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Abstract. In order to leverage the capacities of non-linear constraint
solvers, we propose a reformulation of SAT into a box-constrained opti-
mization problem where the objective function is polynomial. We prove
that any optimal solution of the numerical problem corresponds to a
solution of the Boolean formula, and demonstrate a stopping criterion
that can be used with a numerical solver.

1 Introduction

Boolean satisfiability (SAT) is probably the most well known NP-complete
problem, which consists in its simplest form of finding appropriate values for
variables of a propositional logic formula ϕ in Conjunctive Normal Form (CNF)
such that it evaluates to true (>). This problem is typically solved symbolically
at the logical level through different techniques.

However, in recent years, different reformulations have been suggested to
solve SAT by turning it into a numerical problem to be solved by numerical
techniques. For example, a linear algebra approach has been attempted in [6]; the
reformulation transforms a SAT instance into a system of linear equations. In [8],
a relaxation of the Boolean variables is mixed with gradient-based algorithms.
The work from [5] offers a reformulation through an optimization of degree 4 by
adding as many variables as the number of clauses in the Boolean formula. In [7],
the reformulation is done by defining an extension of the DeMorgan Laws.

The present work suggests a reformulation of SAT in order to use the capacities
of non-linear solvers. The principle, illustrated in Figure 1, works as follows.
First, a Boolean formula ϕ over Bn is transformed into a real-valued polynomial
ϕ̂ over the interval [0; 1]n, using a transformation called τ , described in Section 2
(top arrow). For example, a CNF formula ϕ = (a∨ b)∧ (a∨¬b) will result in the
function ϕ̂ = (a+ b− ab) + (a+ 1− b− a(1− b)). The SAT problem turns into
the problem of maximizing ϕ̂, a box-constrained optimization task that can be
offloaded to a numerical solver (right arrow). Section 3 then formally proves that
a real-valued solution provided by such a solver, such as â = (0.99, 0.99), can be
converted into an optimal solution over the integers 0 and 1 using a backwards
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transformation ρ (bottom arrow); in our example, this would yield the point
(1, 1). Proposition 5 will show that the result applies even if a solver converges to
a solution with coordinates that do not lie close to 0 or 1. Finally, Theorem 2 will
show that such a solution exists if and only if the corresponding SAT instance
admits it as a solution (left arrow).

In the context of this article, the objective function is non-linear (since φ̂ is
polynomial of degree superior or equal to two as soon as there is a clause with two
literals or more). The gradient of a function gives a direction where the function
takes higher values [12]. When this gradient is not accessible, algorithms like
the Nelder-Mead algorithm [11], genetic algorithms [13] or any algorithms from
the derivative-free optimization field [1] are efficient. However, in the present
work, the gradient is available, which makes it suitable for iterative algorithms.
This paper lists a couple theoretical results that could be used when using a
gradient-based algorithm. A few of those theoretical results have been listed in
this paper; for example, some algorithms have been developed specifically for
polynomial optimization [4, 10], which is what one gets after reformulating SAT
using the construction presented in this article.

BI →n BI
φ

[0;1] →n [0;N]
φ̂τ

solver

a ∈ [0;1]n^a ∈ BnI
ρ

Thm. 3

Fig. 1. A summary of the approach
followed in this paper.

The paper is structured as follows. Section
2 describes the transformation rules to define
the reformulation. Section 3 studies the prop-
erties of the polynomial obtained after the
transformation. Section 4 analyses the links
between the SAT problem and its reformula-
tion. It also contains theoretical results that
can be used to anticipate numerical results
over reformulation. Section 5 summarizes the
theoretical results and talks about other dif-
ficulties that could occur in future numerical
tests.

2 SAT as an Optimization
Problem

In this section, we will describe how to transform a SAT instance into a polynomial
function to maximize. Let a1, . . . an be the n Boolean variables occurring in an
arbitrary SAT instance. For convenience, we shall equate the values ⊥ and >
with integers 0 and 1, respectively. We will note a = (a1; . . . ; an). The set B will
be interpreted as the subset of R containing only the values 0 and 1.

A Boolean variable a (which takes the values 0 or 1) will be assimilated with
its bounded real variable relaxation, by allowing it to take a value in the interval
[0; 1]. For the sake of readability, we shall use the same symbol for a Boolean
variable and its relaxation; it should be clear enough in the formulas whether a
variable is Boolean or real.

Equipped with this notation, we can lift the notion of relaxation from Boolean
variables to Boolean formulas. The transformation will be done using a function
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τ : (Bn → B)→ ([0; 1]n → [0;N ]), which takes as input a Boolean formula with
N clauses, and produces as its output a real-valued polynomial expressed in
terms of the relaxations of the Boolean variables.

Definition 1. Let a be an arbitrary propositional variable, and ϕ1 and ϕ2 be
arbitrary Boolean formulas. The transformation function τ : (Bn → B) →
([0; 1]n → [0;N ]) defined recursively as follows:

τ(b) = b, for b ∈ B (1)
τ(a) = a (2)

τ(¬a) = 1− a (3)
τ(ϕ1 ∨ ϕ2) = τ(ϕ1) + τ(ϕ2)− τ(ϕ1)τ(ϕ2) (4)
τ(ϕ1 ∧ ϕ2) = τ(ϕ1) + τ(ϕ2) (5)

The introduction gave an example of a transformation using those five rules.
It can be easily shown that applying them to a given CNF formula ϕ produces
a unique polynomial, which will be written τ(ϕ). To simplify the notation, we
shall also note this polynomial ϕ̂. Three remarks should be made. First, one
should be careful on the fact that two equivalent Boolean formulas (i.e. which
have the same solutions) that have different CNF representations may have
different transformation through τ . This is shown with the following example:
τ(a∨ a) = 2a− a2 6= τ(a) = a but a∨ a is logically equivalent to a. Second, note
how τ transforms logical conjunction into an addition instead of a multiplication;
this goes against the “probabilistic” interpretation that P (A ∧B) = P (A)P (B)
when A and B are independant. This decision has been done to reduce the degree
of the polynomial. With a multiplication, the degree of the polynomial will be
equal to the number of literals in the CNF representation of ϕ. With the addition,
the degree will be much smaller and described in Proposition 1.

Finally, since ϕ̂ takes as arguments elements of [0; 1]n, and not Bn, the
simplification a2 = a (commonly occurring in operations over {0, 1}) is not used.

The objective of this work is to solve the following optimization problem:

(P ) : max
a∈[0;1]n

ϕ̂(a).

This is a case of an optimization problem that has what are called box constraints,
meaning that all its variables are bounded by real values –the interval [0; 1] in
that case. In addition, the objective function is polynomial, which means that its
gradient can be calculated and used in the solving process.

3 Properties of ϕ̂

It remains to determine how solutions to (P ) can be used to produce solutions
to the original SAT instance, and under what conditions. This is the purpose of
the next two sections. First, we need to establish a few results on the properties
of the polynomial function ϕ̂ on [0; 1]n. This will then help to solve (P ). A first
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observation can be made about the degree of the polynomial ϕ̂ when ϕ is k-SAT
(i.e. when each clause contains at most k literals).

Proposition 1. Let k ∈ N∗ (i.e. positive integer). If ϕ is k-SAT, then the degree
of ϕ̂ is k.

The proof is trivial and can be done by induction. This result is important as
it bounds the degree of the polynomial. Furthermore, since any SAT instance
has a polynomial reduction into 3-SAT [9], this guarantees the existence of a
reformulation of SAT into an optimization problem for a polynomial of degree at
most 3.

We shall then observe that ϕ̂ is “well-behaved” —among other things, that
it maps the real hypercube [0; 1]n on [0;N ], that the discrete hypercube Bn on
{0, . . . , N}, where N is the number of clauses in ϕ and to understand how ϕ̂
behaves on the boundaries of the set [0; 1]n, noted:

∂([0; 1]n) = {(a1, . . . , an) ∈ [0; 1]n : ∃i ∈ {1, . . . , n}, ai ∈ B}.

.

Proposition 2. Let ϕ̂ be a polynomial resulting from the transformation of
a SAT instance ϕ containing N ∈ N∗ clauses. Then: i) if a ∈ [0; 1]n then
ϕ̂(a) ∈ [0;N ]; ii) if a ∈ Bn then ϕ̂(a) ∈ {0; . . . ;N}; iii) if a ∈]0; 1[n then
ϕ̂(a) ∈]0;N [.

0 1

1

0 1

1

0 1

1

Fig. 2. On the left, studying ϕ̂ on Bn. In the middle, studying ϕ̂ on ]0; 1[n. On the
right, studying ϕ̂ on ∂([0; 1]n).

Proof. It should be noted that, with two variables, the case ii) corresponds to
the first graph on Figure 2, while iii) corresponds to the second one. For i), let
a ∈ [0; 1]n. If ϕ is a clause, then it can be shown by induction on the length of
the clause that τ(ϕ) ∈ [0; 1]. Then, if ϕ contains N clauses, using equation (5),
it can be shown by induction on the number of clauses that τ(ϕ) ∈ [0;N ]. For
ii), the proof is very similar to i). Let a ∈ Bn. If ϕ is a clause, it can be shown
by induction on the length of the clause that τ(ϕ) ∈ B. Then, if ϕ contains N
clauses, then the transformation through τ of each clauses evaluated in a will be
in B and thus the sum of the N terms being in {0; . . . ;N}. The proof of iii) is
almost identical to ii). ut
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Let us now study the eventuality where there exists a solution to (P ) on
the boundaries of ∂([0; 1]n). Of particular interest is the case where ϕ̂(a) = N ,
a ∈ [0; 1]n but a contains at least one variable that is neither 0 nor 1. This
can be illustrated by the SAT instance ϕ = (a ∨ b) ∧ (¬a ∨ b), which yields
ϕ̂ = (a+ b− ab) + ((1− a) + b− (1− a)b). This polynomial admits an optimal
solution at (1/2, 1) ∈ ∂([0; 1]2). However, one can observe that in this case, the
value of a has no impact on the value of ϕ. A solver using the gradient may
notice that ∂ϕ̂/∂a = 0, and thus never change this variable from any value it was
initially set to. More importantly, it should be noted that in this case, both (0; 1)
and (1; 1) are also optimal solutions of ϕ̂. This result corresponds to the third
plot of Figure 2; as a matter of fact, if ϕ̂ takes the value N on the dot, then it
takes the value N on the whole edge in bold.

Can this observation be generalized to any Boolean formula? It turns out that
the answer is yes. In order to prove it, let us define the function Ψ : [0; 1]n 7→ P(Bn)
defined for all a ∈ [0; 1]n by Ψ(a) = {x ∈ Bn : ∀i ∈ A(a), xi = ai,∀i /∈ A(a), xi ∈
B}, where A(a) = {i ∈ {1, . . . , n} : ai ∈ B}. Intuitively, given a non-Boolean
solution a, Ψ(a) returns the set of “corners” of the hypercube Bn adjacent to a.
If we use again the third plot of Figure 2, then the dot has coordinates (0.25; 1)
and Ψ(0.25; 1) = {(0; 1), (1; 1)}. First, we need to prove that the result is true for
a formula containing only one clause.

Proposition 3. Let ϕ be a clause; if there is a ∈ ∂([0; 1]n) such that ϕ̂(a) = 1,
then for all x ∈ Ψ(a), ϕ̂(x) = 1.

Proof. Let k ∈ {1, . . . , n}. We can consider that all the variables are positive
literals in the formula. If not, the one with a negative literal can be redefined
as the opposite of that variable. If needed, it is possible to rename the variables
such that ϕ = a1 ∨ . . . ∨ ak.

We show the result by finite induction on the length of the clause. For k = 1,
then ϕ = a1 and ϕ̂(a) = a1. If, for some a ∈ ∂([0; 1]n), ϕ̂(a) = 1, then a1 = 1; so,
for all x ∈ Ψ(a), a1 = 1. This shows that for all x ∈ Ψ(a), we have that ϕ̂(x) = 1.

Let k ∈ {1, . . . , n− 1} and let us assume that for any clause of length k, if
a ∈ ∂([0; 1]n) is such that ϕ̂(a) = 1, then for all x ∈ Ψ(a), ϕ̂(x) = 1. Consider a
clause of length k + 1. It can be written ϕ ∨ ak+1 where ϕ is a clause of length
k. So τ(ϕ ∨ ak+1) = τ(ϕ) + τ(ak+1) − τ(ϕ)τ(ak+1). If for some a ∈ ∂([0; 1]n),
τ(ϕ ∨ ak+1)(a) = 1, so necessarily, τ(ϕ)(a) = 1 or τ(ak+1)(a) = 1. In the first
case, by the induction hypothesis, for all x ∈ Ψ(a), τ(ϕ ∨ ak+1)(x) = 1. The
second case is identical to the initial step (k = 1). ut

Using Proposition 3, the result can now be generalized for logical formulas
which are conjunctions of clauses.

Theorem 1. If ϕ contains N clauses and a ∈ ∂([0; 1]n) is such that ϕ̂(a) = N ,
then for all x ∈ Ψ(a), ϕ̂(x) = N.

Proof. Let a ∈ ∂([0; 1]n) is such that ϕ̂(a) = N . The theorem will be proven
by induction on N ∈ N∗, the number of clauses of ϕ written in CNF. The case
N = 1 is solved with Proposition 3.
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Let N ≥ 1 and suppose that, for ϕ containing N clauses, if a ∈ ∂([0; 1]n) is
such that ϕ̂(a) = 1, then for all x ∈ Ψ(a), ϕ̂(x) = 1. Let us define a formula
with N + 1 clauses. It can be written ϕ ∧ C, where ϕ contains N clauses and
C is a clause. Then τ(ϕ ∧ C) = τ(ϕ) + τ(C). Let a ∈ ∂([0; 1]n) such that
τ(ϕ ∧ C)(a) = N + 1. Then τ(ϕ)(a) + τ(C)(a) = N + 1. Using Property 2, then
necessarily, τ(ϕ)(a) = N and τ(C)(a) = 1. Since C is a clause, by Proposition 3,
for all x ∈ Ψ(a), we have τ(C)(x) = 1. In addition, by the induction hypothesis,
we can assert that for all x ∈ Ψ(a), τ(ϕ)(x) = N . This proves that for all x ∈ Ψ(a),
τ(ϕ ∧ C)(x) = τ(ϕ)(x) + τ(C)(x) = N + 1. ut

4 From ϕ̂ to ϕ

The previous result is important: it shows that, even when a non-Boolean optimum
of ϕ̂ is found, it can be turned into a solution that has only Boolean values and
which is also optimal. It remains to prove that a solution to (P ) can be used to
construct a solution to the original SAT instance. The following theorem focuses
about the case where a solver converges to a solution in Bn.

Theorem 2. For all a ∈ Bn, ϕ(a) = 1 if, and only if, ϕ̂(a) = N .

The proof, very similar to the proof of Proposition 2, is omitted. Theorem 2
is what justifies the transformation of a Boolean formula ϕ to the function τ(ϕ).
Finding a solution of the SAT problem described by ϕ is therefore equivalent to
finding the optimal value (equal to N) of the function ϕ̂.

However, in practice, a numerical solver will typically find a solution a that
does not land perfectly on elements of Bn, but more likely on values very close
to 0 or 1. Likewise, the value taken by ϕ̂ will be a real number close to, but
not equal to N . In such a situation, Theorem 2 does not apply. A natural
workaround would be to round each Boolean value to its nearest integer (0
or 1). To this end, let us define the ”round” function ρ such that ρ(x) = 0 if
x < 1/2, and ρ(x) = 1 otherwise. This function can be lifted to Rn by defining
ρ(x1, . . . , xn) = (ρ(x1), . . . , ρ(xn)).

It is not clear at the onset that taking the round of each variable produces a
solution that is optimal. Case in point, it is well known that in integer program-
ming, rounding a solution after relaxation can lead to an non-optimal solution [3].
Fortunately, this is not the case with ϕ̂, as we shall prove in Theorem 3. From
this point, ||.|| will be the euclidean norm.

Theorem 3. Let C > 0 be a number that satisfies the Lipschitz condition of
ϕ̂ on [0; 1]n, and let â ∈ [0; 1]n. If ϕ̂(â)− C||â− ρ(â)|| > N − 1, then ρ(â) is a
solution of the logical formula ϕ.

Proof. Since ϕ̂ is a polynomial function on a compact set, it is Lipschitz. Let
C > 0 be its Lipschitz constant. Suppose the solver found a solution â ∈ [0; 1]n.
Because ϕ̂ is C-Lipschitz, |ϕ̂(â)− ϕ̂(ρ(â))| ≤ C||â− ρ(â)||, which means that:

ϕ̂(â)− C||â− ρ(â)|| ≤ ϕ̂(ρ(a)) ≤ ϕ̂(â) + C||â− ρ(â)||.
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But ρ(â) ∈ Bn, so using Proposition 2.ii) then ϕ̂(ρ(â)) ∈ {0; . . . ;N}. This means
that if ϕ̂(â) − C||â − ρ(â)|| > N − 1, then necessarily ϕ̂(ρ(â)) = N . Thus it
guarantees that ρ(â) is a solution of formula ϕ using Theorem 2. ut

The proof of Theorem 3 claims the existence of a Lipschitz constant C without
giving its value. However, using the definition of τ (in Definition 1), it is possible
to find a Lipschitz constant of ϕ̂, which depends only on n (the number of
variables) and N (the number of clauses). Lemma 1, which is a consequence of
the mean value theorem with several variables, provides a constant C, which we
then use to prove that ϕ̂ is C-Lipschitz.

Lemma 1. If ϕ̂ is differentiable and C = sup
a∈[0;1]n

||∇ϕ̂(a)||, then ϕ̂ is C-Lipschitz.

Proposition 4. If ϕ is a CNF Boolean formula containing N clauses depending
of n variables, then ϕ̂ is N

√
n-Lipschitz.

Proof. This proof requires new notations. Consider a clause C where the variable
ai, i ∈ {1; . . . ;n}, appears. We will note C−ai the clause C where ai has been
removed. Also, considering the formula ϕ, we will define Vai ⊆ {1; . . . ;N} the
index of the clauses where ai is a positive literal and Wai

⊆ {1; . . . ;N} the index
of the clauses where ai is a negative literal. By definition of Vai

and Wai
, it can

be observed that for all i ∈ {1; . . . ;N}, |Vai
|+ |Wai

| ≤ N .
It can be then shown that for all i ∈ {1, . . . , n} and all a ∈ [0; 1]n,

∂ϕ̂

∂ai
(a) =

∑
k∈Vai

(1− Ĉ−ai

k (a))−
∑

k∈Wai

(1− Ĉ−ai

k (a)).

Then,∣∣∣ ∂ϕ̂
∂ai

(a)
∣∣∣ ≤

∣∣∣∣∣∣
∑

k∈Vai

(1− Ĉ−ai

k (a))

∣∣∣∣∣∣+

∣∣∣∣∣∣
∑

k∈Wai

(1− Ĉ−ai

k (a))

∣∣∣∣∣∣ ≤ |Vai
|+ |Wai

|

Hence ||∇ϕ̂(a)||2 ≤
n∑

i=1

(
∂ϕ̂

∂ai
(a)
)2
≤

n∑
i=1

(|Vai
| + |Wai

|)2 ≤
n∑

i=1
N2 ≤ nN2.

By Lemma 1, this means that sup
a∈[0;1]n

||∇ϕ̂(a)|| ≤ N
√
n. ut

We note that the Lipschitz constant C = N
√
n is elegantly simple, especially

considering the rather complex polynomials produced by τ in practice. Combining
Theorem 3 with Proposition 4 leads to the following proposition:

Proposition 5. If there is â ∈ Bn such that ϕ̂(â)−N
√
n||â− ρ(â)|| > N − 1,

then ρ(â) is a solution of the Boolean formula ϕ.

This result can be used by an iterative numerical solver as a stopping criterion.
As soon as a solution â satisfying the condition of Proposition 5 is found, the
solver can stop; there is no point in iterating further to find a better solution,
since we already have the guarantee that ρ(â) is a solution of the SAT instance.
This criterion is specific to the transformation τ we use in this work.
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5 Conclusion

In this work, a reformulation of a SAT instance has been suggested. This trans-
formation leads to an optimization problem where the objective function is
a polynomial function. The link between feasible solutions of the initial SAT
problem and the optimal solution of that reformulation has been made.

As future work, numerical experiments should be performed to test the
capacity of this reformulation to solve SAT instances. It is known that in such
optimization problems, algorithms using the gradient as a stopping criterion
can converge to local optimums; multi-start solving using Latin hypercubes [2]
to select starting points could help handle that difficulty. In addition, it would
be interesting to combine this reformulation with ideas from other SAT solving
techniques, such as backtracking methods. This would help fixing some values of
the variables. Combining the reformulation with a complete method could help
improve convergence.
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