Skip to main content

An Experiment on Human-Robot Interaction in a Simulated Agricultural Task

  • Conference paper
  • First Online:
Towards Autonomous Robotic Systems (TAROS 2020)

Abstract

On the farm of the future, a human agriculturist collaborates with both human and automated labourers in order to perform a wide range of tasks. Today, changes in traditional farming practices motivate robotics researchers to consider ways in which automated devices and intelligent systems can work with farmers to address diverse needs of farming. Because farming tasks can be highly specialised, though often repetitive, a human-robot approach is a natural choice. The work presented here investigates a collaborative task in which a human and robot share decision making about the readiness of strawberries for harvesting, based on visual inspection. Two different robot behaviours are compared: one in which the robot provides decisions with more false positives and one in which the robot provides decisions with more false negatives. Preliminary experimental results conducted with human subjects are presented and show that the robot behaviour with more false positives is preferred in completing this task.

Supported by China Scholarship Council.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. The common agricultural policy and agriculture in Europe FAQ. European Commission (Jun 2013), https://europa.eu/rapid/press-release_MEMO-13-631_en.htm

  2. Bargoti, S., Underwood, J.: Deep fruit detection in orchards. In: IEEE International Conference on Robotics and Automation (2017)

    Google Scholar 

  3. Cheng, B., Wei, Y., Shi, H., Feris, R., Xiong, J., Huang, T.: Revisiting RCNN: on awakening the classification power of faster RCNN. In: Ferrari, V., Hebert, M., Sminchisescu, C., Weiss, Y. (eds.) ECCV 2018. LNCS, vol. 11219, pp. 473–490. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01267-0_28

    Chapter  Google Scholar 

  4. Chernova, S., Veloso, M.: Interactive policy learning through confidence-based autonomy. J. Artif. Intell. Res. 34, 1–25 (2009)

    Article  MathSciNet  Google Scholar 

  5. Dong, J., Zheng, L.: Quality classification of Enoki mushroom caps based on CNN. In: IEEE 4th International Conference on Image, Vision and Computing (2019)

    Google Scholar 

  6. Girshick, R.: Fast R-CNN. In: IEEE International Conference on Computer Vision (2015)

    Google Scholar 

  7. Hughes, J., Scimeca, L., Ifrim, I., Maiolino, P., Iida, F.: Achieving robotically peeled lettuce. IEEE Robot. Autom. Lett. 3(4), 4337–4342 (2018)

    Article  Google Scholar 

  8. Kahneman, D., Tversky, A.: Prospect theory: an analysis of decision under risk. In: Handbook of the Fundamentals of Financial Decision Making: Part I. World Scientific (2013)

    Google Scholar 

  9. Kang, H., Chen, C.: Fast implementation of real-time fruit detection in apple orchards using deep learning. Comput. Electron. Agric. 168, (2020)

    Google Scholar 

  10. Kingma, D.P., Ba, J.: Adam: a method for stochastic optimization. CoRR (2014)

    Google Scholar 

  11. Koenig, N., Matarić, M.J.: Robot life-long task learning from human demonstrations: a Bayesian approach. Auton. Robots 41(5), 1173–1188 (2017)

    Article  Google Scholar 

  12. Lamb, N., Chuah, M.C.: A strawberry detection system using convolutional neural networks. In: IEEE International Conference on Big Data (2018)

    Google Scholar 

  13. Likert, R.: A technique for the measurement of attitudes. Arch. Psychol. 140, 44–55 (1932)

    Google Scholar 

  14. Contributions to UK agriculture. www.nfuonline.com/assets/93419 (Feb 2017)

  15. Pinto, C., Furukawa, J., Fukai, H., Tamura, S.: Classification of green coffee bean images basec on defect types using convolutional neural network. In: IEEE International Conference on Advanced Informatics, Concepts, Theory, and Applications (2017)

    Google Scholar 

  16. Quigley, M., et al.: ROS: an open-source robot operating system. In: ICRA OSS Workshop (2009)

    Google Scholar 

  17. Redmon, J., Farhadi, A.: YOLO9000: better, faster, stronger. In: IEEE Conference on Computer Vision and Pattern Recognition (2017)

    Google Scholar 

  18. Redmon, J., Farhadi, A.: YOLOv3: an incremental improvement. arXiv:1804.02767 (2018)

  19. Ren, S., He, K., Girshick, R., Sun, J.: Faster R-CNN: towards real-time object detection with region proposal networks. In: Advances in Neural Information Processing Systems (2015)

    Google Scholar 

  20. Rogatko, A., Litwin, S.: Phase II studies: which is worse, false positive or false negative? J. Natl Cancer Inst. 88(7), 462 (1996)

    Article  Google Scholar 

  21. Rosenthal, S., Biswas, J., Veloso, M.: An effective personal mobile robot agent through symbiotic human-robot interaction. In: 9th International Joint Conference on Autonomous Agents and Multi-Agent Systems (2010)

    Google Scholar 

  22. Santos, T.T., de Souza, L.L., dos Santos, A.A., Avila, S.: Grape detection, segmentation, and tracking using deep neural networks and three-dimensional association. Comput. Electron. Agric. 170 (2020)

    Google Scholar 

  23. Schneider, E., Sklar, E.I., Parsons, S., Özgelen, A.T.: Auction-based task allocation for multi-robot teams in dynamic environments. In: Dixon, C., Tuyls, K. (eds.) TAROS 2015. LNCS (LNAI), vol. 9287, pp. 246–257. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-22416-9_29

    Chapter  Google Scholar 

  24. Tian, Y., Yang, G., Wang, Z., Wang, H., Li, E., Liang, Z.: Apple detection during different growth stages in orchards using the improved YOLOv3 model. Comput. Electron. Agric. 157, 417–426 (2019)

    Article  Google Scholar 

  25. Yu, Y., Zhang, K., Yang, L., Zhang, D.: Fruit detection for strawberry harvesting robot in non-structural environment based on Mask-RCNN. Comput. Electron. Agric. 163, 104846 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhuoling Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, Z. et al. (2020). An Experiment on Human-Robot Interaction in a Simulated Agricultural Task. In: Mohammad, A., Dong, X., Russo, M. (eds) Towards Autonomous Robotic Systems. TAROS 2020. Lecture Notes in Computer Science(), vol 12228. Springer, Cham. https://doi.org/10.1007/978-3-030-63486-5_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63486-5_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63485-8

  • Online ISBN: 978-3-030-63486-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics