2005.12232v1 [cs.LO] 25 May 2020

arxXiv

Verification of the IBOS Browser Security Properties in
Reachability Logic

Stephen Skeirik!, José Meseguer!, and Camilo Rocha?

! University of Illinois at Urbana-Champaign
skeirik2@illinois.edu
meseguer@illinois.edu

2 Pontificia Universidad Javeriana Cali
camilo.rocha@javerianacali.edu.co

Abstract. This paper presents a rewriting logic specification of the Illinois Browser
Operating System (IBOS) and defines several security properties, including the
same-origin policy (SOP) in reachability logic. It shows how these properties can
be deductively verified using our constructor-based reachability logic theorem
prover. This paper also highlights the reasoning techniques used in the proof and
three modularity principles that have been crucial to scale up and complete the
verification effort.

1 Introduction

Rationale and Origins. Web browsers have in fact become operating systems for a
myriad of web-based applications. Given the enormous user base and the massive in-
crease in web-based application areas, browsers have for a long time been a prime target
for security attacks, with a seemingly unending sequence of browser security violations.
One key reason for this problematic state of affairs is the enormous size (millions of
lines of code) and sheer complexity of conventional browsers, which make their formal
verification a daunting task. An early effort to substantially improve browser security
by formal methods was jointly carried out by researchers at Microsoft Research and
the University of Illinois at Urbana-Champaign (UIUC), who formally specified In-
ternet Explorer (IE) in Maude [1], and model checked that formalization finding 13
new types of unknown address bar or status bar spoofing attacks in it [8]. To avoid at-
tacks on those newly found vulnerabilities, they were all corrected in IE before [8] was
published. But the research in [8] just uncovered some kinds of possible attacks, and
the sheer size and complexity of IE made full verification unfeasible. This stimulated a
team of systems and formal methods researchers at UIUC to ask the following question:
could formal methods be used from the very beginning in the design of a secure browser
with a very small trusted code base (TCB) whose design could be verified? The answer
given to this question was the Maude-based design, model checking verification, and
implementation of the IBOS Browser cum operating system, [39, 40, 49, 50], with a
42K line trusted code base (TCB), several orders of magnitude smaller than the TCBs
of commodity browsers.

Why this Work. As further explained in Section 6, only a model checking verifica-
tion of the IBOS security properties relying on a hand-proof abstraction argument for

its full applicability was possible at the time IBOS was developed [36,39,40]. A subse-
quent attempt at a full deductive verification of IBOS in [36] had to be abandoned due to
the generation of thousands of proof obligations. In retrospect, this is not surprising for
two reasons. (1) Many of the symbolic techniques needed to scale up the IBOS deduc-
tive verification effort, including variant unification and narrowing [14], order-sorted
congruence closure module axioms [32], and variant-based satisfiability [34, 43], did
not exist at the time. In the meantime, those symbolic techniques have been developed
and implemented in Maude. (2) Also missing was a program logic generalizing Hoare
logic for Maude specifications in which properties of concurrent systems specified in
Maude could be specified and verified. This has been recently addressed with the devel-
opment of a constructor-based reachability logic for rewrite theories in [44,45], which
extends prior reachability logic research on verification of conventional programs using
Kin [37,38,47,48]. In fact, what has made possible the deductive proof of the IBOS
security properties presented in this paper is precisely the combination of the strengths
from (1) and (2) within the reachability logic theorem prover that we have developed
for carrying out such a proof. Implicit in both (1) and (2) are two important proof obli-
gations. First, both our symbolic reasoning and reachability logic engines take as input
a rewrite theory R. However, the correctness of the associated deductions depends on
the theory being suitable for symbolic reachability analysis, i.e., its equations should
be ground convergent and sufficiently complete; therefore, these properties are proof
obligations that must be discharged. Second, the previous model-checking-based veri-
fication that the IBOS design satisfies certain security properties [39,40] was based on
an invariant y. Our deductive verification uses a slightly different invariant / that is also
inductive (as explained in Section 3). Thus, we require that [is at least as strong as or
stronger than Iy to ensure that our specification of the IBOS security properties does
not miss any cases covered by the prior work. Both of these important proof obligations
have been fully checked as explained in [42]. Last, but not least, as we further explain in
Section 6, the IBOS browser security goals remain as relevant and promising today as
when IBOS was first developed, and this work bring us closer to achieving those goals.
Main Contributions. They include:

— The first full deductive verification of the IBOS browser as explained above.

— A general modular proof methodology for scaling up reachability logic proofs of
object-based distributed systems that has been invaluable for verifying IBOS, but
has a much wider applicability to general distributed system verification.

— A substantial and useful case study that can be of help to other researchers inter-
ested in both browser verification and distributed system verification.

— New capabilities of the reachability logic prover, which in the course of this re-
search has evolved from the original prototype reported in [44] to a first prover
version to be released in the near future.

Plan of the Paper. Preliminaries are gathered in Section 2. Reachability Logic
and invariant verification are presented in Section 3. IBOS, its rewriting logic Maude
specification, and the specification of its security properties are explained in Section 4.
The deductive proof of those IBOS properties and the modular proof methodology used
are described in Section 5. Section 6 discusses related work and concludes the paper.

2 Preliminaries on Equational and Rewriting Logic

We present some preliminaries on order-sorted equational logic and rewriting logic. The
material is adapted from [15,30,31].

Order-Sorted Equational Logic. We assume the basic notions of order-sorted (ab-
breviated OS) signature 2, 2-term ¢, 2-algebra A, and 2-homomorphism f : A — B
[15,30]. Intuitively, 2 defines a partially ordered set of sorts (S, <), which are inter-
preted in a X-algebra A with carrier family of sets A = {A,};es as sort containments.
For example, if we have a sort inclusion Nat < Int, then we must have Ay, S Ajy. An
operator, say +, in 2’ may have several related typings, e.g., + : Nat Nat — Nat and
+ : Int Int — Int, whose interpretations in an algebra A must agree when restricted to
subsorts. The OS algebras over signature 2 and their homomorphisms form a category
OSAlg;. Furthermore, under mild syntactic conditions on 2, the term algebra Ts is
initial [30]; all signatures are assumed to satisfy these conditions.

An S-sorted set X = {X,}cs of variables, satisfies s # s’ = X; "Xy = ¢, and the
variables in X are always assumed disjoint from all constants in 2. The X-term algebra
on variables X, Tx(X), is the initial algebra for the signature Z'(X) obtained by adding
to 2 the variables X as extra constants. Given a X-algebra A, an assignment a is an
S-sorted function a € [X — A] mapping each variable x € X; to a value a(x) € A;
for each s € S. Each such assignment uniquely extends to a 2-homomorphism _a :
Ts(X) — A, so that if x € X, then xa = a(x). In particular, for A = Tx(X), an
assignment o € [X — Tx(X)] is called a substitution and uniquely extends to a X-
homomorphism _o : Tx(X) — Tx(X). Define dom(o) = {x € X | x # xo} and
ran(a’) = Uxedom((r) V(H’S(X(T).

We assume familiarity with the language of first-order logic with equality. In partic-
ular, given a 2-formula ¢, we assume familiarity with the satisfaction relation A,a |= ¢
for a 2-algebra A and assignment a € [fvars(¢)—A] for the free variables fvars(p) of
¢. Then, ¢ is valid in A, denoted A |= ¢, iff V a € [fvars(p)—A] A,a |= ¢, and is sat-
isfiable in A iff 3 a € [fvars(¢)—A] A,a |= ¢. Let Form(X) (resp. QFForm(X)) denote
the set of X-formulas (resp. quantifier free 2-formulas).

An OS equational theory is apair T = (X, E), with E a set of (possibly conditional)
2-equations. OSAlg s ;) denotes the full subcategory of OSAlg; with objects those
A € OSAlg; such that A |= E, called the (X, E)-algebras. The inference system in
[30] is sound and complete for OS equational deduction. E-equality, i.e., provability
E +— u = v,is written u = v. OSAlg(Z‘E) has an initial algebra Ts /g [30]. Given a
system of 2 equations ¢ = u; = vi A ... A U, = v,, an E-unifier for ¢ is a substitution
o such that u;o- =g v;o, | < i < n; an E-unification algorithm for (X, E) generates a
complete set of E-unifiers Unif(¢) for any system ¢ in the sense that, up to E-equality,
any E-unifier o of ¢ is a substitution instance of some unifier 6 € Unif ().

Rewriting Logic. A rewrite theory R = (X,E U B,R), with (X,E u B) an OS-
equational theory with equations E and structural axioms B (typically any combination
of associativity, commutativity, and identity), and R a collection of rewrite rules, spec-
ifies a concurrent system whose states are elements of the initial algebra Tx/zp and
whose concurrent transitions are specified by the rewrite rules R. The concurrent sys-
tem thus specified is the initial reachability model Tg associated to R [6,31].

Maude [11] is a declarative programming language whose programs are exactly
rewrite theories. To be executable in Maude, a rewrite theory R = (2, E U B, R) should
satisfy some executability conditions spelled out below. Recall the notation for term
positions, subterms, and replacement from [12]: (i) positions in a term are marked by
strings p € N* specifying a path from the root, (ii) 7|, denotes the subterm of term ¢ at
position p, and (iii) #[«], denotes the result of replacing subterm ¢|, at position p by u.

Definition 1. An executable rewrite theory is a 3-tuple R = (X, E U B,R) with (X, E U
B) an OS equational theory with E possibly conditional and R a set of possibly condi-
tional X-rewrite rules, i.e., sequents | — r if ¢, with I,r € Ts(X); for some s € S, and
¢ a quantifier-free X-formula. We further assume that:

1. B is a collection of associativity andfor commutativity andfor identity axioms and
2’ is B-preregular [/]].

2. Equations E, oriented as rewrite rules E are convergent modulo B [28].

3. Rules R are ground coherent with the equations E modulo B [13].

The one-step R, B-rewrite relation ¢ —g p ' holds iff there is a rule | — r if ¢ € R,
a ground substitution o € [Y—Tx| with Y the rule’s variables, and position p where
tly =g lo, t' = t[ro|,, and Ts/eop = ¢o. Let —% g denote the reflexive-transitive
closure of the rewrite relation —g p.

Intuitively, conditions (1)—-(2) ensure that the initial algebra T’s/g, g is isomorphic to
the canonical term algebra Cs /g g, whose elements are B-equivalence classes of E , B-

canonical ground X-terms, where v is the E, B-canonical form of a term ¢, denoted

u=tlgp, iff: 3) ¢ —>§B u,and (ii) (Av € Tx) u —pp V- By Econvergent modulo B,

1!z p 1s unique up to B-equality [28]. Adding (3) ensures that “computing E, B-canonical
forms before performing R, B-rewriting” is a complete strategy for rewriting with the
rules R module equations E. That is, if t —p ¢ and t!z 5 = u, then there exists a u
such that u —g p v’ and t/!E,B =p u/!E,B' We refer to [13,28, 31] for more details.

Conditions (1)—(3) allow a simple and intuitive description of the initial reachability
model T [6] of R as the canonical reachability model Cg whose states are the elements
of the canonical term algebra Cs /g , and where the one-step transition relation [u] —x
[v] holds iff u —g p u' and [u'! ;] = [v]. Finally, if u —g p ' viarule (I — r if ¢) € R
and a ground substitution o € [Y—Tx], then checking if condition Ts /g5 |= ¢o holds
is decidable by reducing terms in ¢o to E, B-canonical form.

An OS-subsignature 2 < 2 is called a constructor subsignature for an OS equa-
tional theory (X, E U B) where E is convergent modulo B iff V¢ € T 1! g5 € To.
Furthermore, the constructors © are then called free modulo axioms By < B iff, as
S-sorted sets, Cx/gp = Tgsp,. This assumption gives a particularly simple descrip-
tion of the states of the canonical reachability model Cg as Bg-equivalence classes of
ground ©-terms. As explained in Section 3, this simple constructor-based description
is systematically exploited in reachability logic.

An executable rewrite theory R = (X, E U B, R) with constructor subsignature Q is
called ropmost iff the poset of sorts (S, <) has a maximal element, call it Szate, such that:
(i) for all rules (I — rif ¢) € R, I, r € To(X)stare; and (ii) for any f : s1...5, —> sin Q

with s < State we have s; £ State, | < i < n. This ensures that if [u] € Cg = To/B,
and [u] € Cg stare, then all rewrites u —g g u’ happen at the top position €. This topmost
requirement is easy to achieve in practice. In particular, it can always be achieved for
object-based rewrite theories, which we explain next.

Object-Based Rewrite Theories. Most distributed systems, including the IBOS
browser, can be naturally modeled by object-based rewrite theories. We give here a brief
introduction and refer to [11,29] for more details. The distributed state of an object-
based system, called a configuration, is modeled as a multiset or “soup” of objects and
messages built up by an associative-commutative binary multiset union operator (with
juxtaposition syntax) __ : Conf Conf — Conf with identity null. The sort Conf has
two subsorts: a sort Object of objects and a sort Msg of messages “traveling” in the
configuration from a sender object to a receiver object. The syntax for messages is user-
definable, but it is convenient to adopt a conventional syntax for objects as record-like
structures of the form: (o | a;(vi),...,a.(v,)), where o is the object’s name or ob-
Ject identifier, belonging to a subsort of a general sort Oid, and a;(v1),...,a,(v,) is a
set of object atributes of sort Azt built with an associative-commutative union operator
,: Atts Atts — Atts, with null as identity element and with At < Atts. Each a; is
a constructor operator a; : s; — Att so that the data value v; has sort s;. Objects can
be classified in object classes, so that a class C has an associated subsort C.Oid < Oid
for its object identifiers and associated attribute constructors a; : s; — Att, 1 < i < n.
Usually, a configuration may have many objects of the same class, each with a dif-
ferent object identifier; but some classes (e.g., the Kernel class in IBOS) are singleton
classes, so that only one object of that class, with a fixed name, will apear in a config-
uration. Another example in the IBOS specification is the singleton class Display. The
single display object represents the rendering of the web page shown to the user and
has the form: < display | displayContent(D), activeTab(WA) >, where the activeTab
attribute constructor contains a reference to the web process that the user has selected
(each tab corresponds to a different web process) and the displayContent constructor
encapsulates the web page content currently shown on the display. Not all configura-
tions of objects and messages are sensible. A configuration is well-formed iff it satisfies
the following two requirements: (i) unique object identifiers: each object has a unique
name different from all other object names; and (ii) uniqueness of object attributes:
within an object, each object attribute appears only once; for example, an object like
< display | displayContent(D), activeTab(WA), activeTab(WA’) > is nonsensical.

The rewrite rules R of an object-based rewrite theory R = (X, E U B,R) have
the general form [— r if ¢, where / and r are terms of sort Conf. Intuitively, / is a
pattern describing a local fragment of the overall configuration, so that a substitution
instance /o~ describing a concrete such fragment (e.g., two objects, or an object and
a message) can be rewritten to a new subfragment ro, provided the rule’s condition
¢o holds (see Section 4.1 for an example rule). Classes can be structured in multiple
inheritance hierarchies, where a subclass C’ of class C, denoted C' < C, may have
additional attributes and has a subsort C'.0Oid < C.0Oid for its object identifiers. By
using extra variables Attrs; of sort Atts for “any extra attributes” that may appear in a
subclass of any object o; in the left-hand side patterns / of a rule, rewrite rules can be

automatically inherited by subclasses [29]. Furthermore, a subclass C’ < C may have
extra rules, which may modify both its superclass attributes and its additional attributes.

An object-based rewrite theory R = (X, E U B,R) can easily be made topmost
as follows: (i) we add a fresh now sort State and an “encapsulation operator,” say,
{_} : Conf — State, and (ii) we trasform each rule I — r if ¢ into the rule {{ C} —
{r C} if ¢, where C is a fresh variable of sort Conf modeling “the rest of the configu-
ration,” which could be empty by the identity axiom for null.

3 Constructor-Based Reachability Logic

Constructor-based reachability logic [44,45] is a partial correctness logic generalizing
Hoare logic in the following sense. In Hoare logic we have state predicates A, B,C, ...
and formulas are Hoare triples {A} p {B} where A is the precondition, B is the post-
condition, and p is the program we are reasoning about. Since a Maude program is a
rewrite theory R, a Hoare triple in Maude has the form {A} R { B}, with the expected
partial correctness semantics. But we can be more general and consider reachability
logic formulas of the form: A —® B, with A the precondition (as in Hoare logic) but
with B what we call the formula’s midcondition. That is, B need not hold at the end of
a terminating computation, as in Hoare logic, but just somewhere in the middle of such
a computation. A topmost rewrite theory R satisfies A —® B, written R = A —® B, iff
along any terminating computation from an initial state [u] satisfying A there is some
intermediate state satisfying B. More precisely:

Definition 2. Let R = (X, E U B, R) be topmost with top sort State and with free con-
structors Q modulo Bg, and let A and B be state predicates for states of sort State,
so that [A] and [B] denote the respective subsets of Tq/p, s defined by A and B.
Furthermore, let T be a state predicate of terminating states so that [T] < Termg,
where Termg = {[u] € To/p,siwe | (A[v]) [u] —r [v]}. Then, a reachability for-
mula A —® B holds for the canonical reachability model Cg of R relative to T in
the all paths satisfaction relation, denoted R \:}1 A —® B, iff for every sequence
[uo] —r [u1]...[un—1] —r [un] with [uo] € [A] and [u,] € [T] there exists k,
0 < k < n such that [u;] € [B].
When [T] = Termg, we abbreviate the relation |:\; fo just |=.

We can define the satisfaction of a Hoare triple {A} R { B} as syntactic sugar for the
satisfaction relation R = A —® (B A Termg). As explained in [45], the case of a Hoare
logic for an imperative programming language £ is obtained as syntactic sugar for a
special class of reachability logic formulas for a rewrite theory R, giving a rewriting
logic semantics to the programming language £.

But in what sense is such a reachability logic constructor-based? In the precise
sense that the state predicates A, B, C, ... used in the logic are constrained constructor
pattern predicates that exploit for symbolic purposes the extreme simplicity of the con-
structor theory (£2, Bg), which is much simpler than the equational theory (X, E U B).

Definition 3. Let (X, E U B) be convergent modulo B and sufficiently complete with
respect to (2, Bo), i.e., Cx/p g = To/p,. A constrained constructor pattern is an expres-
sion (u | ¢) such that (u, ¢) € To(X) x QFForm(X). The set of constrained constructor

pattern predicates PatPred(Q,2) is defined inductively over To(X) x QFForm(X) by
adding | and closing under (v) and (A). We let capital letters A, B, ..., P, Q, ... range
over PatPred(Q,X). The semantics of A € PatPred(Q,X) is the subset [A]l < Cs/gp
such that:

(i) [11 = &,

(ii) [u | @l = {[(up)']5, € Cs/ep | p € [X—To] A Csjep = @p},
(iii) [A v Bl = [A] U [B], and
(iv) TA A Bl = [A] ~ [BI.

For any sort s, let PatPred(Q,2), € PatPred(Q,X) where A € PatPred(Q,2), iff each
subpattern (u | @) of A has u € To(X);. A € PatPred(2,%) is normal if it has no
subpattern of the form P A Q. If Bg has a finitary unification algorithm, normalization
is effectively computable by (disjoint) Bg unification [44, 45].

We can now fully specify our constructor-based reachability logic: it is a reachabil-
ity logic for topmost rewrite theories R = (X, E U B, R) with top sort State and with free
constructors 2 modulo By whose set of state predicate formulas is PatPred(Q, X)se-

Reachability Logic Proof Rules [44,45]. We review our proof system for reach-
ability logic that was proved sound with respect to the all-paths satisfaction relation
in [44,45]. The proof rules derive sequents of the form [A, C|] +r A —® B, where
A and C are finite sets of reachability formulas, T < Termg, and reachability formula
A —® Bisnormalized. Formulas in (A are called axioms; those in C are called circular-
ities. The proof system has three rules: STep, Axiom, and SuBsumpTION as well as derived
rules Cask, SpriT, and SussTITUTION. See the brief overview in Table 1. The derived rules
are explained in Appendix A.

Table 1: Overview of Proof Rules

Assumptions:
1.R = (2, EUB,R) is suff. comp. w.r.t. (2, Bo) with R = {l; — r; if ¢;}ic;
2P =% (Vvilyj)eA

Name Rule Condition

/\iel,aeY(i) (AvC D] br (ri| ¢'Adi)a > Ba

StEP A C] Fr ul¢ —>°B

NA Cl = (via | ¢ Ayja) —® B
Axiom [ACl Fr (u]g) >° B [u|el < [Pa]
Sus. [Al < [B]

[A.C|r A—°B

"o = A N8 | (w|v) € B A 3w = u}, Y(i) = Unify (u.1)

This inference system has been mechanized using the Maude rewriting engine [44,
]. Let us say a few words about its automation. The Step rule can be automated by

narrowing, i.e., symbolic rewriting where the lefthand side of a rewrite rule [— r if ¢,
instead of being matched by a term ¢ to be rewritten, only Bo-unifies with it. Assuming
Bg, has a finitary unification algorithm, the narrowing relation lifted to constrained con-
structor patterns is decidable. The Axiom and SuBsUMPTION rules require automating a
constrained constructor pattern subsumption check of the form [u | ¢] < [v | ¢1; this
can be shown to hold by Bo-matching var =g, u and checking whether Ts/z 5 = ¢ =
¢a. Since Bp-matching is decidable, the only undecidable check is the implication’s
validity. Our tool employs multiple heuristics to check whether Ts/z 5 = ¢ = ¢a.
Given a goal G = [A, C] +r A —® B, there are two final operations needed: (i)
checking whether the proof failed, i.e., whether [A]] n [T] # < but not [A] < [B],
(i) as an optimization, discarding a goal G where A’s constraint is unsatisfiable. These
two checks are also undecidable in general, so we rely on best-effort heuristics. In-
terestingly, thanks to their use of the symbolic techniques for variant unification and
satisfiability [14, 34,43], and for order-sorted congruence closure module axioms [32]
mentioned in the Introduction, these heuristics were sufficient to complete all reacha-
bility logic proofs of the IBOS properties without relying on an external prover.

Proving Inductive Invariants [33,45]. For a transition system Q = (Q, —¢q) and
a subset Qg < Q of initial states, a subset I < Q is called an invariant for Q from Qy
iff for each @ € Qp and b € Q, a —7 b implies b € I, where —7 denotes the reflexive-
transitive closure of —¢. A subset A < Q is called stable in Q iff for each a € A and
b € Q,a —q bimplies b € A. An invariant I for Q from Q is called inductive iff
I is stable. We instantiate this generic framework to prove invariants over a topmost
rewrite theory R = (2, E U B, R) with (2, B, E) convergent and sufficiently complete
with respect to (£, Bg) and consider the transition system induced by R over sort State,
Le., (CZ/EUB,Smte’ _)'R)'

To prove an invariant / from Qp over R, we use a simple theory transformation
mapping topmost theory R to a theory Ry, having a fresh operator [_]| and a rule stop :
¢(X) — [c(X)] for each constructor ¢ of sort State. Then, by Corollary 1 in [44], to prove
I is an invariant from Qg over R we prove Qy < I and that the reachability formula
Io- —® [I] holds over R, where: (i) o is a renaming of I with vars(I) nvars(Io) = &
and (i) if I = (u | ¢) then [I] = ([u] | ¢). If I is inductive and I = u | ¢, the proof of
Io- —® [I] proceeds as follows:

1. The initial sequent is [, Io —® [I]] =) o —® [1].

2. Apply the Step rule; based on which rule ¢ : I — r if ¢ was used, obtain:
(a) if £ is stop, [Io —® [I], &) -p [Io] = [1];
(b) otherwise, /\anmeg(uJ) (o —=®[I,d]Fp (rlen¢)a—®[I].

3. For case (2a), apply SussumpTiON. For case (2b), apply zero or more derived rules
to obtain sequents of the form: [lo- —® [I], &] ;) A - [1].

4. Since I is assumed inductive, we have [A]] € [/o]. Thus, apply Axiom to derive
[lo —* [1]. @] - [1] —° [1].

5. Finally, apply SuBSUMPTION.

Since all the IBOS security properties are invariants, all our proofs follow steps
(1)—(5) above.

4 1IBOS and its Security Properties

One important security principle adopted by all modern browsers is the same-origin
policy (SOP): it isolates web apps from different origins, where an origin is represented
as a tuple of a protocol, a domain name, and a port number. For example, if a user loads
a web page from origin (https,mybank. com,80) in one tab and in a separate tab loads a
web page from origin (https,mybnk.com,80), i.e., a spoofed domain that omits the ‘a’
in ‘mybank, any code originating from the spoofed domain in the latter tab will not be
able to interact with the former tab. SOP also ensures that asynchronous JavaScript and
XML (AJAX) network requests from a web app are routed to its origin. Unfortunately,
browser vendors often fail to correctly implement the SOP policy [9,41].

The Illinois Browser Operating System (IBOS) is an operating system and web
browser that was designed and modeled in Maude with security and compatibility as
primary goals [40,49,50]. Unlike commodity browsers, where security checks are im-
plemented across millions of lines of code, in IBOS a small trusted computing base of
only 42K code lines is established in the kernel through which all network interaction
is filtered. What this means in practice is that, even if highly complex HTML render-
ing or JavaScript interpretation code is compromised, the browser still cannot violate
SOP (and several other security properties besides). The threat model considered here
allows for much of the browser code itself to be compromised while still upholding the
security invariants we describe below.

In the following subsections we survey the IBOS browser and SOP, how the IBOS
browser can be formally specified as a rewriting logic theory, and how the SOP and
other IBOS security properties can be formally specified as invariants.

4.1 IBOS System Specification

IBOS System Design. The Illinois Browser Operating System is an operating system
and web browser designed to be highly secure as a browser while maintaining compat-
ibility with modern web apps. It was built on top of the micro-kernel L4Ka::Pistachio
[24,25], which embraces the principles of least privilege and privilege separation by
separating operating subsystems into separate daemons that communicate through the
kernel via checked inter-process communication (IPC). IBOS directly piggybacks on
top of this micro-kernel design by implementing various browser abstractions, such as
the browser chrome and network connections, as separate components that communi-
cate using L4ka kernel message passing infrastructure. Figure 1 gives an overview of
the IBOS architecture; as an explanatory aid we highlight a few key objects:

— Kernel. The IBOS kernel is built on top of the L4Ka::Pistachio micro-kernel which,
as noted previously, can check IPC messages against security policies.

— Network Process. A network process is responsible for managing a network con-
nection (e.g., HTTP connections) to a specific origin. It understands how to encode
and decode TCP datagrams and Ethernet frames and can send and receive frames
from the network interface card (NIC).

— Web Application. A web application represents a specific instance of a web page
loaded in a particular browser tab (e.g., when a link is clicked or a URL is entered

Traditional
App Web App Web App Web App

Unix Layer

Browser abstractions
| ul | | Storage | NelworkProcessl

Device Drivers

IBOS Kernel
Hardware

Fig. 1: IBOS System Architecture [40].

into the address bar). Web applications know how to render HTML documents. As
per SOP, each web page is labeled by its origin.

