Skip to main content

Touch It, Rub It, Feel It! Haptic Rendering of Physical Textures with a Low Cost Wearable System

  • Conference paper
  • First Online:
Towards Autonomous Robotic Systems (TAROS 2020)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12228))

Included in the following conference series:

Abstract

Information about the texture of an object’s surface is crucial for its recognition and robust manipulation. During robotic teleoperation or interaction with a Virtual Reality, is important to feedback such information to the human user. However, most available solutions for haptic feedback are expensive and/or cumbersome. In this paper we propose a low cost and wearable system that allows users to feel the texture of physical objects by virtually rubbing them. Our main contributions are: i) a system for encoding a virtual representation of the texture of physical materials; ii) a system to haptically render such virtual representation on the user fingertips; iii) an experimental validation of the combined system in a object recognition task. We show that users can successfully recognize physical objects with different textures by virtually rubbing their surfaces using the proposed system.

This work is partially supported by the EPSRC UK (projects MAN\(^3\), EP/S00453X/1, and NCNR, EP/R02572X/1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stone, R.J.: Haptic feedback: a brief history from telepresence to virtual reality. In: Brewster, S., Murray-Smith, R. (eds.) Haptic HCI 2000. LNCS, vol. 2058, pp. 1–16. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44589-7_1

    Chapter  Google Scholar 

  2. Pacchierotti, C., Sinclair, S., Solazzi, M., Frisoli, A., Hayward, V., Prattichizzo, D.: Wearable haptic systems for the fingertip and the hand: taxonomy, review, and perspectives. IEEE Trans. Haptics 10(4), 580–600 (2017)

    Article  Google Scholar 

  3. Ogrinc, M., Farkhatdinov, I., Walker, R., Burdet, E.: Sensory integration of apparent motion speed and vibration magnitude. IEEE Trans. Haptics 11(3), 455–463 (2017)

    Article  Google Scholar 

  4. Yao, H.Y., Hayward, V.: Design and analysis of a recoil-type vibrotactile transducer. J. Acoust. Soc. Am. 128(2), 619–627 (2010)

    Article  Google Scholar 

  5. Duvernoy, B., Farkhatdinov, I., Topp, S., Hayward, V.: Electromagnetic actuator for tactile communication. In: Prattichizzo, D., Shinoda, H., Tan, H.Z., Ruffaldi, E., Frisoli, A. (eds.) EuroHaptics 2018. LNCS, vol. 10894, pp. 14–24. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-93399-3_2

    Chapter  Google Scholar 

  6. Pacchierotti, C., Young, E.M., Kuchenbecker, K.J.: Task-driven PCA-based design optimization of wearable cutaneous devices. IEEE Robot. Autom. Lett. 3(3), 2214–2221 (2018)

    Article  Google Scholar 

  7. Brown, J.P., Farkhatdinov, I.: Soft haptic interface based on vibration and particle jamming. In: 2020 IEEE Haptics Symposium (HAPTICS), 28 March 2020

    Google Scholar 

  8. Popov, D., Gaponov, I., Ryu, J.H.: Portable exoskeleton glove with soft structure for hand assistance in activities of daily living. IEEE/ASME Trans. Mechatron. 22(2), 865–875 (2016)

    Article  Google Scholar 

  9. Romano, J.M., Yoshioka, T., Kuchenbecker, K.J.: Automatic filter design for synthesis of haptic textures from recorded acceleration data. In: 2010 IEEE International Conference on Robotics and Automation, pp. 1815–1821, May 2010

    Google Scholar 

  10. Palermo, F., Konstantinova, J., Althoefer, K., Poslad, S., Farkhatdinov, I.: Implementing tactile and proximity sensing for crack detection. In: IEEE International Conference on Robotics and Automation, ICRA (2020)

    Google Scholar 

  11. Ribeiro, P., Cardoso, S., Bernardino, A., Jamone, L.: Highly sensitive bio-inspired sensor for fine surface exploration and characterization. In: IEEE International Conference on Robotics and Automation, ICRA (2020)

    Google Scholar 

  12. Guruswamy, V.L., Lang, J., Lee, W.-S.: Modelling of haptic vibration textures with infinite-impulse-response filters, pp. 105–110, December 2009

    Google Scholar 

  13. Culbertson, H., Unwin, J., Kuchenbecker, K.J.: Modeling and rendering realistic textures from unconstrained tool-surface interactions. IEEE Trans. Haptics 7(3), 381–393 (2014)

    Article  Google Scholar 

  14. Culbertson, H., Unwin, H., Goodman, B., Kuchenbecker, K.: Generating haptic texture models from unconstrained tool-surface interactions, pp. 295–300, April 2013

    Google Scholar 

  15. Bensmaia, S., Hollins, M., Yau, J.: Vibrotactile intensity and frequency information in the Pacinian system: a psychophysical model. Percept. Psychophys. 67, 828–841 (2005)

    Article  Google Scholar 

  16. Stevens, S.S.: Tactile vibration: dynamics of sensory intensity. J. Exp. Psychol. 57(4), 210–218 (1959)

    Article  Google Scholar 

  17. Junput, B., Wei, X., Jamone, L.: Feel it on your fingers: dataglove with vibrotactile feedback for virtual reality and telerobotics. In: Althoefer, K., Konstantinova, J., Zhang, K. (eds.) TAROS 2019. LNCS (LNAI), vol. 11649, pp. 375–385. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23807-0_31

    Chapter  Google Scholar 

  18. Perez, A.G., et al.: Optimization-based wearable tactile rendering. IEEE Trans. Haptics 10(2), 254–264 (2017)

    Article  Google Scholar 

  19. Gabardi, M., Solazzi, M., Leonardis, D., Frisoli, A.: A new wearable fingertip haptic interface for the rendering of virtual shapes and surface features. In: 2016 IEEE Haptics Symposium (HAPTICS), pp. 140–146 (2016)

    Google Scholar 

  20. Chinello, F., Pacchierotti, C., Malvezzi, M., Prattichizzo, D.: A three revolute-revolute-spherical wearable fingertip cutaneous device for stiffness rendering. IEEE Trans. Haptics 11(1), 39–50 (2018)

    Article  Google Scholar 

  21. Yem, V., Kajimoto, H.: Wearable tactile device using mechanical and electrical stimulation for fingertip interaction with virtual world. In: 2017 IEEE Virtual Reality (VR), pp. 99–104 (2017)

    Google Scholar 

  22. Bolanowski, S.J., Gescheider, G., Verrillo, R.T., Checkosky, C.M.: Four channels mediate the mechanical aspects of touch. J. Acoust. Soc. Am. 84, 1680–1694 (1988)

    Article  Google Scholar 

  23. Kontarinis, D.A., Howe, R.: Tactile display of vibratory information in teleoperation and virtual environments. Presence Teleoper. Virtual Environ. 4, 387–402 (1996)

    Article  Google Scholar 

  24. Pongrac, H.: Vibrotactile perception: examining the coding of vibrations and the just noticeable difference under various conditions. Multimed. Syst. 13(4), 297–307 (2007)

    Article  Google Scholar 

  25. Bethea, B.T., et al.: Application of haptic feedback to robotic surgery. J. Laparoendosc. Adv. Surg. Tech. 14(3), 191–195 (2004)

    Article  Google Scholar 

  26. Mcmahan, W., et al.: Tool contact acceleration feedback for telerobotic surgery. IEEE Trans. Haptics 4, 210–220 (2011)

    Article  Google Scholar 

  27. Okamura, A.M., Dennerlein, J.T., Howe, R.D.: Vibration feedback models for virtual environments. In: Proceedings of the 1998 IEEE International Conference on Robotics and Automation, vol. 1, pp. 674–679, May 1998

    Google Scholar 

  28. Landin, N., Romano, J.M., McMahan, W., Kuchenbecker, K.J.: Dimensional reduction of high-frequency accelerations for haptic rendering. In: Kappers, A.M.L., van Erp, J.B.F., Bergmann Tiest, W.M., van der Helm, F.C.T. (eds.) EuroHaptics 2010. LNCS, vol. 6192, pp. 79–86. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-14075-4_12

    Chapter  Google Scholar 

  29. Wren, J.: Converting acceleration, velocity & displacement. http://blog.prosig.com/2010/12/16/methods-of-conversion-between-acceleration-velocity-and-displacement/. Accessed 04 Aug 2019

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Burathat Junput , Ildar Farkhatdinov or Lorenzo Jamone .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Junput, B., Farkhatdinov, I., Jamone, L. (2020). Touch It, Rub It, Feel It! Haptic Rendering of Physical Textures with a Low Cost Wearable System. In: Mohammad, A., Dong, X., Russo, M. (eds) Towards Autonomous Robotic Systems. TAROS 2020. Lecture Notes in Computer Science(), vol 12228. Springer, Cham. https://doi.org/10.1007/978-3-030-63486-5_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63486-5_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63485-8

  • Online ISBN: 978-3-030-63486-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics