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Abstract. Data Warehousing applied in Big Data contexts has been an emergent 

topic of research, as traditional Data Warehousing technologies are unable to deal 

with Big Data characteristics and challenges. The methods used in this field are 

already well systematized and adopted by practitioners, while research in Big 

Data Warehousing is only starting to provide some guidance on how to model 

such complex systems. This work contributes to the process of designing con-

ceptual data models for Big Data Warehouses proposing a method based on rules 

and design patterns, which aims to gather the information of a certain application 

domain mapped in a relational conceptual model. A complex domain that can 

benefit from this work is Genomics, characterized by an increasing heterogene-

ity, both in terms of content and data structure. Moreover, the challenges for col-

lecting and analyzing genome data under a unified perspective have become a 

bottleneck for the scientific community, reason why standardized analytical re-

positories such as a Big Genome Warehouse can be of high value to the commu-

nity. In the demonstration case presented here, a genomics relational model is 

merged with the proposed Big Data Warehouse Conceptual Metamodel to obtain 

the Big Genome Warehouse Conceptual Model, showing that the design rules 

and patterns can be applied having a relational conceptual model as starting point.  

Keywords: Big Data Warehousing, Big Data Modelling, Conceptual Modeling. 

1 Introduction 

Analytical contexts have been highly influenced by Big Data where new challenges 

arise both in terms of data modeling approaches and technological concerns that must 

be considered. Traditional Data Warehousing (DWing) systems lost the capacity to 

handle data with different characteristics, such as high data volumes, produced at high 

speed and considering different data varieties. To overcome those challenges, as organ-

izations still need structured data repositories supporting decision making tasks, data 

warehouses are now implemented using Big Data technologies [1, 2]. 
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 Due to its novelty, research in Big Data Warehousing (BDWing) has been quite 

scarce with some works based on unstructured approaches and use case technology-

driven solutions [2–5]. The work of [2] overcomes these practices by proposing a struc-

tured approach that includes guidelines for the design and implementation of Big Data 

Warehouses (BDWs). In this paper, the conceptual modeling of BDWs is formalized 

defining a Big Data Warehouse Conceptual Metamodel (BDWCMT) with the constructs 

made available in the data modeling approach of [2], and proposes a method that in-

cludes patterns and rules to guide practitioners from the BDWCMT to the design of a 

specific Big Data Warehouse Conceptual Model (BDWCM). 

As demonstration case, and due to the complexity of this application domain, the 

proposed modeling method is applied to Genomics with the aim to implement the Big 

Genome Warehouse System. This is intended to be implemented using Big Data tools 

and technologies in the Hadoop Ecosystem, using Hive as the main storage technology, 

as this is considered the de facto standard for DWing in Big Data. This physical imple-

mentation in Hive must consider background knowledge inherited from the Big Ge-

nome Warehouse Conceptual Model (BGWCM) and from the Human Genome Concep-

tual Model (HGCM). Both models comply with specific constructs that follow UML 

Class Diagrams Metamodels, assuming that a system is represented by a model that 

conforms to a metamodel [6]. 

The HGCM is the result of a research work on a complex domain where the use of 

conceptual models has been proved to be a feasible solution for the integration of data 

coming from heterogeneous and disperse set of genomic sources. One of the most chal-

lenging problems in the genomic domain is the identification of DNA variants that 

could be a potential cause of disease. The huge amounts of available data, characterized 

by their heterogeneity, either in terms of content and structure, as well as the problems 

for collecting and analyzing them under a unified perspective has become a bottleneck 

for the scientific community. In [7], the authors face this problem by presenting a con-

ceptual model that provides the required unified perspective to collect, structure and 

analyze the key concepts of the domain under a well-grounded ontological basis. Using 

this background knowledge of the HGCM with the key concepts in this application do-

main, namely the main identified identities and their relationships, the BGWCM here 

modeled must conform to the BDWCMT. The aim of this paper is to show how to move 

from the BDWCMT to the BGWCM using the knowledge explicitly available in the HGCM. 

A simplification of the HGCM is used in this paper intended to solve a specific task and 

ease the validation process of this approach. The details about the physical implemen-

tation of the BGWCM in Hive is out of the scope of this paper. 

The method for data modeling of BDWs proposed in this paper follows an iterative 

and goal-driven approach that performs a map between the conceptual model of the 

domain (HGCM) and the BDWCMT. This method considers the main data modeling con-

structs and proposes the data modeling rules and the data modeling patterns for imple-

menting BDWs. This work is evaluated with the identification of the BGWCM. 

 This paper is structured as follows. Section 2 presents the related work. Section 3 

formalizes the BDWCMT, its main constructs and their characteristics. Section 4 ad-

dresses the proposed data modeling rules and patterns, which are instantiated to the 

Genomics case. Section 5 outlines the presented work and future work. 
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2 Related Work  

Data models are essential in information systems design and development as they en-

sure that data needs are properly considered [4]. In a traditional organizational environ-

ment, relational data models are quite popular and are strictly considering the business 

requirements. However, in an organizational context making use of Big Data, the ability 

to process data increases with the use of flexible schemas, and thus the data modeling 

methods change significantly [8, 9], as the database schemas can change during appli-

cation runtime according to the analytical needs of the organization [4, 9]. Taking this 

into consideration, BDWs are significantly different from traditional data warehouses, 

since schemas must be based on new logical models that allow more flexibility and 

scalability, hence the emergence of new design and modeling proposals for BDWs [2]. 

In Big Data, there are multiple challenges when addressing multidimensional data, 

namely the capability to ensure schema-less or dynamic schema changes, huge number 

of dimensions and cardinality, recommendations for automatic partitioning and mate-

rialization, or real-time processing [3, 10].  
The works of [4] and [11] propose an almost automatic design methodology using 

the key-value model to represent a multidimensional scheme at the logical level, instead 

of applying the traditional star/snowflakes schemes. Moreover, a multidimensional 

model is provided by a graph-oriented representation as the basis for the conceptual 

design of this methodology, aiming at the construction of attribute trees representing 

facts related to the integrated data source and automatically remodeling these trees 

based on the restrictions resulting from the requirements analysis phase. Still in the 

NoSQL realm, the work of [5] proposes three types of translations of a conceptual 

model to a columnar model, showing the implementation of columnar data warehouses 

in NoSQL. Additionally, there are works focused on OLAP-oriented technologies for 

Big Data, being Hive a popular example. The work of [12] proposes a set of rules/guide-

lines for transforming a traditional dimensional model [13] into a Hive tabular data 

model for BDWs, adjusting the table’s grain to the domain requirements. 

A context-independent design and implementation approach for BDWs has been ad-

dressed in [2, 14] where several design patterns for modeling performant BDWs were 

evaluated, targeting advancing decision making with huge amounts of data, collected 

at high velocity and with different degrees of heterogeneity. In these, a data modeling 

method is proposed, supporting mixed and complex analytical workloads (e.g., stream-

ing analysis, ad hoc querying, data visualization, data mining). 

Research in this area is still relatively ambiguous and yet at an early stage, lacking 

common approaches [15], reason why this paper proposes a more straightforward ra-

tionale for modelling BDWs, supported by the constructs of [2]. 

3 The Big Data Warehouse Conceptual Metamodel 

In [2], the set of constructs for modelling a BDW were proposed without any formali-

zation in a conceptual metamodel that clearly states how those constructs are organized 

and how they complement each other in this data system. Extending the work of [2], 
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those constructs are in this paper used to propose the BDWCMT, a metamodel that for-

malizes the elements used to model a BDW (Fig. 1). 

Each object in a BDW can be classified as an Analytical Object (AO), a Comple-

mentary Analytical Object (CAO), a Materialized Object (MO) or a Special Object 

(SO). The AOs are subjects of interest in an analytical context, for instance Sales or 

Products. Usually, objects start as AOs, but as the data modelling approach proceeds, 

they can turn into CAOs if they are shared by several AOs and if they comply with the 

characteristics and guidelines presented afterwards in this section. In these cases, the 

AOs outsource the descriptive families to the CAOs. In a parallelism with Kimball’s 

