
Formally Verified Trades in Financial Markets

Suneel Sarswat and Abhishek Kr Singh

Tata Institute of Fundamental Research, Mumbai
{suneel.sarswat, abhishek.uor}@gmail.com

Abstract. We introduce a formal framework for analyzing trades in fi-
nancial markets. These days, all big exchanges use computer algorithms
to match buy and sell requests and these algorithms must abide by cer-
tain regulatory guidelines. For example, market regulators enforce that
a matching produced by exchanges should be fair, uniform and individ-
ual rational. To verify these properties of trades, we first formally define
these notions in a theorem prover and then develop many important
results about matching demand and supply. Finally, we use this frame-
work to verify properties of two important classes of double sided auction
mechanisms. All the definitions and results presented in this paper are
completely formalized in the Coq proof assistant without adding any
additional axioms to it.

1 Introduction

In this paper, we introduce a formal framework for analyzing trades in financial
markets. Trading is a principal component of all modern economies. Over the
past few centuries, more and more complex instruments are being introduced for
trade in the financial markets. All big stock exchanges use computer algorithms
to match buy requests (demand) with sell requests (supply) of traders. Computer
algorithms are also used by traders to place orders in the markets (known as
algorithmic trading). With the arrival of computer assisted trading, the volume
and liquidity in the markets have increased drastically, and as a result, the
markets have become more complex.

Software programs that enable the whole trading process are extremely com-
plex and have to meet high efficiency criteria. Furthermore, to increase the con-
fidence of traders in the markets, the market regulators set stringent safety and
fairness guidelines for these software. Traditionally, to meet such criteria, soft-
ware development has extensively relied on testing the programs on large data
sets. Although testing is helpful in identifying bugs, it cannot guarantee the ab-
sence of bugs. Even small bugs in the trading software can have a catastrophic
effect on the overall economy. An adversary might exploit a bug to his benefit
and to the disadvantage of other genuine traders. These events are certainly
undesirable in a healthy economy.

Recently, there have been various instances [16,18,19] of violation of the trad-
ing rules by the stock exchanges. For example, in [19], a regulator noted: "NYSE
Arca failed to execute a certain type of limit order under specified market condi-
tions despite having a rule in effect that stated that NYSE Arca would execute

ar
X

iv
:2

00
7.

10
80

5v
1

 [
cs

.L
O

]
 1

8
Ju

l 2
02

0

2 Suneel Sarswat and Abhishek Kr Singh

such orders"1. This is an instance of a program not meeting its specification.
Here the program is a matching algorithm used by the exchange and the reg-
ulatory guidelines are the broad specifications for the program. Note that, in
most of the cases, the guidelines stated by the regulators are not a complete
specification of the program. Moreover, there is no formal guarantee that these
guidelines are consistent. These are some serious issues potentially compromising
the safety and integrity of the markets.

Recent advances in formal methods in computer science can be put to good
use in ensuring safe and fair financial markets. During the last few decades, for-
mal method tools have been increasingly successful in proving the correctness
of large software and hardware systems [9,7,12,10]. While model checking tools
have been used for the verification of hardware, the use of interactive theorem
provers have been quite successful in the verification of large software. A formal
verification of financial algorithms using these tools can be helpful in the rigor-
ous analysis of market behavior at large. The matching algorithms used by the
exchanges (venues) are at the core of the broad spectrum of algorithms used in
financial markets. Hence, a formal framework for verifying matching algorithms
can also be useful in verifying other algorithms used in financial markets. This
need has also been recognized by Passmore and Ignatovich [15]. They state

Indeed, if venues are not safe, fair and correct, e.g., if one can exploit
flaws in the venue matching logic to jump the queue and have their orders
unfairly prioritized over others, then “all bets are off” as one ascends the
stack to more complex algorithms.

In this work, we make significant progress in addressing this need, including
completely formalizing the matching algorithm used in the pre-markets. Before
we describe our full contribution, we first briefly describe trading at an exchange.

1.1 An Overview of Trading at an Exchange

An exchange is an organized financial market. There are various types of ex-
changes: stock exchange, commodity exchange, foreign exchange etc. An ex-
change facilitates trading between buyers and sellers for the products which are
registered at the exchange. A potential trader, a buyer or a seller, places orders
in the markets for a certain product. These orders are matched by the stock
exchange to execute trades. Most stock exchanges hold trading in two main ses-
sions: pre-market (or call auction session) and continuous market (or regular
trading session) (See [6] for details on the market microstructure).

The pre-market session reduces uncertainty and volatility in the market by
discovering an opening price of the product. During the pre-market session, an
exchange collects all the buy requests (bids) and sell requests (asks) for a fixed
duration of time. At the end of this duration the exchange matches these buy
and sell requests at a single price using a matching algorithm. In the continuous
1 The New York Stock Exchange and the Archipelago Exchange merged together to
form NYSE Arca, which is an exchange where both stocks and options are traded.

Formally Verified Trades in Financial Markets 3

market session, the incoming buyers and sellers are continuously matched to
each other. An incoming bid (ask), if matchable, is immediately matched to the
existing asks (bids). Otherwise, if the bid (ask) is not matchable, it is placed in
a priority queue prioritized first by price and then by time. A trader can place
orders of multiple quantity of each product to trade during both the sessions. In
the continuous market session, unless otherwise specified, an order of multiple
units of a product can be partially executed, that too potentially at different
trade prices. In the pre-market session, an order of multiple units can always be
partially executed and all trades occur at a single price, namely the opening price.
In this work, we will be concerned primarily with the pre-market session where
orders can always be partially executed, which is also the case for most orders
in the continuous market session. Hence, for simplicity of analysis, it suffices to
assume that each order is of a single unit of a single product; a multiple quantity
order can always be treated as a bunch of orders each with a single quantity and
the analysis for a single product will apply for all the products individually.
As a result, note that a single trader who places an order of multiple units is
seen as multiple traders ordering a single unit each. In both sessions of trades
multiple buyers and sellers are matched simultaneously. A mechanism used to
match multiple buyers and sellers is known as a double sided auction [5].