— Browser Ul The browser user inferface (UI) minimally includes the address bar
and the mouse pointer and extends to any input mechanism.

— Display. The display represents the rendered web app shown to the user; it is blank
when no web app has loaded. For security, it cannot modify the UI.

IBOS System Specification in Maude. We present an overview of the IBOS for-
mal executable specification as a Maude rewrite theory, which closely follows previous
work [36,39,40]; a more detailed explanation can be found in Appendix B. We model
IBOS as an object-based rewrite theory (see Section 2). We use italics to write Maude
rewrite rules and CamelCase for variable or sort names. Some objects of interest in-
clude the singleton objects kernel, ui, and display (in classes Kernel, UI, and Display,
respectively). We also have non-singleton classes WebApp and NetProc representing
web apps and network processes in IBOS, respectively.

As an example, let us consider the specification of the change-display rewrite rule
shown in Figure 2.

{{display | displayContent(D), activeTab(WA), Attsy (WA | rendered(D'), Atts"y Conf }
— {{display | displayContent(D'), activeTab(WA), Attsy (WA | rendered(D'), Atts'y Conf }

if DD)
Fig. 2: change-display rule

This rule involves the display object and the WebApp designated as the display’s ac-
tiveTab. In our model, the rendered attribute of a web app represents its current render-
ing of the HTML document located at its origin. When the web app is first created, its
rendered attribute has the value about-blank, i.e., nothing has yet been rendered. Thus,
this rule essentially states that, at any time, the displayed content can be replaced by
currently rendered HTML document of the active tab, only if it is different from the
currently displayed content.

Our IBOS browser specification contains 23 rewrite rules and is about 850 lines of
Maude code; it is available athttps: //github.com/sskeirik/ibos-case-study.

https://github.com/sskeirik/ibos-case-study

4.2 Specification of the IBOS Security Properties

We first describe at a high level the security properties that we will formally specify
and verify. The key property that we verify is the same-origin policy (SOP), but we also
specify and verify the address bar correctness (ABC) property. Our discussion follows
that of [39,40], based on invariants P-Pq;:

P; Network requests from web page instances must be handled by the proper network
process.
P, Ethernet frames from the network interface card (NIC) must be routed to the proper
network process.
P; Ethernet frames from network processes to the NIC must have an IP address and
TCP port that matches the origin of the network process.
P, Data from network processes to web page instances must be from a valid origin.
Ps Network processes for different web page instances must remain isolated.
Ps The browser chrome and web page content displays are isolated.
P; Only the current tab can access the screen, mouse, and keyboard.
Ps All components can only perform their designated functions.
Py The URL of the active tab is displayed to the user.
Pyo The displayed web page content is from the URL shown in the address bar.
Py; All configurations are well-formed, i.e., non-duplication of Oids and Afts.

We define same-origin policy as SOP = /\| ;, P;; address-bar correctness is spec-
ified as ABC = Pjp. Note that P9 A P9 = P7. Since Ps, Pg, and Pg follow directly
from the model design, it is sufficient to prove A, P; for I = {1,2,3,4,9,10}. In-
variant Py; is new to our current formalization, but is implicitly used in prior work; it
forbids absurd configurations, e.g., having two kernels or a WebApp that has two URLs
(see Section 2). Due to its fundamental relation to how object-based rewrite theories are
defined, we need P in the proof of all other invariants. As an example of how these in-
variant properties can be formalized in our model as constrained pattern predicates, we
show how the address bar correctness invariant can be specified in our system below:

{Ckernel | addrBar(U), Atts)
{display | displayContent(U"),Atts"y Conf} | U' U (ABC)
where U’ QU < qer (U’ # about-blank = U = U'’), i.e., the display is either blank or
its contents’ origin matches the address bar. Note that, for simplicity, in our model, we

identify displayed content with its origin URL. As a second example, consider how to
formalize invariant Py:

{Ckernel | addrBar(U), Atts)
{display | activeTab(WA), Atts")
(WA | URL(U"),Atts") Conf } | U 2U" (Py)

i.e., the address bar must match the URL of the active tab, unless the address shown
is about-blank, i.e., nothing is shown. Finally, P;; has a trivial encoding: {Conf} |

WF (Conf), where WF : Conf — Bool is the well-formedness predicate. Our specifica-
tion has 200 lines of Maude code to specify the pattern predicates used in our invariants
and another 900 lines of code specifying all of the auxiliary functions and predicates.
As stated in the Introduction, we additionally must prove that: (a) the IBOS system
specification extended by our security property specification is suitable for symbolic
reachability analysis; and (b) our ABC and SOP invariants are at least as strong as the
corresponding invariants in prior work [39,40] ABCy and SOP,. Proof obligation (a)
can be met by using techniques for proving ground convergence and sufficient com-
pleteness of conditional equational theories, while proof obligation (b) can be reduced
to proving associated implications, e.g., SOP = SOP,. We have carried out full proofs
of (a) and (b); due to space limitations, the full details are available at [42].

5 Proof of IBOS Security Properties

In this section, due to space limitations, we give a high-level overview of our proof
methodology for verifying the SOP and ABC properties for IBOS, and show a subproof
used in deductively verifying ABC. Each proof script has roughly 200 lines of code and
another 20 to specify the reachability logic sequent being proved.

Modular Proof Methodology. In this subsection we survey our modular proof
methodology for proving invariants using reachability logic and comment on how we
exploit modularity in three key ways, i.e., we show how we efficiently structured and
carried out our proofs by decomposing them into composable, independent, and reusable
pieces.

Most of the IBOS proof effort was spent strengthening an invariant / into an induc-
tive invariant /;,4, where [is either SOP or ABC. Typically, I;,4 is obtained by iteratively
applying the proof strategy given in Section 2. In each round, assume candidate I’ is in-
ductive and attempt to complete the proof. If, after applying the Step rule (and possibly
some derived rules), an application of Axiom is impossible, examine the proof of failed
pattern subsumption [A] < [/'] in the side-condition of Axiom. If pattern formula C
(possibly using new functions and predicates defined in theory 4) can be found that
might enable the subsumption proof to succeed, try again with candidate I’ A C. In
parallel, our system specification R is enriched by extending the underlying convergent
equational theory & to & U 4 to obtain the enriched rewrite theory Ry.

The first kind of modularity we exploit is rule modularity. Recall that any reachabil-
ity logic proof begins with an application of the Step rule. Since STEP must consider the
result of symbolically rewriting the initial sequent with all possible rewrite rules, we can
equivalently construct our proof on a “rule-by-rule” basis, i.e., if R = (X, E u B, {l i
rjif ¢;}cs), we can consider |J| separate reachability proofs using respective theories
Rj = (2,EUB,{l; — r;if ¢;}) for j € J. Thus, we can focus on strengthening invariant
I’ for each rule j € J separately.

Another kind of modularity that we can exploit is subclass modularity. Because
we are reasoning in an object-based rewrite theory, each rule mentions one or more
objects in one or more classes, and describes how they evolve. Recall from Sect. 2
that subclasses must contain all of the attributes of their superclass, but may define
additional attributes and have additional rewrite rules which affect them. The upshot of

all this is that if we refine our specification by instantiating objects in one class into some
subclass, any invariants proved for the original rules immediately hold for the same
rules in the refined specification. Because of rule modularity, we need only prove our
invariants hold for the newly defined rules. Even among newly defined rules, all non-
interfering rules trivially satisfy any already proved invariants, where non-interfering
rules do not directly or indirectly influence the state of previously defined attributes.

Lastly, we exploit what we call structural modularity. Since our logic is constructor-
based and we assume that Bo-matching is decidable, by pattern matching we can easily
specify a set S of sequents to which we can apply the same combination of derived
proof rules. This is based on the intuition that syntactically similar goals typically can
be proved in a similar way. More concretely, given a set of reachability formulas S
and pattern p € To(X), we can define the subset of formulas S, = {(u | ¢) —»® B €
S | 3@ € [X — To(X)] pa =g, u}. Although the simplified example below does not
illustrate structural modularity, we have heavily exploited this principle in our formal
verification of IBOS.

Address Bar Correctness Proof Example. Here we show a snippet of the ABC
invariant verification, namely, we prove that the invariant holds for the change-display
rule by exploiting rule modularity as noted above. As mentioned in our description
of invariant P;, well-formedness is required for all invariants. Therefore, we begin
with ABC A Py, as our candidate inductive invariant, which, as mentioned in Sect. 2,
normalizes by disjoint Bo-unification to the invariant:

{<kernel | addrBar(U), Atts)
(display | displayContent(U"),Atts"y Conf } | U' U A WF(...)

where for brevity ... expands to the entire term of sort Conf wrapped inside operator
{-}, i.e., the entire configuration is well-formed. Recall the definition of the change-
display rule in Section 4.1. We can see that our invariant only mentions the kernel and
display processes, whereas in rule change-display the value of displayContent depends
on the rendered attribute of a WebApp, i.e., the one selected as the activeTab. Clearly,
our invariant seems too weak. How can we strengthen it? The reader may recall Py,
which states “the URL of the active tab is displayed to the user.” Thus, by further disjoint
Bg-unification, the strengthened invariant ABC A Py; A Py normalizes to:

{<kernel | addrBar(U), Atts) {(display | displayContent(U"), activeTab(WA), Atts")
(WA | URL(U"),Atts"y Conf } | U' QU AU QU" A WE(...)

This new invariant is closer to what we need, since the pattern now mentions the partic-
ular web app we want. Unfortunately, since our invariant still knows nothing about the
rendered attribute, at least one further strengthening is needed.

At this point, we can enrich our theory with a new predicate stating that the rendered
and URL attributes of any WebApp always agree’. Let us declare it as R : Conf — Bool.
We can define it inductively over configurations by:

3 Note that, in a very real sense, this requirement is at the heart of the SOP, since it means that
any WebApp has indeed obtained content from its claimed origin.

R({WA | rendered(U), URL(U"), Atts)y Conf) = U S U’ A R(Conf) (Ry)
R({P | Attsy Conf) = R(Conf) if —WA(P) (Rp)
R(none) =T (R3)

where WA : Oid — Bool ambiguously denotes a predicate that holds iff an Oid refers
to a web app. Intuitively, it says that whatever a WebApp has rendered is either blank or
has been loaded from its URL. The strengthened invariant becomes:

{Ckernel | addrBar(U), Atts) {display | displayContent(U"), activeTab(WA), Atts")
(WA | URL(U"),Atts") Conf'} |
UsUAUSU" AWF(...) AR(...)

where, as before, the . .. represents the entire term of sort Conf enclosed in {_}. Now, all
of the required relationships between variables in the rewrite rule seem to be accounted
for. Uneventfully, with the strengthened invariant ABC A Pi; A P9 A R, the subproof
for the change-display rule now succeeds.