Dimensional Modeling [13], this type of object is similar to the conformed dimensions 

of a dimensional data model but capable of combining the concept of aggregated facts 

for dimensions as well, due to the analytical value of CAOs. The MOs store the results 

of time-consuming queries aiming to improve the BDW performance by providing pre-

aggregated results to the several data consumers, instead of processing heavy aggrega-

tions multiple times. Finally, the SOs are of three types: Spatial, Date and Time. They 

are used to standardize concepts like Date, Time and Space, ensuring that the attributes 

related to those concepts have the same meaning and format across the BDW. The sev-

eral objects, excluding the SOs as these are seen as a particular case, include analytical 

and/or descriptive families, which in their turn include analytical and descriptive attrib-

utes, respectively. The attributes include atomic or collection values. The atomic values 

can be used as (or as part of) the partition, bucketing and/or granularity keys of an 

object. The records of the objects can be mutable or immutable, allowing or avoiding 

update operations. These several constructs included in the conceptual metamodel are 

described in Table 1. Extending the descriptive families, outsourced descriptive fami-

lies allow relationships between AOs and CAOs. These are useful for having a flexible 

data modelling approach that enhances the performance of the BDW [14].  

Table 2 summarizes a set of guidelines and good practices proposed in [2] for the 

use of outsourced descriptive families and nested attributes taking into consideration 

Fig. 1. The BDW’s Conceptual Metamodel 
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the domain requirements, helping practitioners to identify contexts where the same can 

be useful. 

Table 1. Description of the BDW’s Conceptual Metamodel Constructs 

Construct  Class Description 

Object Represents Constructs used in the conceptual modeling of a BDW 

Characteristics Highly performant structures to provide analytical value to decision support scenarios 

Includes Analytical, complementary analytical, materialized, and special (date, time and spa-

tial) objects 

Analytical 

Object 

Represents Isolated object of a subject of interest for analytical purposes 

Characteristics Highly denormalized and autonomous structures able to answer queries without the 

constant need of joins with other data structures 

Examples Sales, purchases, inventory management, customer complaints, among others 

Includes Analytical families, descriptive families, records, granularity key, partition key, 

bucketing (or clustering) key 

Analytical 

Family (includ-

ing Analytical 

Attributes) 

Represents A set of attributes with numeric values that can be analyzed using different descrip-

tive attributes (e.g., grouped or filtered by) 

Characteristics Logical representation of a set of indicators or measures (analytical attributes) rele-

vant for analytical purposes. Can include factual (numeric evidence of something) 

or predictive (an estimative or a prediction of what could happen) attributes 

Examples Sold quantity, discount value and sold value 

Includes Analytical families include analytical attributes 

Descriptive 

Family (includ-

ing Descriptive 

Attributes) 

Represents A set of descriptive values that are used to interpret analytical attributes by different 

perspectives, using aggregation or filtering operations, for example 

Characteristics A descriptive family is a logical representation of a set of attributes usually used to 

add meaning to a numeric indicator 

Examples Customer name, product description and discount type 

Includes Descriptive families include descriptive attributes 

Record Represents The set of values for the attributes of an occurrence of an analytical object 

Characteristics Can be mutable (allow updates) or immutable records (forbid updates) 

Examples The values that characterize the purchase of a product, by a customer, on a store, 

with a factual and/or predicted quantity 

Includes Atomic values (integer, float, double, string, or varchar) or collections (complex 

structures like arrays, maps, or JSON) 

Granularity 

Key 

Represents The level of detail of records to be stored in an analytical object 

Characteristics Is defined using one or more descriptive attributes that uniquely identify a record. It 

may not need to be physically implemented in a data system as a primary key 

Examples Sales order, product identifier, among others 

Includes One or more descriptive attributes that uniquely identify a record 

Partition Key Represents The physical partitioning scheme applied to the data, fragmenting the analytical ob-

jects into more manageable parts that can be accessed individually 

Characteristics Is defined using one or more descriptive attributes (although analytical attributes 

can also be used) that form the partition key 

Examples Time and/or geospatial attributes are the most useful ones, as data is typically 

loaded and filtered in hourly/daily/monthly batches for specific regions or countries 

Includes One or more descriptive attributes that form the partition key 
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Construct Class Description 

Bucketing Key Represents The physical clustering applied to the data, grouping records of an analytical object 

Characteristics Is defined using one or more descriptive attributes that form the bucketing key 

Examples Attributes such as products or customers distributing the data by similar volumes 

Includes One or more descriptive attributes that form the bucketing key 

Complemen-

tary Analytical 

Object 

Represents Object that complements other analytical objects, providing an autonomous struc-

ture with analytical value that is used to complement the different analytical per-

spectives provided by the analytical objects 

Characteristics Object whose granularity key (whole or part of it) is used by other analytical object, 

meaning that a join between two or more objects is possible 

Examples Customer account, product, supplier, among others 

Includes Analytical families, descriptive families, records, granularity key, partition key, 

bucketing (or clustering) key 

Materialized 

Object 

Represents Object that includes an aggregation of the records of an analytical or complemen-

tary analytical object, based on frequent access patterns to the data 

Characteristics Enhances the performance of frequent queries by performing a pre-aggregation of 

the data and the pre-computing time-consuming joins between large objects 

Examples Views on any analytical, complementary analytical and special objects 

Includes Can be created based on any analytical or complementary analytical objects 

Special Object 

(Time, Date 

and Spatial Ob-

ject) 

Represents Objects that include several temporal and/or spatial attributes that complement the 

analytical objects (or complementary analytical objects). 

Characteristics Use standard time, date and spatial representations in autonomous objects, avoiding 

the increase of the size of the analytical or complementary analytical objects 

Examples Time: hour, minute, second; Date: day, month, year; Spatial: city, country. 

Includes Descriptive families, records, and Granularity keys 

Table 2. Guidelines for Outsourced Descriptive Families and Nested Attributes 

Construct Guidelines  

Outsourced 

Descriptive 

Family 

The descriptive family is frequently included in other analytical objects 

The descriptive family has low cardinality, i.e., its distinct records will form a low volume CAO that easily 

fits into memory, enabling the capability to perform map/broadcast joins in SQL-on-Hadoop engines 

The data ingestion frequency of the resulting CAO is equivalent to the other AOs it is related to 

The CAO resulting from the outsourced descriptive family can provide analytical value by itself 

The records of the CAOs formed by the outsourced descriptive families are recommended to be immutable 

Nesting At-

tributes (in 

a Collection) 

Avoid nested attributes in a collection if there is the need to perform heavy aggregations on that data 

Avoid nested attributes in a collection when using filtering operations based on nested values 

Nested attributes included in a collection are not meant to grow rapidly 

Estimate the collection initial size and its potential growth before adopting nested attributes 

4 The Big Genome Warehouse Conceptual Model 

The method presented in this paper is based on rules and design patterns that aim to 

gather the information of a certain application domain mapped in a relational concep-

tual model, merging it with a BDWCMT in order to obtain a BDWCM. In this work, the 

method is presented and demonstrated in the Genomics application domain. 
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4.1 Data Modeling Rules 

The data modeling rules are based on a goal-driven approach that identifies the analyt-

ical value of the entities present in the conceptual model of the domain and character-

izes the data volume and querying frequency of those entities, as this information is 

later used for applying the data modeling patterns. The three data modeling rules are: 

R1. Entities with High Analytical Value. Identification of the main entities of 

the domain, pointing those queried for decision support, providing the main business 

or analytical indicators. In this process, it is relevant to consider that the approach is 

goal-driven, so an entity may have a relevant analytical value in a particular domain or 

business process, being identified as a key entity by this rule, but in other contexts it 

may only be used for providing contextual information, such as who or what. In the 

data modelling perspective, these entities usually receive multiple relationships with 

the M cardinality (M:1, many-to-one), integrating several concepts of the domain. 

R2. Entities with High Cardinality. Characterization of entities with high data 

volume, helping in the process of identifying the entities that are candidates for out-

sourced descriptive families, since high cardinality entities are good candidates to 

denormalization processes, avoiding joins with huge amounts of data. This high cardi-

nality classification of the entities cannot be exclusively based on row counting pro-

cesses, requiring additional knowledge from the domain. The data engineer with the 

help of the domain expert should estimate data growing rates based on a deep 

knowledge of the application domain.  

R3. Entities with Frequent Access Patterns. Characterization of the entities with 

frequent access patterns which, combined with R2, point entities that are candidates for 

MOs, increasing the overall performance of the BDW system. 

Taking into consideration the HGCM available at [7] and the constructs and guide-

lines presented above, the data modeling rules were applied classifying a subset of the 

entities of this domain attending to R1, R2 and R3 (Fig. 2). 

Fig. 2. The Human Genome Conceptual Model. Adapted from [7]. 
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4.2 Data Modeling Patterns 

The data modeling patterns take into consideration that a BDW is built with the goal of 

supporting decision-making tasks and that those tasks highly depend on the identified 

goals or main analytical activities.  

This data modeling method has the flexibility that is needed in a Big Data context, 

allowing the evolution of the models when: i) new business processes/data sources are 

identified; ii) new data is available for the existing processes/data sources; or iii) new 

data requirements change the classification of the entities in terms of design rules. As 

described in section 3, one of the main constructs in the BDWCMT is the concept of AOs. 

These are highly denormalized and autonomous structures able to answer queries with-

out the constant need of joining different structures. Often based on flat structures, for 

better performance [14], these completely or mostly flat structures significantly in-

crease the storage size of the BDW, a problem that has even more impact when multiple 

AOs share the same descriptive families. To face this balance between data volume and 

processing performance, the proposed data modeling patterns allow for the identifica-

tion of data models that are: i) highly flexible, as the data engineers have instruments 

that guide the modeling process, without limiting the human decisions; ii) highly per-

formant, identifying objects that answer the main domain questions considering both 

data volume and performance concerns; and iii) highly relevant, providing different 

analytical views on the data under analysis. The design patterns take into consideration 

the need to identify the different objects in the BDW, their type (AOs, CAOs, MOs or 

SOs), and the descriptive and analytical families included in those objects. 

Considering a traditional relational context in which data is highly normalized and 

each entity details a specific set of attributes with some level of detail, a BDW uses the 

same data but denormalizes the data structures as much as possible, without compro-

mising the BDW sustainability in terms of storage space or its usability in terms of 

performance. In this process, data at different levels of detail can be stored, making 

available objects that may answer more detailed queries, while others can support ag-

gregated and very performant answers to more general questions (Fig. 3). 

In Fig. 3, the three entities available in the domain are possible AOs for the BDW 

and all of them could be included in this data repository using a similar data model 

(highly normalized). However, the BDW must be aligned with the analytical queries 

and must consider storage and performance concerns. As an example for a BDW, two 

possible data models are depicted in Fig. 4. 

Fig. 3. Levels of Detail for the several Entities 
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In Fig. 4, Example 1 includes Chromosome as an AO that outsourced a descriptive 

family, included in a CAO named Assembly and nested the descriptive family of Gene 

into a collection, in accordance with the Chromosome granularity. Each object has its 

own granularity and the denormalization must respect that granularity. Example 2 in-

cludes a fully denormalized AO called Gene with Chromosome and Assembly as denor-

malized descriptive families of this object. 

Based on the assumption that all the entities present in a data model, such as a rela-

tional-based one, are candidate or possible objects in a BDW, the design patterns are: 

P1. Analytical Objects. Entities classified as of type R1 are identified as pos-

sible AOs due to their high analytical value. 

P2. Complementary Analytical Objects. Entities can be outsourced to 

CAOs if they comply with the best practices summarized in Table 2, if they 

are not classified as of type R2 and if they maintain relationships of cardinality 1:M 

(one-to-many) with more than one entity of the domain. 

P3. Descriptive Families. Entities not identified as <<AO>> or <<CAO>> by the 

design patterns P1, P2 are candidates to be denormalized as descriptive fami-

lies of AOs or nested to a collection of AOs, in accordance to their granularity. In Fig. 

4, Example 1, Chromosome includes Gene as a collection, as a chromosome includes 

multiples genes, whereas in Example 2 Gene denormalizes Chromosome and Assembly, 

as a gene maintains a unitary relationship with a chromosome and an assembly. 

P4. Special Objects. Entities including temporal and/or spatial attributes 

point the need for SOs that include the calendar, temporal or spatial descrip-

tive attributes relevant in the application domain. 

P5. Materialized Objects. Entities of type R3 can be, in addition to the pre-

vious patterns, labeled as possible MOs with aggregates usually used in ana-

lytical tasks. 

Considering the defined patterns and the domain knowledge expressed in the HGCM 

presented in Fig. 2, which already includes the classification of the entities considering 

the data modeling rules, it is now possible to integrate the specific characteristics of a 

Fig. 4. Examples of possible Data Models 
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BDW with the domain knowledge of the human genome in order to propose the con-

ceptual model of the Big Genome Warehouse (BGWCM).  

Fig. 5 presents a synopsis of the approach that guides practitioners to apply the 

method and obtain the BGWCM. The entities identified in the domain knowledge are 

mapped against themselves in a matrix, to identify their common relationships. It also 

maps the design rules and patterns with the entities of the domain. The application of 

the data modeling patterns gives a first overview of the main objects of the BDW, which 

are refined in successive iterations as the data modeling method proceeds. 

In the first step, the application of pattern P1 allows the identification of 6 analytical 

objects (<<AO>> Variation_Databank, <<AO>> Statistical_Evidence, <<AO>> Variation, <<AO>> 

Variation_Phenotype, <<AO>> Frequency, <<AO>> Gene). The second step identifies the 

CAOs, starting by choosing the entities that have more than one 1:M relationships to 

other entities. In this case, the possible CAOs are Databank, Variation and Chromo-

some, but only Databank and Variation are classified as CAOs (<<CAO>> Databank, 

<<CAO>> Variation) since Chromosome alone cannot provide analytical value, complying 

with the best-practices presented in Table 2. Note that the classification as <<CAO>> 

can change if the size of the object makes joins inefficient. Although Databank was not 

classified by R1, domain experts may show interest in knowing the databanks that are 

not used in the study of a variation. This is possible with a query that checks records of 

<<CAO>> Databank not included in <<AO>> Variation_Databank, for instance. In this step, 

one object previously classified as an AO is now reclassified as a CAO (<<CAO>> Vari-

ation) due to its use by other objects. 

Fig. 5. Applying the Design Rules and Patterns to the HGCM 
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With the identification of AOs and CAOs, the entities without these classifications 

are candidates to be denormalized to the AOs or CAOs previously identified (P3), in 

accordance to their granularity. The fourth step identifies the entities that have relation-

ships with the SOs, namely Date, Time or Spatial. In this, Bibliography_Reference, 

Assembly and Databank_Version are identified as having relationships with the Date 

object (P4). In P5, and due to its frequent access pattern, one object is identified as 

possible candidate to an additional materialized object that answers frequent queries of 

the application domain, <<MO>> Variation Aggregates. 

Following the design patterns, the BGWCM is obtained (Fig. 6). With P1 and P2, 5 

AOs and 2 CAOs (<<AO>> Variation_Databank, <<AO>> Statistical_Evidence, <<AO>> Varia-

tion_Phenotype, <<AO>> Frequency, <<AO>> Gene, <<CAO>> Databank, <<CAO>> Variation) 

were identified. Now, the relationships of the entities are analyzed. 

Starting by Databank, this entity has relationships with Variation_Databank, Bibli-

ography_Reference and Databank_Version, linking <<CAO>> Databank and <<AO>> Vari-

ation_Databank. Taking into consideration the domain knowledge, Databank_Version is 

an entity with a set of properties of Databank which, also, complies with the nested 

attributes best practices presented in Table 2. For this, Databank_Version is nested and 

included in the model as a collection of the <<CAO>> Databank. These decisions are left 

to the data engineer, as the approach is meant to be flexible enough to accommodate 

the data analysis requirements in the data model that best suits those analytical needs, 

while complying with the defined data modeling rules and patterns. 

 

Fig. 6. The Big Genome Warehouse Conceptual Model 
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Variation_Databank does not have any additional relationship, besides the ones in-

herited from the application domain, outsourcing the descriptive families of <<CAO> 

Databank and <<CAO>> Variation. Although this AO only contains outsourced descriptive 

families without additional descriptive or analytical families, it could be used to per-

form event tracking analyses, like the variations available in some databanks, or as a 

coverage table that with <<CAO> Databank allow the identification of databanks that do 

not include a specific variation (as already pointed). These are usually known as factless 

fact tables in the Kimball’s Dimensional Modeling [13] approach. The same result, with 

a different approach, can be achieved with a collection of Databank inside <<CAO>> 

Variation, if the relationship between Variation and Databank is not of high cardinality.  

Bibliography_Reference is a candidate to denormalization. As it maintains a rela-

tionship with Statistical_Evidence, the information of the entity Bibliography_Refer-

ence is denormalized to the <<AO>> Statistical_Evidence as a descriptive family of this 

object. Additionally: i) as Databank and Bibliography_Reference are related in the ap-

plication domain, and as Bibliography_Reference is denormalized to the <<AO>> Statis-

tical_Evidence, a relationship between <<AO>> Statistical_Evidence and <<CAO>> Databank is 

established. This scenario is depicted in red in Fig. 5 and in Fig. 6; ii) as the entity  

Databank_Version has a relationship with Gene, but it was nested to the <<CAO>> Data-

bank, this object will inherit the relationships of the entity Databank_Version, reason 

why <<CAO>> Databank is related with <<AO>> Gene, having databank_id and data-

bank_version_id as outsourced descriptive families. This scenario is depicted in blue in 

Fig. 5 and in Fig. 6; iii) as the entity Variation and all its related entities are already 

present in the model as objects (independently of their type), there is only the need to 

establish the relationships between the objects.  

Phenotype is denormalized to the <<AO>> Variation_Phenotype, Chromosome is denor-

malized both to the <<CAO>> Variation and <<AO>> Gene, while Population is denormal-

ized to the <<AO>> Frequency. Lastly, Assembly is denormalized to Chromosome, that 

was previously included in the objects <<CAO>> Variation and <<AO>> Gene. 

Regarding MOs, only Variation is used to propose a MO as an example, <<MO>> 

Variation Aggregates, which maintains a relationship with <<CAO>> Variation to access de-

tails of Variations, in case those are needed. 

For the analytical attributes, those can be available in the domain conceptual model 

or can be created/derived by practitioners in accordance to the queries that need to be 

answered. Besides the explicit relationships included in the obtained data model (Fig. 

6), those linking AOs, CAOs, MOs and SOs, implicit relationships exist between these 

objects, allowing join operations between objects that share common attributes. For 

instance, to know how the variants are distributed in a specific gene, a join can be done 

between <<AO>> Gene and <<CAO>> Variation, since both share the attributes included in 

the Chromosome descriptive family.  

Following the proposed method, the BGWCM is now identified but not finished. This 

is seen as a continuous process that refresh the BDW structure as new data requirements 

or new data sources are available. Based on the method best practices, the data engineer 

can tune this model based on data access patterns or analytical goals. 

Regarding the utility and value of the obtained model, also validating the proposed 

method, a preliminary analysis about cardiomyopathies was carried out. The data have 



13 

been extracted and integrated in the Big Genome Warehouse implemented in Hive, 

using data from different sources and include information about nine well-known re-

lated phenotypes which genotypic characteristics are under study. The aim of this study 

is to identify patterns and similarities among the phenotypes that could help to under-

stand the mechanisms of disease, a task that constitutes a bottleneck in the genomic 

analysis process. The results of the preliminary analysis, depicted in Fig. 7, show the 

relationships among the type of variants that occur in the affected chromosomes and 

the selected phenotypes.  

 

Based on these results, it can be concluded that the most interesting genetic compo-

nents are chromosomes 2, 7 and 15 as these present a huge number of polymorphisms, 

mainly associated with Dilated Cardiomyopathy. Following this premise, an extended 

analysis can be done, focusing on more specific genes and proteins, and helping the 

experts to extract meaningful insights about these areas of interest. 

5 Conclusions 

This work extends the knowledge in conceptual modeling applied to Big Data contexts, 

proposing a conceptual metamodel that formalizes the constructs for designing and im-

plementing BDWs. This paper proposes a method that includes data modelling rules 

and patterns that guide practitioners from the conceptual metamodel to a specific con-

ceptual model. Due to the challenges of the Genomics domain, the method was demon-

strated in this context, being able to provide the Big Genome Warehouse Conceptual 

Model. As future work, the method must be extended to consider the evolution of the 

data models when new business processes, data sources or analytical requirements are 

available. Additionally, best practices must be addressed for the definition of partition 

or bucketing keys, as these impact the system performance. 
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