv:1911.08508 (2019). http://arxiv.org/abs/1911.08508

  31. Hsieh, J.T., Zhao, S., Eismann, S., Mirabella, L., Ermon, S.: Learning neural PDE solvers with convergence guarantees. arXiv::1906.01200 (2019). http://arxiv.org/abs/1906.01200

  32. Kaiser, Ł., et al.: Fast decoding in sequence models using discrete latent variables. In: 35th International Conference Machine Learning ICML 2018, vol. 6, pp. 3743–3752 (2018). http://arxiv.org/abs/1803.03382

  33. Kates-Harbeck, J., Svyatkovskiy, A., Tang, W.: Predicting disruptive instabilities in controlled fusion plasmas through deep learning. Nature 568(7753), 526–531 (2019). https://doi.org/10.1038/s41586-019-1116-4.http://www.nature.com/articles/s41586-019-1116-4

  34. Kitaev, N., Kaiser, Ł., Levskaya, A.: Reformer: the efficient transformer. arXiv e-prints arXiv:2001.04451 (2020). http://arxiv.org/abs/2001.04451

  35. Ku, S., Hager, R., Chang, C., Kwon, J., Parker, S.: A new hybrid-Lagrangian numerical scheme for gyrokinetic simulation of tokamak edge plasma. J. Comput. Phys. 315, 467–475 (2016). https://doi.org/10.1016/j.jcp.2016.03.062. http://linkinghub.elsevier.com/retrieve/pii/S0021999116300274

  36. Kube, R., Churchill, R., Choi, J.Y., Wang, R., Klasky, S., Chang, C.S.: Leading magnetic fusion energy science into the big-and-fast data lane. In: Proceedings 19th Python Science Conference (2020). https://conference.scipy.org/proceedings/

  37. LeCun, Y., Bengio, Y., Hinton, G.: Deep learning. Nature 521(7553), 436–444 (2015). https://doi.org/10.1038/nature14539. http://www.nature.com/articles/nature14539

  38. McCandlish, S., et al.: An empirical model of large-batch training. arXiv e-prints arXiv:1812.06162 (2018). https://arxiv.org/pdf/1812.06162.pdf

  39. Meneghini, O., et al.: Self-consistent core-pedestal transport simulations with neural network accelerated models. Nucl. Fusion 57(8), 086,034 (2017). https://doi.org/10.1088/1741-4326/aa7776. http://stacks.iop.org/0029-5515/57/i=8/a=086034?key=crossref.bd8ca2032ac2046a3a270c0b80762b50

  40. Miller, M.A., Churchill, R.M., Chang, C.S., Hager, R.: Encoder-decoder neural network for solving the nonlinear Fokker-Planck-Landau collision operator in XGC. In: Workshop Integr. Deep Neural Model. Differ. Equations (ICLR 2020) (2020)

    Google Scholar 

  41. van den Oord, A., Li, Y., Vinyals, O.: Representation learning with contrastive predictive coding. arXiv (2018). http://arxiv.org/abs/1807.03748

  42. van den Oord, A., Vinyals, O., Kavukcuoglu, K.: Neural discrete representation learning. Adv. Neural Inf. Process. Syst. 2017-Decem, 6307–6316 (2017). http://arxiv.org/abs/1711.00937

  43. Perez, E., Strub, F., De Vries, H., Dumoulin, V., Courville, A.: FiLM: visual reasoning with a general conditioning layer. In: 32nd AAAI Conference Artificial Intelligence AAAI 2018, pp. 3942–3951. AAAI press (2018)

    Google Scholar 

  44. Rajbhandari, S., Rasley, J., Ruwase, O., He, Y.: ZeRO: memory optimization towards training a trillion parameter models. arXiv e-prints arXiv:11910.02054 (2019). http://arxiv.org/abs/1910.02054

  45. Razavi, A., van den Oord, A., Vinyals, O.: Generating diverse high-fidelity images with VQ-VAE-2. arXiv e-prints arXiv:1906.00446 (2019). http://arxiv.org/abs/1906.00446

  46. Rea, C., Granetz, R.S.: Exploratory machine learning studies for disruption prediction using large databases on DIII-D. Fusion Sci. Technol. pp. 1–12 (2018). https://doi.org/10.1080/15361055.2017.1407206. https://www.tandfonline.com/doi/full/10.1080/15361055.2017.1407206

  47. Ruder, S.: Transfer Learning - Machine Learning’s Next Frontier (2017). http://ruder.io/transfer-learning/

  48. Schneider, S., Baevski, A., Collobert, R., Auli, M.: wav2vec: unsupervised pre-training for speech recognition. arXiv e-prints arXiv:1904.05862 (2019). http://arxiv.org/abs/1904.05862

  49. Standley, T., Zamir, A.R., Chen, D., Guibas, L., Malik, J., Savarese, S.: Which tasks should be learned together in multi-task learning? arXiv e-prints arXiv:1905.07553 (2019). http://arxiv.org/abs/1905.07553

  50. Subcommittee, F.I.: FESAC ISOFS subcommittee final report. Technical report, FES (2002). https://www.cs.odu.edu/~keyes/scales/reports/fsp_2002b.pdf

  51. Vaswani, A., et al: Attention is all you need. arXiv e-prints arXiv:1706.03762 (2017). http://arxiv.org/abs/1706.03762

  52. Vega, J., et al.: Results of the JET real-time disruption predictor in the ITER-like wall campaigns. Fusion Eng. Des. 88(6–8), 1228–1231 (2013). https://doi.org/10.1016/J.FUSENGDES.2013.03.003. https://www.sciencedirect.com/science/article/pii/S0920379613002974?via%3Dihub

  53. de Vries, P.C., et al.: Requirements for triggering the ITER disruption mitigation system. Fusion Sci. Technol. 69(2), 471–484 (2016). https://doi.org/10.13182/FST15-176. https://www.tandfonline.com/doi/full/10.13182/FST15-176

  54. Wallace, E.: Eric Wallace on Twitter (2020). https://twitter.com/Eric_Wallace_/status/1235907651193548801

  55. Wang, J., Ma, Y., Zhang, L., Gao, R.X.: Deep learning for smart manufacturing: methods and applications. J. Manuf. Syst. 48, 144–156 (2018). https://doi.org/10.1016/J.JMSY.2018.01.003. https://www.sciencedirect.com/science/article/pii/S0278612518300037

  56. Weng, L.: Self-supervised representation learning (2018). https://lilianweng.github.io/lil-log/2019/11/10/self-supervised-learning.html

  57. Windsor, C., et al.: A cross-tokamak neural network disruption predictor for the JET and ASDEX Upgrade tokamaks. Nucl. Fusion 45(5), 337–350 (2005). https://doi.org/10.1088/0029-5515/45/5/004. http://stacks.iop.org/0029-5515/45/i=5/a=004?key=crossref.170e4cfeab7836eaf142634f3e851578

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Michael Churchill .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Churchill, R.M., Choi, J., Kube, R., Chang, C.S., Klasky, S. (2020). Machine Learning for the Complex, Multi-scale Datasets in Fusion Energy. In: Nichols, J., Verastegui, B., Maccabe, A.‘., Hernandez, O., Parete-Koon, S., Ahearn, T. (eds) Driving Scientific and Engineering Discoveries Through the Convergence of HPC, Big Data and AI. SMC 2020. Communications in Computer and Information Science, vol 1315. Springer, Cham. https://doi.org/10.1007/978-3-030-63393-6_18

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63393-6_18

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63392-9

  • Online ISBN: 978-3-030-63393-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics