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Abstract. Executable Domain-Specific Languages (DSLs) are a promis-
ing paradigm in software systems development because they are aiming
at performing early analysis of a system’s behavior. They can be simu-
lated and debugged by existing Model-Driven Engineering (MDE) tools
leading to a better understanding of the system before its implementa-
tion. However, as the quality of the resulting system is closely related
to the quality of the DSL, there is a need to ensure the correctness
of the DSL and apply execution engines with a high level of trust. To
this aim we developed Meeduse, a tool in which the MDE paradigm
is mixed with a formal method assisted by automated reasoning tools
such as provers and model-checkers. Meeduse assists the formal defini-
tion of the DSL static semantics by translating its meta-model into an
equivalent formal B specification. The dynamic semantics can be defined
using proved B operations that guarantee the correctness of the DSL’s
behavior with respect to its safety invariant properties. Regarding execu-
tion, Meeduse applies the ProB animator in order to animate underlying
domain-specific scenarios.

Keywords: B Method · Domain-specific languages · MDE

1 Introduction

Model Driven Engineering (MDE) tools allow a rapid prototyping of domain-
specific Languages (DSLs) with automated editor generation, integrated type-
checking and contextual constraints verification, etc. This technique is powerful
and provides a framework to implement the dynamic semantics of the language
or to build compilers that translate the input formalism into another one (e.g.
bytecode, programming language or another DSL). However, the major draw-
back of this approach is that the underlying verification and validation activities
are limited to testing, which makes difficult the development of bug-free lan-
guage analysers and compilers. When these tools are used for safety-critical or
high-assurance software, [20] attests that “validation by testing reaches its limits
and needs to be complemented or even replaced by the use of formal methods
such as model checking, static analysis, and program proof ”. Formal methods
demonstrated their capability to guarantee the safety properties of languages
c© Springer Nature Switzerland AG 2020
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2 A. Idani

and associated tools [7]; nonetheless, there is a lack of available tools to bridge
the gap between MDE and formal methods for the development of DSLs.

In our works we apply the B method [1] to formally define the semantics that
make a DSL executable and hence guarantee the correctness of its behaviour.
The challenge of executing a DSL is not new and was widely addressed in the
literature at several abstraction levels with various languages [5,12,23,29]. An
executable DSL would not only represent the expected system’s structure but it
must itself behave as the system should run. The description of this behaviour
also applies a language with its own abstract syntax and semantic domain. Unfor-
tunately, most of the well-known existing DSL development approaches apply
languages and tools that are not currently assisted by formal proofs.

In [16] we showed that there is an equivalence between the static semantics
of DSLs and several constructs of the B method. In this paper we present Mee-
duse, a MDE platform built on our previous works [13,16] and whose intention
is to circumvent the aforementioned shortcomings of MDE tools. It allows to
formally check the semantics of DSLs by applying tools of the B method: Ate-
lierB [6] for theorem proving and ProB [21] for animation and model-checking.
The Meeduse approach translates the meta-model of a given DSL, designed in
the Eclipse Modeling Framework (EMF [27]), into an equivalent formal B spec-
ification and then injects a DSL instance into this specification. The strength
of Meeduse is that it synchronises the resulting B specification with the DSL
instance and hence the animation of the B specification automatically leads to
a visual execution of the DSL. This approach was successfully applied on a real-
istic railway case study [14,15] and also to formalize and execute a real-life DSL
transformation [17] which is that of transforming truth tables into binary deci-
sion diagrams. This paper shows how the B method can be integrated within
MDE and presents by practice Meeduse.

Section 2 presents a simple textual DSL built in a MDE tool and discusses
its underlying semantics. Section 3 gives an overall view about the Meeduse app-
roach and architecture and shows how the B method is integrated within a
model-driven architecture. Section 4 applies two approaches to define the DSL
semantics: the meta-model based approach and the CP-net approach. Section 5
summarizes two realistic applications of Meeduse and discusses their results.
Finally, Section 6 draws the conclusions and the perspectives of this work.

2 A Simple DSL

For illustration we apply a well-known DSL builder (Xtext [2]) that allows to
define textual languages using LL(*) grammars and generate a full infrastruc-
ture, including an ANTLR parser API with a type-checker and auto-completion
facilities. We define a simple DSL that represents configuration files edited by
operating system administrators to configure GPU servers. These servers are
packed with graphics cards, called Graphics Processing Units (GPUs) that are
used for high performance computing. Roughly speaking, in a GPU architec-
ture, significant jobs are broken down into smaller computations (called here
processes) that can be executed in parallel by the different GPUs.
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Meeduse: A Tool to Build and Run Proved DSLs 3

Figure 1 gives the Xtext grammar of our DSL; it defines three non-terminal
rules: Server (the axiom), Gpu and Process. Every rule starts by the definition of a
naming identifier (name=ID) representing object declaration. The declaration of
a server object is followed by two declaration lists: that of GPUs (gpus+=Gpu)*
and that of processes (processes+=Process)*. A GPU has a fixed number of
slots: free slots are defined by an Integer value (size=INT) and the occupied
slots directly refer to their occupying processes (usedBy+=[Process]*).

Fig. 1. Example of an Xtext grammar.

Given a grammar, Xtext applies ANTLR to generate a Java API for a parser
that can build and walk the abstract syntax tree (AST). One interesting feature
of Xtext is that it defines the language AST by means of an EMF meta-model
[27], which makes possible the integration of MDE tools that are built on top
of EMF like OCL constraints checker, etc. Figure 2 provides the EMF meta-
model of our DSL. It is composed of three classes, each of which is issued from
a grammar rule. The grammar axiom is the root class of this meta-model and
the associations represent the various object relationships.

Fig. 2. The GPU server meta-model

Figure 3 presents the textual editor produced by Xtext for our DSL. In this
file, the system administrator defined a server (GPUServer) with two GPUs (GPU1
and GPU2), and five processes (from p1 to p5). Process p2 is assigned to GPU1
and process p1 is assigned to both GPU1 and GPU2.

The DSL’s grammar and the corresponding meta-model define the static
semantics. Regarding the dynamic semantics, we informally define them with
the following process scheduling actions:

– enqueue/purge: respectively assign and de-assign processes to a GPU server.
Technically action enqueue declares a process in the DSL file, and action
purge removes a process from this file. When assigned to the server the initial
state of the process is Waiting.
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4 A. Idani

Fig. 3. Generated Xtext textual editor

– ready: assigns a GPU with at least one free slot to a waiting process. The
process becomes then Active. If all GPUs are busy, the process enters in an
intermediary state called Ready.

– swap: releases a slot by deactivating the corresponding process (the process
becomes Waiting) and allocates the freed GPU slot to some ready process
(the latter becomes then Active).

These actions must guarantee the following safety properties:

– The number of free slots cannot be negative;
– A process cannot be running on more than one GPU;
– If there is a Ready process then all GPUs are busy;
– A process cannot be Active and Ready or Active and Waiting or Ready and

Waiting at the same time;
– An Active process is assigned to a GPU;
– Waiting and Ready processes are not assigned to GPUs.

3 The Meeduse Approach

In MDE, the implementation of DSLs is derived from their meta-models and as
the semantics of meta-models is standardized [24] (by the Object Management
Group − OMG), the underlying DSL implementation and associated tool-set
code generation follow well established rules. This makes the integration of MDE
tools easy and transparent. In fact, there are numerous MDE tools with various
purposes: model-to-model transformation, model-to-code generation, constraint-
checkers, graphical concrete syntax representation, bi-directional DSL mappings,
etc. All these tools have the ability to work together using shared DSLs, as far as
the semantics of these DSLs are defined by means of meta-models. The overall
principle of a model-driven architecture is that once a meta-model is instantiated,
MDE tools can be synchronised using the resulting model resource.

3.1 Main Approach

Figure 4 shows how Meeduse integrates the formal B method within MDE tools
in order to build proved DSLs and execute their dynamic semantics. The left
hand side of the figure represents a model-driven architecture where a meta-
model (e.g. Fig. 2) is extracted by Xtext from a DSL grammar (e.g. Fig. 1).
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Meeduse: A Tool to Build and Run Proved DSLs 5

When an input textual file is parsed, a model resource is created as an instance
of the meta-model. Then every modification of the model resource implies a
modification of the textual file, and vice-versa. Thanks to the standard seman-
tics of meta-models, Meeduse can be synchronised with any model resource,
which opens a bridge between MDE tools (Xtext or others) and formal tools like
animators and model-checkers.

Conformant to

B Method

Includes

Animator

Translator

Injector

DSL designers

Define Specify and prove

Instance of

Semantics layer

Modeling layer

Fig. 4. The Meeduse approach.

3.2 Semantics Layer

The Meeduse approach starts by translating the meta-model of a DSL into the
B language. This translation is done by component “Translator” of Fig. 4. The
resulting formal model represents the static semantics of the DSL. It defines the
structural features of the meta-model using B data structures: sets, variables
and typing invariants. This translation applies a classical UML-to-B transfor-
mation technique, because all constructs of a meta-model have an equivalent
in UML. For this purpose component “Translator” embeds B4MSecure [13], an
open-source MDE platform whose advantage, in comparison with other UML-
to-B tools, [8,26] is that it offers an extensibility facility allowing to easily add
new UML-to-B rules or to specialize existing rules depending on the application
context. In Meeduse the application context of UML-to-B rules is that of EMF
meta-models.

A meta-class Class is translated into an abstract set named CLASS repre-
senting possible instances and a variable named Class representing the set of
existing instances. Basic types (e.g. integer, boolean, etc.) become B types (Z,
Bool, etc.), and attributes and references lead to functional relations depending
on their multiplicities. Additional structural invariant properties can be written
in B based on the generated B data. Figure 5 gives clauses SETS, VARIABLES
and INVARIANT generated by Meeduse from the meta-model of Fig. 2.
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6 A. Idani

MACHINE GPUModel
SETS

SERVER;
GPU;
PROCESS

VARIABLES
Server,
Gpu,
Process,
running,
processes,
gpus,
Gpu size

INVARIANT
Server ⊆ SERVER
∧ Gpu ⊆ GPU
∧ Process ⊆ PROCESS
∧ running ∈ Process Gpu
∧ processes ∈ Process Server
∧ gpus ∈ Gpu Server
∧ Gpu size ∈ Gpu → NAT

Fig. 5. Formal DSL static semantics.

During the extraction of the B specifications, the user can strengthen some
properties of the meta-model. For example, attribute size is defined as an integer
in the meta-model, but we translate its type into type NAT in order to limit its
values to positive numbers as stated in the safety properties. The user can also
complete the multiplicities over one-direction associations and apply to them
specific names. For example, from our grammar Xtext generated a one-direction
association from class Gpu to class Process with role usedBy. This means that
the parser doesn’t look at all to the opposite side of the association and hence
it doesn’t check the number of GPUs on which a process is running. During
the translation of this association into B we assigned multiplicity 0. . . 1 to its
opposite side and we gave to it name running. This choice led to the partial
relation named running from set Process to set Gpu.

Operations of this B specification, that may be generated automatically or
even introduced manually, must preserve this structural invariant. For this simple
example, the generated invariant addresses four main static properties: (i) a
process cannot be running on more than one GPU, (ii) the number of free slots
is greater or equal to 0, (iii) processes are assigned to only one server at the
same time, and (iv) GPUs cannot be shared by several servers. The proof of
correctness guarantees that every provided operation never produces a wrong
model − regarding this invariant − such as that of Fig. 3 where property (iii) is
violated. Indeed, a proof-based formal approach is expected to provide error-free
domain-specific operations.

3.3 Modeling Layer

The modeling layer is ensured by components “Injector” and “Animator”. The
“Injector” injects a model resource, issued from any EMF-based modeling tool
(Xtext, Sirius, GMF, etc.) into the B specification produced from the meta-
model. This component introduces enumerations into abstract data structures

A
ut

ho
r 

Pr
oo

f



Meeduse: A Tool to Build and Run Proved DSLs 7

like abstract sets, and produces valuations of the B machine variables. Figure 6
presents clauses SETS and INITIALISATION generated by component “Injec-
tor” from an input model resource where five processes are scheduled and such
that GPU1 is running p2 and GPU2 is running p4 and p5. In this model, GPU2 is
busy and GPU1 has one remaining free slot.

↓ Extraction of B data values ↓
SETS

SERVER={GPUServer} ;
GPU={GPU1, GPU2} ;
PROCESS={p1, p2, p3, p4, p5}

INITIALISATION
Server := {GPUServer}
|| Gpu := {GPU1, GPU2}
|| Process := {p1, p2, p3, p4, p5}
|| running := {(p2 &→ GPU1),(p4 &→ GPU2), (p5 &→ GPU2)}
|| processes := {(p1 &→ GPUServer), (p2 &→ GPUServer),

(p3 &→ GPUServer), (p4 &→ GPUServer),
(p5 &→ GPUServer)}

|| gpus := {(GPU1 &→ GPUServer), (GPU2 &→ GPUServer)}
|| Gpu size := {(GPU1 &→ 1), (GPU2 &→ 0)}

Fig. 6. Valuation of the B machine.

In our approach the execution environment of the DSL is composed of Mee-
duse coupled with ProB, and the domain-specific actions (e.g. enqueue/purge,
ready and swap) are defined as B operations that can be animated by the domain
expert. At the beginning of the animation, the injector produces a B specifica-
tion whose initial state is equivalent to the input model resource. If the input
model is wrong (such as that of Fig. 3) ProB would detect it and the animation
is stopped. In fact, our objective is to safely execute the DSL. Given a correct
input model, component “Animator” keeps the equivalence between the state
of the B specifications and the input model resource all along the animation
process. When a new state is reached, Meeduse translates it back to the model
resource and all MDE tools synchronised with this resource are automatically
updated.

The “Animator” applies a constraint solving approach to compute for every
variable the difference between its value before (v) and its value after (v′) the
animation of a B operation. Then, it applies the equivalent transformation to
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8 A. Idani

the corresponding element in the model resource. Formula v − v′ computes the
values that are removed by the operation, and v′ − v computes the added ones.
Suppose, for example, that from the initial state of Fig. 6 the animation of a given
operation produces the following computation results for variables running and
Gpu size:

1. running – running′ = ∅
2. running′ – running = {(p3 #→ GPU1)}
3. Gpu size – Gpu size′ = {(GPU1 #→ 1)}
4. Gpu size′ – Gpu size = {(GPU1 #→ 0 )}

Having these results, Meeduse transforms the model resource as follows: (1)
and (2) create a link running between objects p3 and GPU1; (3) and (4) modify
the value of attribute size of object GPU1 from 1 to 0. Figure 7 shows how the
input textual file is updated after these modifications: process p3 is now running
on GPU1 and all GPUs became busy.

Fig. 7. Example of an output model.

The reverse translation from a given state of the B machine into the EMF
model resource is limited by the constructs of meta-models that Meeduse is able
to translate into B. If the user adds programmatically some concepts to the
DSL implementation that are not introduced within the EMF meta-model, then
these concepts are missed during the animation. This may happen, for example,
when the DSL encompasses stateful computations that are hand written by
the developer using the Java implementation generated by Xtext. Despite that
Meeduse does not provide a checking facility to ensure that a given model can be
animated, it guarantees that all concepts of the meta-model that are translated
into B are covered during the animation.

3.4 Meeduse Contributions

Figure 8 is a screenshot of Meeduse where the left hand side presents the textual
DSL editor, and the right hand side shows: (1) the list of B operations that can
be enabled, and (2) the current B variable valuations. The B specification used
in this illustration applies B operations that define the domain-specific actions
based on the B data structure extracted from the meta-model. Operation ready
can be applied to p1 or p3 because both are waiting. These processes can also
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Meeduse: A Tool to Build and Run Proved DSLs 9

be purged using operation purge. Regarding the active processes (p2, p4 and
p5) they can be deactivated by operation swap. Playing with these operations in
Meeduse automatically modifies the model resource and then the textual file is
automatically updated. For example, Fig. 7 would result from the animation of
ready[p3]. When ProB animates a B operation, Meeduse gets the new variable
valuations and then it translates back these valuations to the model resource in
order to keep the equivalence between these valuations and the model resource.
The result is an automatic visual animation directly showed in the MDE tools
that are synchronised with the model resource.

Fig. 8. DSL execution in Meeduse.

Several formal tools provide graphic animation and visualization techniques
[11,19,22], which is intended to favour the communication between a formal
methods engineer and the domain expert by using domain-specific visualiza-
tions. The contribution of Meeduse in comparison with these techniques is that
the input model is provided by the domain expert using a dedicated language.
Indeed, in tools like BMotion Studio [19], the domain-specific visualizations (tex-
tual or graphical) are created by the formal methods engineers who often would
like to remedy the poor readability of their own specifications. We believe that
visual animation may result in representations that lack of real-user perspective.

Furthermore, in visual animation tools, mapping a given graphical or tex-
tual representation to the formal specification is a rather time-consuming task
(several days or several weeks as mentioned in [19]) and the creation of cus-
tom visualizations is often done when the formal model reaches an advanced
stage during the modeling process. This may be counterproductive because the
identification of misunderstandings often leads to enhancements of the formal
specifications which in turn impacts the implementation of the visualization.
In Meeduse, since the naming of the B data, generated from the DSL’s static
semantics, are not modified, the formal methods engineers do not need at all
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10 A. Idani

to manage the visualizations by themselves. The Meeduse approach does not
require any manual mapping between the domain-specific representations and
the formal specification.

Meeduse presents also an advancement in comparison with existing
approaches where DSLs are mixed with formal methods [4,28]. In these works,
once the formal model is defined (manually [4] or semi-automatically [28]), they
don’t offer any way to animate jointly the formal model and the domain model.
These techniques start from a DSL definition, produce a formal specification
and then they get lost in the formal process. In [28], the authors propose to use
classical visual animation by applying BMotion Studio [19] to the formal speci-
fications generated from the DSL. Our approach applies well-known MDE tools
for DSL creation (EMF, Xtext, etc.) and automatically manages the equivalence
between the formal model and the domain model.

Specifying typing and semantics rules within Xtext in a formal style was inves-
tigated by the Xsemantics tool [3]. The tool aims at filling the gap between the
theory and the implementation of static type systems and operational semantics
for Xtext-based DSLs. However, it does not provide formal tools for proving the
correctness of these semantics. The detection of errors is done after they happen
while Meeduse keeps the input model in a safe state-space regarding its invari-
ant properties. We believe that the alignment of Meeduse with Xsemantics is an
intersting perspective because typing rules as defined by Xsemantics can be seen
in our case as invariants that must not be violated.

4 Defining the Domain-Specific Actions

The dynamic semantics of the DSL can be defined as additional B specifications
with specific invariants and operations that use the data structures issued from
the static semantics. Meeduse offers two strategies to define these specifications:
(1) the meta-model based approach that generates presetted utility operations
from the meta-model, and (2) the CP-net approach in which the domain-specific
actions are first defined using coloured Petri-nets and then translated into B.

4.1 The Meta-model Based Approach

The meta-model based approach generates a list of presetted utility operations:
getters, setters, constructors and destructors. Figure 9 gives operations extracted
for class Process in order to manage link running with class Gpu.

Operation Process SetGpu creates a link between a GPU (parameter aGpu)
with a given process (parameter aProcess) if the process is not already linked
to the GPU ({(aProcess #→ aGpu)} %⊆ running). Process UnsetGpu is the reverse
operation; it removes the link if it already exits.

The utility operations are correct by construction with respect to the invari-
ants produced automatically from the meta-model structure. Indeed, if the struc-
tural invariants are not manually modified, the AtelierB prover should be able to
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Meeduse: A Tool to Build and Run Proved DSLs 11

Process SetGpu(aProcess, aGpu) =
PRE

aProcess ∈ Process ∧ aGpu ∈ Gpu
∧ {(aProcess &→ aGpu) ⊆'} running

THEN
running := ({aProcess} !− running)

∪ {(aProcess &→ aGpu)}
END;

Process UnsetGpu(aProcess) =
PRE

aProcess ∈ Process
∧ aProcess ∈ dom(running)

THEN
running := {aProcess} !− running

END;

Fig. 9. Example of basic setters.

prove the correctness of the utility operations regarding these invariants. Other-
wise, the operations for which the proof fails must be updated also manually. For
our example, the structural invariants were automatically generated and then
the resulting utility operations didn’t require any manual modification. Meeduse
generated a B specification whose length is about 245 lines of code, with 27 util-
ity operations from which the AtelierB prover generated 43 proof obligations
and proved them automatically.

The advantage of these utility operations is that they guarantee the preser-
vation of the static semantics. In the following, we will use the inclusion mecha-
nism of the B method in order to apply them for the formal specification of the
domain-specific actions (enqueue, purge, ready and swap). Figure 10 gives the
header part and the invariant clause of the proposed specification.

MACHINE DynamicSemantics
INCLUDES GPUModel
VARIABLES

Ready
INVARIANT

Ready ⊆ Process ∧
dom(running) ∩ Ready = ∅ ∧
( ∃ gpu . (gpu ∈ Gpu ∧ Gpu size(gpu) > 0) ⇒ Ready = ∅ )

Fig. 10. Machine DynamicSemantics.

As mentioned in the informal description of our simple DSL, there are active,
ready and waiting processes. In this specification, states active and waiting are
somehow implicit. The domain of relation running (dom(running)) represents
active processes. Thus, processes that are not active, are even ready, if they are
member of set Ready or waiting, otherwise. For space reason, we give only the
example of operation ready (Fig. 11). This operation selects a waiting process
(pp ∈ Process – (dom(running ) ∪ Ready)) and then it decides to activate it (if
there exists a free slot) or to change its state to ready (if all GPUs are busy).
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12 A. Idani

The activation of a process calls two utility operations from machine GPUModel:
Process SetGPU and GPU SetSize.

The AtelierB prover generated from machine DynamicSemantics 39 proof
obligations; 32 were proved automatically and 7 required the use of the interac-
tive prover. These proofs attest that the domain specific actions, written in B,
preserve the invariants of both dynamic and static semantics.

ready =
ANY pp WHERE pp ∈ Process - (dom(running) ∪ Ready) THEN

IF ∃ gpu . (gpu ∈ Gpu ∧ Gpu size(gpu) > 0) THEN
ANY gg WHERE gg ∈ Gpu ∧ Gpu size(gg) > 0 THEN

Process SetGpu(pp,gg) ;
Gpu SetSize(gg, Gpu size(gg) - 1)

END
ELSE

Ready := Ready ∪ {pp}
END

END ;

Fig. 11. Operation ready.

4.2 The CP-net Approach

Meeduse offers a translation of coloured Petri-net models (CP-nets [18]) into B
in order to help build the dynamic semantics using a readable graphical notation.
CP-nets combine the strengths of classical Petri-nets (i.e. formal semantics) with
the strengths of high-level visual languages (i.e. communication and readability)
[10]. A CP-net model is an executable representation of a system consisting of the
states of the system and the events or transitions that cause the system to change
its state. Despite of a small basic vocabulary, CP-nets allow great flexibility in
modeling a variety of application domains, including communication protocols,
data networks, distributed algorithms, embedded systems, etc. All these domains
apply their own DSLs and hence the CP-net approach of Meeduse coupled with
DSLs, can have a wide range of applications.

The two main notions of CP-nets are: Places and Transitions. Places repre-
sent abstractions on data values (called tokens or colours in the CP-net vocabu-
lary). A place is related to a data-type (called colour-set) that can be simple (i.e.
Integer, Boolean, etc.) or complex (i.e. sequences, products, etc.). In Meeduse,
colour-sets refer to the possible types provided by the B language. Regarding
transitions, they are linked to input and output places. When fired, a transi-
tion consumes tokens from its input places and introduces tokens into its output
places. In our approach, places represent B variables and transitions are B oper-
ations. We identify three kinds of places: existing, new and derived.
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Meeduse: A Tool to Build and Run Proved DSLs 13

– Existing: refer to the B variables extracted from the meta-model (Fig. 5).
These places must be assigned to the variables of the B machine.

– New: refer to additional variables that are useful to define the DSL’s
behaviour, such as the Ready state of processes. For these places the user
must provide its type and initial value using the B language.

– Derived: refer to variables whose values are defined from other B data, such
as the Active set of processes. Derivation rules are also written in B.

Figure 12 is a screen-shot of the CP-net component of Meeduse. It shows
the invariant properties, the definition of free slots and the derivation rules for
derived places. The figure also gives the CP-net of operation ready together with
the corresponding B specification. This operation is designed by means of two
CP-net transitions with different guards [freeSlots %= ∅] and [freeSlots = ∅].
Places Gpu size and running refer to existing variables and place Ready intro-
duces a new one that is a subset of variable Process. This place is initialized to
the empty set. Places Waiting and Active are derived with the following rules:
Waiting = Process – (Active ∪ Ready ) and Active = dom(running). When the

ready =
ANY pp WHERE pp ∈ Process ∧ pp ∈ Waiting THEN

SELECT freeSlots '= ∅ THEN
ANY gg, ss WHERE

gg ∈ Gpu ∧ gg ∈ freeSlots
∧ ss ∈ NAT ∧ (gg &→ ss) ∈ Gpu size

THEN
running := running ∪ {(pp &→ gg)} ||
Active := Active ∪ {pp} ||
Gpu size := (Gpu size - {(gg &→ ss)}) ∪ {(gg &→ ss - 1)}

END
WHEN freeSlots = ∅ THEN

Ready := Ready ∪ {pp}
END ||
Waiting := Waiting - {pp}

END ;

Fig. 12. The CP-net component of Meeduse.
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14 A. Idani

GPU server is busy, transition ready[freeSlots = ∅] can be triggered, which
consumes a token pp from place Waiting and introduces it into place Ready.
If there exists a free slot, transition ready[freeSlots %= ∅] consumes token
pp but introduces it in place Active. In this case, the transition also looks at
a couple of tokens (gg,ss) from place Gpu size such that gg ∈ freeSlots.
The couple is consumed and replaced by couple (gg,ss-1), and tokens pp and
gg are introduced together in place running. In the B specification, a token t
is selected from a place P, whose colour-set is C, using substitution: ANY t
WHERE t ∈ C ∧ t ∈ P ∧ condition THEN. Guards are translated into guards
of the SELECT/WHEN substitutions. Regarding actions, they represent the
consumption and production mechanism of CP-nets using set union and set
subtraction.

In the CP-net approach the additional data structures, invariants, definitions
and operations are injected in the B specification of the meta-model. The B
specification produced by this technique is about 135 lines, for which the AtelierB
prover generated 69 proof obligations: 53 were proved automatically and 16
interactively. Figure 13 gives the CP-nets of the other operations: purge, enqueue
and swap.

We believe that the CP-net approach provides a good visualization of the
dynamic semantics thanks to graphical views. The resulting models are much
more accessible for stakeholders who are not trained in the B method than the
meta-model based approach. However, this approach produces less concise B
specifications (e.g. 11 lines for Fig. 11 against 16 lines for Fig. 12) and generates
several additional variables due to the derived places that are often required.
The number of proof obligations for the dynamic semantics is then greater than
the meta-modeling approach (69 POs for the CP-net approach against 39 for
the meta-modeling approach).

Fig. 13. Enqueue, purge and swap.

5 Evaluation

Two realistic case studies were developed and showed the viability of the tool:
(1) a railway DSL for which the CP-net approach was fully exploited [14,15],
and (2) a model-to-model transformation that applies the meta-model based
approach to transform a given DSL into another one [17].
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5.1 A Formal Railway DSL

In contrast with the textual language developed in this paper, this application
of Meeduse defines a graphical DSL that can be used by railway experts to
design railroad topologies and simulate train behaviours (Fig. 14). This work
starts from two main observations: first, in railway control and safety systems
the use of formal methods is a strong requirement; and second, graphical repre-
sentations of domain concepts are omnipresent in railway documents thanks to
their ability to share standardized information with common knowledge about
several mechanisms (e.g. track circuits, signalling rules, etc.). Meeduse showed
its strength to mix both aspects in the same tool.

Fig. 14. Application of Meeduse to a railway case study.

We fully applied the CP-net approach to define the dynamic semantics of
this DSL and represent train movements, assignment of routes to trains, mod-
ifications of switches positions, etc. This application deals with several safety-
critical invariants for which theorem proving was applied in order to guarantee
an accident-free behavior. The CP-net models were introduced incrementally
using three proved refinement levels. The numbers of proofs generated from
these refinements are presented in Table 1.

Table 1. Proof obligations generated from the railway DSL

POs Automatic Manual

Level 1 17 11 6

Level 2 32 25 7

Level 3 62 41 21
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5.2 A Formal DSL Transformation

We applied Meeduse to define a real-life DSL transformation [17]. Figure 15
shows the input and output models of the transformation: the input model is
a truth table and the output model is a binary decision diagram (BDD). This
application, carried out during the 12th edition of the transformation tool contest
(TTC’19) won the award of best verification and the third audience award. The
meta-model based approach was applied to take benefit of the utility operations
and define B operations that consume truth table elements and progressively
produce a binary decision diagram.

Fig. 15. Application of Meeduse to DSL transformation.

The B machine of the meta-model is about 1162 lines of code. 260 proof
obligations were generated and automatically proved by the AtelierB prover,
which guarantees that the static features of the output BDD are preserved during
the DSL transformation. Regarding the dynamic semantics, they were specified
by five B operations that are defined in an additional B machine whose length is
about 150 lines of code. The correctness of the dynamic semantics was ensured
by model-checking, rather than by theorem proving because on the one hand
it is less time consuming, and on the other hand, it deals with bounded state
spaces that can be exhaustively checked by the ProB [21] model-checker. The
model-checking proof shows that both input and output models are equivalent.

6 Conclusion

When an executable DSL is not formally checked, it may lead to a succession
of failures: failures of modeling operations (e.g. define a negative value for free
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slots) may result in failures of domain-specific operations (e.g. assign more pro-
cesses to a GPU than its capacity), which in turn may result in failures of the
coordination operations (e.g. wrong process scheduling algorithms). This paper
gave an overview of Meeduse, a tool dedicated to build and run correct DSLs
by formally defining their underlying static and dynamic semantics. It allows to
develop DSL tools intended to be used by domain experts whose requirement
is to apply domain-specific notations to model critical systems and to correctly
simulate their behaviour. In addition to the benefits of the tool for DSL devel-
opment, the proposed technique is a more pragmatic domain-centric animation
than visual animation techniques provided by formal tools because the domain-
centric representations are provided by the domain expert himself who has a
greater knowledge of the application domain than the formal methods engineer.

Several state-based formal methods can get along with the tool as far as
these methods are assisted by publicly available parsers and animators. Some
research works have been devoted in the past to apply a formal method, such
as MAUD [25] or ASM [9], for the verification of a DSL’s semantics. Although
these works are close to Meeduse, they don’t cover the joint execution of the
DSL and the formal model. The transformations they propose can be integrated
within Meeduse in order to enhance them with our technique for DSL animation
and be able to experiment several target formal languages in a single framework.
The use of B is mainly motivated by our long experience with the UML and B
mappings and the availability of B4MSecure [13].

Currently we are working on two main perspectives: (1) provide a palette of
proved DSLs (such as the BPMN language, or a DSL for home-automation) that
are powered by Meeduse in order to make the underlying formal semantics much
more accessible to non-practitioners of formal methods, and (2) propose a tech-
nique for DSLs composition that favours the execution of several DSLs together
and make them collaborate. This perspective would lead to the execution of
several instances of ProB with the aim to animate jointly several heterogeneous
models.
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