In double sided auctions, an auctioneer (e.g. exchanges) collects buy and sell
requests over a period of time. Each potential trader places the orders with a
limit price: below which a seller will not sell and above which a buyer will not
buy. The exchange at the end of this time period matches these orders based
on their limit prices. This entire process is completed using a double sided auc-
tion matching algorithm. Designing algorithms for double sided auctions is well
studied topic [13,20,14]. A major emphasis of many of these studies have been to
either maximize the number of matches or maximize the profit of the auctioneer.
In the auction theory literature, the profit of an auctioneer is defined as the differ-
ence between the limit prices of matched bid-ask pair. However, most exchanges
today earn their profit by charging transaction costs to the traders. Therefore,
maximizing the number of matches increases the profit of the exchange as well as
the liquidity in the markets. There are other important properties, like fairness,
uniformity and individual rationality, besides the number of matches which are
considered while evaluating the effectiveness of a matching algorithm. However,
it is known that no single algorithm can possess all of these properties [20,13].

1.2 Our Contribution

Our main goal through this work is to show effectiveness of formal methods
in addressing real needs in financial markets and hopefully, along with subse-
quent works, this will lead to fully-verified real trading systems. In this work,
we formally define various notions from auction theory relevant for the analysis
of trades in financial markets. We define notions like bids, asks and matching
in the Coq proof assistant. The dependent types of Coq turn out to be very
useful in giving concise representation to these notions, which also reflects their
natural definitions. After preparing the basic framework, we define important

4 Suneel Sarswat and Abhishek Kr Singh

properties of matching in a double sided auction: fairness, uniformity and in-
dividual rationality. These properties reflect various regulatory guidelines for
trading. Furthermore, we formally prove some results on the existence of vari-
ous combinations of these properties. For example, a maximum matching always
exists which is also fair. These results can also be interpreted as consistency
proofs for various subsets of regulatory guidelines. We prove all these results
in the constructive setting of the Coq proof assistant without adding any ad-
ditional axioms to it. These proofs are completed using computable functions
which computes the actual instances (certificate). We also use computable func-
tions to represent various predicates on lists. Finally, we use this setting to verify
properties of two important classes of matching algorithms: uniform price and
maximum matching algorithms.

We briefly describe the main results formalized in this work. To follow the
discussion below, recall that each bid and each ask is of a single quantity, and
hence the problem of pairing bids and asks can be seen as a matching problem
between all bids and all asks with additional price constraints.
Upper bound on matching size: After formalizing the various notions, we
first show that these definitions are also useful in formalizing various theorems on
double sided auctions by formalizing a combinatorial result (Theorem 1) which
gives a tight upper bound on the total number of possible trades (cardinality
of a maximum matching). For a given price, the demand (supply) is the total
number of buyers (sellers) willing to trade at that price. Theorem 1 states that
for any price p, the total number of trades is at most the sum of the demand
and supply at price p. In order to prove Theorem 1, we first formalize Lemmas
1-3.
Properties of matchings: We next formalize theorems relating to three im-
portant properties of matchings: fairness, uniformity and individual rationality.
Before explaining the theorems, we first explain these terms.

A matching is unfair if there exists two buyers who had different bids and
the lower bid buyer gets matched but not the higher bid one. Similarly, it could
be unfair if a more competitive seller is left out. If a matching is not unfair, then
it is fair.

A matching is uniform if all trades happen at the same price and is individ-
ually rational if for each matched bid-ask pair the trade price is between the bid
and ask limit prices. In the context of formal markets, the trade price is always
between the limit prices of the matched bid-ask pair. Note that, during the pre-
market session, a single price is discovered, and thus the exchange is required to
produce a uniform matching for this session of trading.

Theorem 2 states that there exists an algorithm that can convert any match-
ing into individual rational. This can be achieved by assigning the trade prices
as the middle values between the limit prices of matched bid-ask pairs.

Theorem 3 states that given a matching there exists a fair matching of the
same cardinality. We use two functions Make_FOB and Make_FOA which suc-
cessively makes the matching fair on the bids and then the asks, thus resulting
in a fair matching. The proof of Theorem 3, which is based on induction, uses

Formally Verified Trades in Financial Markets 5

Lemmas 4-9 and is quite technically subtle, as induction fails when we try to
use it directly (see the discussion below Lemma 4), and we need to first prove
intermediate Lemmas 4 and 5 before we can use induction. In addition, we ex-
hibit (see Fig. 4) individual rational matchings to show that they cannot be both
uniform and maximum simultaneously.
Matching Algorithms: Finally, we formalize two important matching algo-
rithms: produce_MM and produce_UM.

Theorem 4 shows that produce_MM always outputs a maximum matching.
ComposingMake_FOB,Make_FOA (from Theorem 3) and produce_MM (The-
orem 4), we can show that there exists an algorithm that outputs a maximum
matching which is also fair (Theorem 5).

The produce_UM algorithm is implemented by the exchanges for opening
price discovery, and Theorem 6 states that produce_UM outputs a maximum-
cardinality matching amongst all uniform matchings. We can compose
Make_FOA, Make_FOB (Theorem 5) and produce_UM (Theorem 6) to get
an algorithm that produces a maximum matching amongst all uniform match-
ings that is also fair. Instead, we directly prove that the matching produced by
produce_UM is also fair by first proving Lemmas 11 and 10. This completely
formalizes the matching algorithm used by the exchanges during the pre-market
session of trading.

Finally we observe that while our work is useful for continuous markets, it
does not completely formalize trades during the continuous market session. This
requires further work as the lists continuously get updated during this session
of trading and the order types are also more involved. See the discussion in
Conclusion and Future Works (Section 4).

1.3 Related Work

There is no prior work known to us which formalizes double-sided auction mech-
anism used by the exchanges. Passmore and Ignatovich in [15] highlight the
significance, opportunities and challenges involved in formalizing financial mar-
kets. Their work describes in detail the whole spectrum of financial algorithms
that need to be verified for ensuring safe and fair markets. Matching algorithms
used by the exchanges are at the core of this whole spectrum. Another important
work in formalization of trading using model checking tools is done by Iliano et
al. [4]. They use concurrent linear logic (CLF) to outline two important proper-
ties of a trading system: the market is never in a locked-or-crossed state, and the
trading always take place at best bid or best ask limit price. They also highlight
the limitation of CLF in stating and proving properties of trading systems.

On the other hand, there are quite a few works formalizing various concepts
from auction theory [3,11,17]. Most of these works focus on the Vickrey auction
mechanism. In a Vickrey auction, there is a single seller with different items
and multiple buyers with valuations for each subset of item. Each buyer places
bids for every combination of the items. At the end of the bidding, the aim of
the seller is to maximize the total value of the items by suitably assigning the

6 Suneel Sarswat and Abhishek Kr Singh

items to the buyers. Financial derivatives and other type of contracts are also
formalized in [8,2].

1.4 Organization of the paper

In Section 2, we formally define the essential components of trading at an ex-
change. In particular, we define some important properties of matchings and
prove Theorems 1-3. In Section 3, we present a maximum matching algorithm
(produce_MM) which produces a maximum matching which is fair. We also
present an equilibrium price matching algorithm (produce_UM) which is used
for price discovery in financial markets. We also specify and prove some correct-
ness properties for these algorithms (Theorems 4-7). We summarize the work
in Section 4 with an overview of future works. The Coq code for this work is
available at [1], which can be compiled on the latest version of Coq (8.10.1).
Some proof explanations have been moved to the appendix to meet the space
constraint.

2 Modeling Trades at Exchanges

An auction is a competitive event, where goods and services are sold to the most
competitive participants. The priority among participating traders is determined
by various attributes of the bids and asks (e.g. price, time etc). This priority can
be finally represented by ordering them in a list.

2.1 Bid, Ask and Limit Price

In any double sided auction multiple buyers and sellers place their orders to buy
or sell a unit of an underlying product. The auctioneer matches these buy-sell
requests based on their limit prices. While the limit price for a buy order (i.e.
bid) is the price above which the buyer does not want to buy the item, the limit
price of a sell order (i.e. ask) is the price below which the seller does not want
to sell the item. If a trader wishes to buy or sell multiple units, he can create
multiple bids or asks with different ids. We can express bids as well asks using
records containing two fields.

Record Bid: Type:= Mk_bid { bp:> nat; idb: nat }.
Record Ask: Type:= Mk_ask { sp:> nat; ida: nat }.

For a bid b, (bp b) is the limit price and (idb b) is its unique identifier. Similarly
for an ask a, (sp a) is the limit price and (ida a) is the unique identifier of a. Note
that the limit prices are natural numbers when expressed in the monetary unit
of the lowest denomination (like cents in USA). Also note the use of coercion :>
in the first field of Bid which declares bp as an implicit function that is applied
to any term of type Bid appearing in a context requiring a natural number.
Hence from now on we can simply use b instead of (bp b) for the limit price of b.
Similarly, we use a for the limit price of an ask a.

Formally Verified Trades in Financial Markets 7

Since equality for both the fields of Bid as well as Ask is decidable (i.e.
nat: eqType), the equality on Bid as well as Ask can also be proved to be
decidable. This is achieved by declaring two canonical instances bid_eqType and
ask_eqType which connect Bid and Ask to the eqType.

2.2 Matching Demand and Supply

All the buy and sell requests can be assumed to be present in list B and list
A, respectively. At the time of auction, the auctioneer matches bids in B to
asks in A. We say a bid-ask pair (b, a) is matchable if b ≥ a (i.e. bp b ≥ sp a).
Furthermore, the auctioneer assigns a trade price to each matched bid-ask pair
which results in a matching M . We define a matching as a list whose entries are
of type fill_type.

Record fill_type: Type:= Mk_fill {bid_of: Bid; ask_of: Ask; tp: nat}

In a matching M , a bid or an ask appears at most once. There might be some
bids in B which are not matched to any asks in M and some asks in A which
are not matched to any bids in M . The list of bids present in M is denoted by
BM and the list of asks present in M is denoted by AM . For example in Fig. 1
the bid with limit price 37 is not present in BM .

]

]

37

37

]

]

69

69

]

]

82

82

]

]

83

83

]

]

91

91

]

]

112

112

]

]

120

120

]

]

125

125

[

[

53

53

[

[

79

79

[

[

85

85

[

[

90

90

[

[

94

94

[

[

98

98

[

[

113

113

[

[

121

121

M

A

B

Fig. 1: Bids in B and asks in A are represented using close and open brackets
respectively, and a matched bid-ask pair in M is assigned the same colors.

More precisely, for a given list of bids B and list of asks A, M is a matching
iff, (1) All the bid-ask pairs in M are matchable, (2) BM is duplicate-free, (3)
AM is duplicate-free, (4) BM ⊆ B, and (5) AM ⊆ A.

Definition 1. matching_in B A M := All_matchable M ∧ NoDup BM ∧
NoDup AM ∧ BM ⊆ B ∧ AM ⊆ A.

8 Suneel Sarswat and Abhishek Kr Singh

The term NoDup BM in the above definition indicates that each bid is a
request to trade one unit of the item and the items are indivisible. We use the
term BM ⊆ B to express that each element in the list BM comes from the list
B.

Let B(≥ p) represents the bids in B whose limit price is greater than or
equal to a given price p. In other words, the quantity |B(≥ p)| represents the
total demand of the product at a given price p in the market. Similarly, we can
use A(≤ p) to represent all the asks in A whose limit price is less than or equal
to the given price p. Hence, the quantity |A(≤ p)| represents the total supply of
the product at the given price p.

Although, in general we can not say much about the relationship between
the total demand (i.e. |B(≥ p)|) and supply (i.e. |A(≤ p)|) at an arbitrary price
p, we can certainly prove the following important result about the matched bid
ask pairs.

Lemma 1. buyers_above_ge_sellers(M: list fill_type) (B: list Bid) (A: list
Ask): ∀ p, matching_in B A M → |BM (≥ p)| ≥ |AM (≥ p)|.

Lemma 1 claims that in any valid trade output M and for a given price p,
the total volume of bids willing to buy at or above the price p is equal to or
higher than the total volume of asks willing to sell at a limit price at least p.

Similarly, we prove Lemma 2 which states that, In a matching M , the total
volume of bids willing to buy at or below a price p is equal to or smaller than
the total volume of asks willing to sell at a limit price at most p.

Lemma 2. sellers_below_ge_buyers (M: list fill_type) (B: list Bid) (A: list
Ask): ∀ p, matching_in B A M → |BM (≤ p)| ≤ |AM (≤ p)|.

Additionally, we have the following lemma which provides an upper bound
on the cardinality of a matching M using |BM (≥ p)| and |AM (≤ p)| at a price
p.

Lemma 3. maching_buyer_right_plus_seller_left (M: list fill_type) (B:list Bid)
(A:list Ask): ∀ p, (matching_in B A M) → |M | ≤ |BM (≥ p)| + |AM (≤ p)|.

It is important to note that the total demand at a certain price p in the
market is always greater or equal to the matched demand at a price p or above
(i.e. |B(≥ p)| ≥ |BM (≥ p)|). Similarly, for total supply at a price p we have
|A(≤ p)| ≥ |AM (≤ p)|. These facts when put together with Lemma 3 can help
us prove the following result.

Theorem 1. bound_on_M (M: list fill_type) (B:list Bid) (A:list Ask): ∀ p,
(matching_in B A M) → |M | ≤ |B(≥ p)| + |A(≤ p)|.

It states that no matching M can achieve a trade volume higher than the sum
of the total demand and supply in the market at any given price.

Formally Verified Trades in Financial Markets 9

2.3 Individually Rational Trades

An auctioneer assigns a trade price to each matched bid-ask pair. Since the limit
price for a buyer is the price above which she does not want to buy, the trade
price for this buyer is expected to be below her limit price. Similarly, the trade
price for the seller is expected to be above his limit price. Therefore, in any
matching it is desired that the trade price of a bid-ask pair lies between their
limit prices. A matching which has this property is called an individual rational
(IR) matching.

Definition 2. Is_IR M := ∀ m, m ∈ M → ((bid_of m) ≥ tp m) ∧ (tp m ≥
(ask_of m)).

Note that any matching can be converted to an IR matching without altering
its bid-ask pair (See Fig 2). Hence we have the following result,

Theorem 2. exists_IR_matching: ∀ M B A, matching_in B A M → (∃ M ′,
BM = B′

M ∧ AM = A′
M ∧ matching_in B A M ′ ∧ Is_IR M ′).

]

]

69

69

]

]

82

82

]

]

91

91

]

]

112

112

]

]

125

125

[

[

53

53

[

[

79

79

[

[

85

85

[

[

98

98

[

[

113

113

M2

M1

Fig. 2: The colored dots represent trade prices for matched bid-ask pairs.
Matching M2 is not IR but M1 is IR, even though both the matchings contain

exactly the same bid-ask pairs.

2.4 Fairness in Competitive Markets

A bid with higher limit price is considered more competitive compared to bids
with lower limit prices. Similarly, an ask with lower limit price is considered
more competitive compared to asks with higher limit prices. In a competitive
market, more competitive traders are prioritized for matching. A matching which
prioritizes more competitive traders is called a fair matching.

Definition 3. fair_on_bids M B:= ∀ b b′, b ∈ B ∧ b′ ∈ B → b > b′ → b′ ∈ BM

→ b ∈ BM .

Definition 4. fair_on_asks M A:= ∀ s s′, s ∈ A ∧ s′ ∈ A → s < s′ →
s′ ∈ AM → s ∈ AM .

10 Suneel Sarswat and Abhishek Kr Singh

Definition 5. Is_fair M B A:= fair_on_asks M A ∧ fair _on_bids M B.

Here, the predicate fair_on_bids M B states that the matching M is fair for
the list of buyers B. Similarly, the predicate fair_on_asks M A states that the
matching M is fair for the list of sellers A. A matching which is fair on bids as
well as asks is expressed using the predicate Is_fair M B A. Now we can state
and prove the following result which states that a fair matching can always be
achieved without compromising the cardinality of the matching.

Theorem 3. exists_fair_matching (Nb: NoDup B) (Na: No Dup A): match-
ing_in B A M → (∃ M ′, matching_in B A M ′ ∧ Is_fair M ′ B A ∧ |M | =
|M ′|).
Proof Idea. We prove this statement by converting a matching into a fair match-
ing without changing its cardinality. In order to achieve this we use functions
make_FOB and make_FOA (See Fig 3). The function make_FOB produces
a matching which is fair on bids from an input matching M and a list of bids
B both of which are sorted in decreasing order of their bid prices (Lemma 8).
Moreover, since make_FOB does not change any of the asks in M, it results in
a matching of size |M |. Once we get a fair matching on bids, we use a similar
function make_FOA to produce a matching which is fair on the asks. Finally, the
correctness proofs of make_FOB and make_FOA can be composed to complete
the proof of the present theorem. �

37

69

82

83

91

112

120

125

53

79

85

90

94

98

113

121

37

69

82

83

91

112

120

125

53

79

85

90

94

98

113

121

37

69

82

83

91

112

120

125

53

79

85

90

94

98

113

121

B A B A B A

M1 M2 M3

Make_FOB Make_FOA

Fig. 3: The dotted lines represent matched bid-ask pairs. The function
make_FOB changes M1 into a fair matching on bids M2, whereas make_FOA

changes M2 into a fair matching on asks M3.

The functions make_FOB and make_FOA are both recursive in nature and
have identical definitions. Therefore, it is sufficient to discuss the properties of
make_FOB which is defined recursively as follows.

Fixpoint Make_FOB (M) (B):= match (M,B) with
|(nil,_) => nil
|(m::M',nil) => nil
|(m::M',b::B') => (Mk_fill b (ask_of m) (tp m))::(Make_FOB M' B')
end.

Formally Verified Trades in Financial Markets 11

In each step the function make_FOB picks the top bid-ask pair, say (b, a)
in M1 and replaces b with the most competitive bid available in B, resulting
in a matching M2 (See Fig. 3). Note that make_FOB does not change any of
the asks in M. Moreover, due to the recursive nature of make_FOB on B, a
bid is not repeated in the process of replacement (i.e., BM2

is duplicate-free).
Therefore, we would like to have the following lemma.

Lemma 4. ∀ M B, (Sorted ↓bp M) → (Sorted ↓bp B) → matching_in B A M
→ fair_on_bids (Make_FOB M B) B.

Induction Failure: The function make_FOB is recursive on both B and M ,
and hence a proof of this lemma is expected using an inductive argument on
the structure of B. Although the theorem is true, an attempt to prove it using
induction on B will fail. Let M = (b1, a1) :: (b2, a2) :: M

′′ and B = b2 :: b1 :: B′′,
where both B and M are sorted by decreasing bid prices and (bp b1) = (bp b2).
After the first iteration, the make_FOB will calls itself on M ′ = (b2, a2) :: M

′′

and B′ = (b1 :: B′′). In the inductive proof, in order to use the induction
hypothesis we need to prove that M ′ is a matching for the list of bids in B′. This
is clearly not true sinceBM ′ is not a subset ofB′ since b2 /∈ B′ but b2 ∈ BM ′ . This
complication arises because we are dealing with all the information contained in
the bids while the proof requires reasoning only based on their limit prices. We
resolve this difficulty by systematically mapping the properties of M , B and A
to the properties of their corresponding price columns. For example, we have the
following result on the prices of B.

Lemma 5. sorted_nodup_is_sublistB: ∀ B1 B2, NoDup B1 → NoDup B2 →
Sorted ↓bp B1 → Sorted ↓bp B2 → B1 ⊂ B2 → sublist PB1

PB2
.

Here, PB is projection of the limit prices of bids in B. The term (sublist PB1

PB2) represents the sub-sequence relation between the lists PB1 and PB2 . Fur-
thermore, we have the following lemmas specifying the sub-list relation between
lists.

Lemma 6. sublist_intro1: ∀ a, sublist l s → sublist l (a::s).

Lemma 7. sublist_elim3a: ∀ a e, sublist (a::l) (e::s) → sublist l s.

Note the recursive nature of the sublist relation on both its arguments, as
evident in Lemma 7. It makes inductive reasoning feasible for the statements
where sublist is in the antecedent. Hence, we use the sublist relation to state
and prove the following result.

Lemma 8. mfob_fair_on_bid M B: (Sorted ↓bp M) → (Sorted ↓bp B) → sub-
list PBM

PB → fair_on_bids (Make_FOB M B) B.

Similarly, we can state and prove the following result which specifies the
function make_FOA.

Lemma 9. mfob_fair_on_ask M A: (Sorted ↑sp M) → (Sorted ↑sp A) → sub-
list PAM

PA → fair_on_asks (Make_FOA M A) A.

12 Suneel Sarswat and Abhishek Kr Singh

Since the fair matching is obtained by composing the functions Make_FOA
and Make_FOB, we can combine the proofs of Lemma 9 and Lemma 8 to obtain
the complete proof of Theorem 3.

2.5 Liquidity and Perceived-fairness in the Markets

The liquidity in any market is a measure of how quickly one can trade in the
market without much cost. One way to increase the liquidity is to maximize the
number of matched bid-ask pairs. For a given list of bids B and list of asks A
we say a matching M is a maximum matching if no other matching M ′ on the
same B and A contains more matched bid-ask pairs than M .

Definition 6. Is_MM M B A := (matching_in B A M) ∧ (∀ M ′, match-
ing_in B A M ′ → |M ′| ≤ |M |).

Designing a mechanism for a maximum matching is an important aspect of
a double sided auction. In certain situations, to produce a maximum matching,
bid-ask pairs must be assigned different trade prices (Fig. 4). However, different
prices simultaneously for the same product leads to dissatisfaction amongst some
of the traders. A mechanism which clears all the matched bid-ask pairs at a single
trade price is called a uniform matching (or perceived-fairness).

80

100

90

70

80

100

90

70

B A B A

(a) UM (b) MM

Fig. 4: The only individually rational matching of size two is not uniform.

3 Optimizing Trades in Financial Markets

In Section 2.5, we observed that a maximum matching may not be a uniform
matching. In this Section, we present two broad classes of double sided auction
mechanisms: a maximum matching mechanism and a uniform price mechanism.
While the maximum matching mechanism tries to maximize the overall volume
of the trade, the uniform price mechanism tries to obtain a uniform matching of
maximum possible cardinality.

3.1 A Maximum Maching Mechanism

We will now discuss a matching mechanism which produces maximum trade
volume while maintaining the fairness criterion. This scheme produces the same

Formally Verified Trades in Financial Markets 13

output as the one proposed in [14]. However, there are some important differences
in both mechanisms. The algorithm suggested in [14] is a non recursive method
which generates the final trade in two steps; the algorithm first determines the
cardinality n of a maximum matching on the given set of bids and asks and
then in the next step it produces a fair matching of cardinality n. On the other
hand, we use a recursive function produce_MM on the lists of bids and asks
to produce a maximum matching which is then converted into a fair matching
using the already defined function make_FOA (See Fig. 5(a)). We follow this
approach because it allows us to easily compose the correctness proof of these
individual functions to validate the properties of the final trade generated by the
whole mechanism.

37

69

82

83

91

112

120

125

53

79

85

90

94

98

113

121

37

69

82

83

91

112

120

125

53

79

85

90

94

98

113

121

37

69

82

83

91

112

120

125

53

79

85

90

94

98

113

121

37

69

82

83

91

112

120

125

53

79

85

90

94

98

113

121

B A B A B A B A

(a) MM (b) UM

produce_MM Make_FOA

Fig. 5: (a) At each iteration produce_MM selects a most competitive available
bid and then pairs it with the largest matchable ask. The output of this

function is already fair on bids. In the second step, the function make_FOA
converts this output into fair matching. (b) Maximum matching amongst

uniform. Note that, the size of both the matchings are different.

Fixpoint produce_MM (B) (A) := match (B, A) with
|(nil, _) => nil
|(b::B', nil) => nil
|(b::B', a::A') => match (a <= b) with

|true => {|bid_of:=b; ask_of:=a; tp:=(bp b)|}::(produce_MM B' A')
|false => produce_MM B A'
end

end.

The correctness proof of produce_MM is obtained using an inductive argu-
ment on the structure of the input lists. At each iteration produce_MM generates
a matchable bid-ask pair (See Fig. 5(a)). Due to the recursive nature of func-
tion produce_MM on both B and A, it never pairs any bid with more than one
ask. This ensures that the list of bids in matching (i.e. BM) is duplicate-free.
Note that produce_MM tries to match a bid until it finds a matchable ask. The
function terminates when either all the bids are matched or it encounters a bid
for which no matchable ask is available. The following theorem states that the
function produce_MM produces a maximum matching when both B and A are
sorted in a decreasing order of the limit prices.

14 Suneel Sarswat and Abhishek Kr Singh

Theorem 4. produce_MM_is_MM (Nb: NoDup B) (Na: NoDup A): Sorted
↓bp B → Sorted ↓sp A → Is_MM (produce_MM B A) B A.

The proof idea for the above theorem has been moved to Appendix A.1.
Now that we proved the maximality property of produce_MM we can pro-

duce a fair as well as maximum matching by applying the functions Make_FOA
and Make_FOB to the output of produce_MM. More precisely, for a given list
of bids B and list of asks A, we have the following result stating that there exists
a matching which is both maximum and fair.

Theorem 5. exists_fair_maximum (B: list Bid)(A: list Ask): ∃ M , (Is_fair
M B A ∧ Is_MM M B A).

3.2 Trading at Equilibrium Price

An important aspect of the opening session of a market is to discover a single
price (equilibrium price) at which maximum demand and supply can be matched.
Most exchanges execute trade during this session at an equilibrium price. An
equilibrium price determined at exchanges is usually the limit price of a bid or
ask from a bid-ask pair such that the uniform matching produced in this session
remains individual rational. We will now describe a function produce_UM which
produces an individually rational matching which is fair and maximum among
all uniform matchings.

Fixpoint pair_uniform (B:list Bid) (A:list Ask):= match (B,A) with
|(nil, _) => nil
|(_,nil)=> nil
|(b::B',a::A') => match (a <= b) with

|false => nil
|true =>{|bid_of:= b;ask_of:= a; tp:=(bp b)|}::pair_uniform B' A'
end

end.
Definition uniform_price B A := bp (bid_of (last (pair_uniform B A))).
Definition produce_UM B A:=
replace_column (pair_uniform B A) (uniform_price B A).

The function pair_uniform output bid-ask pairs, uniform_price computes
the uniform price and finally produce_UM produces a uniform matching. The
function pair_uniform is recursive and matches the largest available bid in B
with the smallest available ask in A at each iteration (See Fig. 5(b)). This func-
tion terminates when the most competitive bid available in B is not matchable
with any available ask in A.

The following theorem states that the function produce_UM produces a max-
imum matching among all uniform matchings when the list of bids B is sorted
in a decreasing order of the limit prices and the list of asks A is sorted in an
increasing order of the limit prices.

Theorem 6. UM_is_maximal_Uniform (B: list Bid) (A:list Ask): Sorted ↓bp
B → Sorted ↑sp A → ∀ M , Is_uniform M → |M | ≤ |produce_UM B A|.

Formally Verified Trades in Financial Markets 15

The proof idea for the above theorem has been moved to Appendix A.2.
Next, we prove that the produce_UM generates a maximum matching among

all uniform matchings which is also fair when the list of bids B is sorted in a
decreasing order of the limit prices and the list of asks A is sorted in an increasing
order of the limit prices. In order to prove this, we first prove the following two
lemmas.

Lemma 10. UM_pair_fair_on_asks (B: list Bid) (A:list Ask): Sorted ↓bp B
→ Sorted ↑sp A → fair_on_asks (pair_uniform B A) A.

Lemma 11. UM_pair_fair_on_bids (B: list Bid) (A:list Ask): Sorted ↓bp B
→ Sorted ↑sp A → fair_on_bids (pair_uniform B A) B.

Theorem 7. UM_fair (B: list Bid) (A:list Ask)(m:fill_type): Sorted ↓bp B →
Sorted ↑sp A → Is_fair (produce_UM B A) B A.

The proof of Theorem 7 is similar to the proof of Theorem 3 once we use
Lemmas 10 and 11.

4 Conclusion and Future Works

In this work, we developed a formal framework to verify important properties of
matching algorithms used by the exchanges. These algorithms use double sided
auctions to match multiple buyers with multiple sellers during different sessions
of trading. We presented correctness proofs for two important classes of double
sided auction mechanisms: uniform price algorithms and maximum matching
algorithms.

An important direction of future work is the individual analysis of various
orders types which are important for the continuous markets (e.g. limit orders,
market orders, stop-loss orders, iceberg orders, fill or kill (FOK), immediate or
cancel (IOC) etc.). This would require maintaining a priority queue based on
the various attributes of these orders. A formal analysis of these order attributes
together with the verification of trading mechanisms can provide a formal foun-
dation which will be useful in the rigorous analysis of other market behaviors at
large. Also for continuous markets, due to the various order types, it becomes
important to consider multiple unit orders which requires more work. Moreover,
the insights gained from these attempts to formalize the overall trading mecha-
nism can be helpful in developing robust as well as efficient trading systems of
the future which can be used directly at the exchanges.

Acknowledgment

We thanks N. Raja and Mohit Garg for many useful suggestions and discussions
that has improved this work.

16 Suneel Sarswat and Abhishek Kr Singh

References

1. Coq formalization. https://github.com/suneel-sarswat/auction.
2. Patrick Bahr, Jost Berthold, and Martin Elsman. Certified symbolic management

of financial multi-party contracts. In Proceedings of the 20th International Con-
ference on Functional Programming, pages 315–327. ACM, 2015.

3. Marco B. Caminati, Manfred Kerber, Christoph Lange, and Colin Rowat. Sound
auction specification and implementation. In Proceedings of the Sixteenth ACM
Conference on Economics and Computation, pages 547–564. ACM, 2015.

4. Iliano Cervesato, Sharjeel Khan, Giselle Reis, and Dragisa Zunic. Formalization
of automated trading systems in a concurrent linear framework. In Linearity-
TLLA@FLoC, volume 292 of EPTCS, pages 1–14, 2018.

5. Daniel Friedman. The double auction market institution: A survey. The double
auction market: Institutions, theories, and evidence, 14:3–25, 1993.

6. Larry Harris. Trading and exchanges: Market microstructure for practitioners.
Oxford University Press, USA, 2003.

7. Thomas A Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire Sutre. Soft-
ware verification with blast. In International SPIN Workshop on Model Checking
of Software, pages 235–239. Springer, 2003.

8. S. Peyton Jones, J.-M. Eber, and J. Seward. Composing contracts: An adventure
in financial engineering. In Proc. 5th Int. Conf. on Functional Programming, pages
280–292, September 2000.

9. J.R. Burch, E.M. Clarke, and K.L. McMillan. Sequential circuit verification using
symbolic model checking. In 27th Design Automation Conference, pages 46–51,
1990.

10. Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, et al. sel4:
Formal verification of an os kernel. In Proceedings of the ACM SIGOPS 22nd
symposium on Operating systems principles, pages 207–220. ACM, 2009.

11. Christoph Lange, Marco B Caminati, Manfred Kerber, Till Mossakowski, Colin
Rowat, Makarius Wenzel, and Wolfgang Windsteiger. A qualitative comparison of
the suitability of four theorem provers for basic auction theory. In International
Conference on Intelligent Computer Mathematics, pages 200–215. Springer, 2013.

12. Xavier Leroy. A formally verified compiler back-end. Journal of Automated Rea-
soning, 43(4):363, 2009.

13. R Preston McAfee. A dominant strategy double auction. Journal of economic
Theory, 56(2):434–450, 1992.

14. Jinzhong Niu and Simon Parsons. Maximizing matching in double-sided auctions.
In International conference on Autonomous Agents and Multi-Agent Systems, AA-
MAS ’13, Saint Paul, MN, USA, May 6-10, 2013, pages 1283–1284, 2013.

15. Grant Olney Passmore and Denis Ignatovich. Formal verification of financial al-
gorithms. In 26th International Conference on Automated Deduction, Proceedings,
volume 10395 of Lecture Notes in Computer Science, pages 26–41. Springer, 2017.

16. Securities Exchange Board of India (SEBI). Order in the matter of NSE Colocation.
April 30, 2019.

17. Emmanuel M. Tadjouddine, Frank Guerin, and Wamberto Weber Vasconcelos.
Abstracting and verifying strategy-proofness for auction mechanisms. In DALT,
volume 5397 of Lecture Notes in Computer Science, pages 197–214. Springer, 2008.

18. U.S. Securities and Exchange Commision (SEC). NYSE to Pay US Dollar 14 Mil-
lion Penalty for Multiple Violations. https://www.sec.gov/news/press-release/
2018-31. March 6, 2018.

https://www.sec.gov/news/press-release/2018-31
https://www.sec.gov/news/press-release/2018-31

Formally Verified Trades in Financial Markets 17

19. U.S. Securities and Exchange Commision (SEC). SEC Charges NYSE for Repeated
Failures to Operate in Accordance With Exchange Rules. https://www.sec.gov/
news/press-release/2014-87. May 1, 2014.

20. Peter R. Wurman, William E. Walsh, and Michael P. Wellman. Flexible double
auctions for electronic commerce: theory and implementation. Decision Support
Systems, 24(1):17–27, 1998.

https://www.sec.gov/news/press-release/2014-87
https://www.sec.gov/news/press-release/2014-87

18 Suneel Sarswat and Abhishek Kr Singh

A Appendix

A.1 Proof idea for Theorem 5.

Theorem. produce_MM_is_MM (Nb: NoDup B) (Na: NoDup A): Sorted ↓bp
B → Sorted ↓sp A → Is_MM (produce_MM B A) B A.

Proof Idea: We prove this result using induction on the cardinality of list A. Let
M be an arbitrary matching on the list of bids B and list of asks A. Moreover,
assume that b and a are the topmost bid and ask present in B and A, respectively
(i.e. A = (a :: A′) and B = (b :: B′)). We prove |M | ≤ |produce_MM B A| in
the following two cases.
Case-1 (b < a): In this case the function produce_MM computes a matching on
B and A′. Note that due to the induction hypotheses (i.e. IH) this is a maximum
matching for B and A′. Since the limit price of ask a is more than the most
competitive bid b in B, it cannot be present in any matching of B and A.
Therefore a maximum matching on B and A′ is also a maximum matching on
B and A. Hence we have |M | ≤ | produce_MM B A |.
Case-2 (a ≤ b): In this case produce_MM produces a matching of cardinality
m + 1 where m is the cardinality of matching produce_MM B′ A′. We need to
prove that |M | ≤ m + 1. Note that due to induction hypothesis the matching
produce_MM B′ A′ is a maximum matching on B′ and A′. Hence no matching
on B′ and A′ can have cardinality bigger than m. Without loss of generality, we
can assume that M is also sorted in a decreasing order of bid prices. Now we
further split this case into the following five subcases (see Fig 6).

. C2-A (M = (b, a) :: M ′) : In this case bid b is matched to ask a in the
matching M (see Fig 6 (a)). Note that M ′ is a matching on B′ and A′. Since
|M ′| ≤ m, we have |M | = |M ′|+ 1 ≤ m+ 1.

. C2-B (b /∈ BM ∧ a /∈ AM) : In this case neither bid b nor ask a is present
in matching M (see Fig 6 (b)). Therefore M is a matching on B′ and A′. Hence
we have |M | ≤ m < m+ 1.

. C2-C (b, a′) ∈ M ∧ (b′, a) ∈ M : In this case we can obtain another
matching M1 of the same cardinality as M (see Fig 6 (c)) where (b, a) ∈M1 and
(b′, a′) ∈M1. Note that all other entries of M1 is same as M . Therefore we have
M1 = (b, a) :: M ′ where M ′ is a matching on B′ and A′. Since |M ′| ≤ m, we
have |M | = |M1| ≤ m+ 1.

. C2-D (b, a′) ∈M ∧ a /∈ AM : In this case we can obtain another matching
M1 of same cardinality as M (see Fig 6 (d)) where (b, a) ∈ M1. Therefore we
have M1 = (b, a) :: M ′ where M ′ is a matching on B′ and A′. Since |M ′| ≤ m,
we have |M | = |M1| ≤ m+ 1.

. C2-E (b′, a) ∈M ∧ b /∈ BM : In this case we can obtain another matching
M1 of same cardinality as M (see Fig 6 (e)) where (b, a) ∈ M1. Therefore we
have M1 = (b, a) :: M ′ where M ′ is a matching on B′ and A′. Since |M ′| ≤ m,
we have |M | = |M1| ≤ m+ 1. �

Note that all the cases in the above proof correspond to predicates which can
be expressed using only the membership predicate on lists. Since we have decid-

Formally Verified Trades in Financial Markets 19

able equality on the elements of the lists all these predicates are also decidable.
Hence, we can do case analysis on them without assuming any axiom.

b a b a b a b a

b a b a b a b a

B
′

B
′

B
′

B
′

B
′

B
′

B
′

B
′

A
′

M

A
′

M1

A
′

M

A
′

M1

A
′

M

A
′

M

A
′

M

A
′

M1

a
′

a
′

b
′

b
′

b
′

a
′

b
′

a
′

(d)

=⇒

(e)

=⇒

(c)

=⇒

(a) (b)

Fig. 6: Five subcases of Case-2. The dotted line shows a matched bid-ask pair
in M . Both B and A are sorted in decreasing order of their limit prices.

A.2 Proof idea for Theorem 6.

Theorem. UM_is_maximal_Uniform (B: list Bid) (A:list Ask): Sorted ↓bp B
→ Sorted ↑sp A → ∀ M , Is_uniform M → |M | ≤ |(produce_UM BA)|.

The proof of this Theorem is very similar to the proof of Theorem A.1. We
prove it using induction on A. Observe that, if M is a uniform matching then
every bid b ∈ BM is matchable with every other ask a ∈ AM .

Let M be an arbitrary matching on B and A which is uniform and individual
rational and the uniform trade price is p. It is suffice to prove that |M | ≤
|(produce_UM BA)|. With the induction on A, we get the following cases.

I A = nil ∨ B = nil: In this case: |M | = |(produce_UM BA)| = 0.
II A = a :: A′ ∧B = b :: B′: In this case either b < a or b ≥ a. When b < a,

we can prove that |M | = 0 and |(produce_UM BA)| = 0. It is easy to see
that if the largest bid (b) is not matchable with the smallest ask (a) then no
other bid can match with any other ask and the size of any matching in this
case is zero. When b ≥ a there are three possibilities. (a) Either both b and
a appears in the bid-ask pairs of M , (b) Only one of the b or a appears in

20 Suneel Sarswat and Abhishek Kr Singh

the bids or asks of M and (c) When both of them does not appears in the
BM or AM .
Note that, since we are doing induction on A, we get the following induction
hypothesis.

∀B, Is_uniformM ′ BA′ → (|M ′|) ≤ |(produce_UM BA′)| (1)

Now we need to prove that |M | ≤ |(produce_UM BA)| where M is a uni-
form and IR matching in B and A. Observe that (produce_UM BA) will
pair b with a in first iteration so

|(produce_UM BA)| = |(produce_UM B′ A′)|+ 1 (2)

(a) Both b and a appears in bids and asks of M : Let m1,m2 ∈ M such
that a = ask_of m1 and b = bid_of m2. Now consider a matching M ′′

such that M ′′ = (b, a, p) :: (bid_of m1, ask_of m2, p) :: (M \{m1,m2}).
It is easy to see M ′ = (bid_of m1, ask_of m2, p) :: (M \ {m1,m2})
is a uniform matching on B′ and A′ and |M ′′| = |M ′| + 1. From the
induction hypothesis and equation after first iteration we see that |M | =
|M ′′| = |M ′| + 1 ≤ |(produce_UM B′ A′)| + 1 = |(produce_UM BA)|.
Observe that when m1 = m2 we have M ′′ = (b, a, p) :: (M \ {m1}) and
M ′ = (M \ {m1}).

(b) Either b or a appears in bids or asks of M : Let b appears in the bids
of M and b = bid_of m for some m ∈ M . Consider the matching M ′′

such that M ′′ = (b, a, p) :: (M \ {m}). The matching M ′ = (M \ {m})
is a uniform matching on B′ and A′ and |M | = |M ′′| = |M ′| + 1 ≤
(|produce_UM B′ A′)| + 1 = |(produce_UM BA)|. The proof for the
instance when a appears in the asks of M is identical to this.

(c) Neither b nor a appears in bids or asks of M : Consider the matching M ′′

such that M ′′ = (b, a, p) :: M . The matching M is a uniform matching
on B′ and A′ and |M | < |M ′′| = |M |+1 ≤ |(produce_UM B′ A′)|+1 =
|(produce_UM BA)|.

	Formally Verified Trades in Financial Markets