6 Related Work and Conclusions

Related Work on IBOS Verification. In this paper, we have presented the first full
deductive verification of SOP and ABC for IBOS. Note that in [39,40], SOP and ABC
were also verified. Their approach consisted of a hand-written proof that any counter-
example must appear on some trace of length n plus bounded model checking showing
that such counterexamples are unreachable on all traces of length n. In [36], an attempt
was made to deductively verify these same invariants via the Maude invariant analyzer.
Though a few basic invariants were proved, due to thousands of generated proof obli-
gations, none of the properties listed in Sect. 4.2 were verified. Compared to previous
work, this paper presents the first full deductive verification of IBOS security properties.

Related Work on Browser Security. In terms of computer technology, the same-origin
policy is quite old: it was first referenced in Netscape Navigator 2 released in 1996 [1].
As [41] points out, different browser vendors have different notions of SOP. Here, we
situate IBOS and our work into this larger context. Many papers have been written on
policies for enforcing SOP with regards to frames [2], third-party scripts [20,23], cached
content [21], CSS [19], and mobile OSes [51]. Typically, these discussions assume that
browser code is working as intended and then show existing policies are insufficient.
Instead, IBOS attacks the problem taking a different tack: even if the browser itself is
compromised, can SOP still be ensured? What the IBOS verification demonstrates is
that —by using a minimal trusted computing base in the kernel, implementing separate
web frames as separate processes, and requiring all IPC to be kernel-checked— one can
in fact enforce the standard SOP notions, even if the complex browser code for render-
ing HTML or executing JavaScript is compromised. Although our model does not treat
JavaScript, HTML, or cookies, explicitly, since it models system calls which are used

for process creation, network access, and inter-process communication, code execution
and resource references can be abstracted away into the communication primitives they
ultimately cause to be invoked, allowing us to perform strong verification in a high-
level fashion. [7] surveys many promising lines of research in the formal methods web
security landscape. Prior work on formal and declarative models of web browsers in-
cludes [3] as well as the executable models [4, 5]. Our work complements the Quark
browser design and implementation of [22]: Quark, like IBOS, has a small trusted ker-
nel (specified in Coq). In addition to proving tab non-interference and address bar cor-
rectness theorems, the authors use Coq code extraction to produce a verified, functional
browser. Unlike Quark, whose TCB includes the entire Linux kernel and Coq code ex-
traction tools, the TCB of the IBOS browser consists of only 42K lines of C/C++ code.

Related Work on Reachability Logic. Our work on constructor-based reachability
logic [44, 45] builds upon previous work on reachability logic [37, 38,47, 48] as a
language-generic approach to program verification, parametric on the operational se-
mantics of a programming language. Our work extends in a non-trivial manner reach-
ability logic from a programming-language-generic logic of programs to a rewrite-
theory-generic logic to reason about both distributed system designs and programs
based on rewriting logic semantics. Our work in [44,45] was also inspired by the work
in [27], which for the first time considered reachability logic for rewrite theories, but
went beyond [27] in several ways, including more expressive input theories and state
predicates, and a simple inference system as opposed to an algorithm. Also related to
our work in [44,45], but focusing on coinductive reasoning, we have the recent work
in [10, 26, 35], of which, in spite of various substantial differences, the closest to our
work regarding the models assumed, the kinds of reachability properties proved, and
the state predicates and inference systems proposed is the work in [10].

Conclusion and Future Work. We have presented a full deductive proof of the SOP
and ABC properties of the IBOS browser design, as well as a prover and a modular
reachability logic verification methodology making proofs scalable to substantial proof
efforts like that of IBOS. Besides offering a case study that can help other distributed
system verification efforts, this work should also be seen as a useful step towards incor-
porating the IBOS design ideas into future fully verified browsers. The web is alive and
evolving; these evolution necessitates that formal approaches evolve as well. Looking
towards the future of IBOS, two goals stand out: (i) extending the design of IBOS to
handle some recent extensions of the SOP, e.g., cross-origin resource sharing (CORS)
to analyze potential cross-site scripting (XSS) and cross-site request forgery attacks
(XSRF) [16], and to check for incompatible content security policies (CSP) [46] in re-
lation to SOP; by exploiting subclass and rule modularity, the verification of an IBOS
extension with such new functionality could reuse most of the current IBOS proofs,
since extra proofs would only be needed for the new, functionality-adding rules; and
(i1) exploiting the intrinsic concurrency of Maude rewrite theories to transform them
into correct-by-construction, deployable Maude-based distributed system implementa-
tions, closing the gap between verified designs and correct implementations. Our work
on IBOS takes one more step towards demonstrating that a formally secure web is pos-
sible in a connected world where security is needed more than ever before.

References

1.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.
21.

JavaScript Guide (1.2). Netscape Communications Corporation (1997), originally http:
//developer.netscape.com/docs/manuals/communicator/jsguide4/index.htm;
accessed athttps://www.cs.rit.edu/~atk/JavaScript/manuals/jsguide/

. Barth, A., Jackson, C., Mitchell, J.C.: Securing frame communication in browsers. Commu-

nications of the ACM 52(6), 83-91 (2009)

. Bauer, L., Cai, S, Jia, L., Passaro, T., Stroucken, M., Tian, Y.: Run-time monitoring and

formal analysis of information flows in chromium. In: NDSS (2015)

. Bohannon, A.: Foundations of web script security. Citeseer (2012)
. Bohannon, A., Pierce, B.C.: Featherweight Firefox: formalizing the core of a web browser.

In: Proceedings of the 2010 USENIX conference on Web application development. pp. 11—
11. Usenix Association (2010)

. Bruni, R., Meseguer, J.: Semantic foundations for generalized rewrite theories. Theoretical

Computer Science 360(1-3), 386-414 (2006)

. Bugliesi, M., Calzavara, S., Focardi, R.: Formal methods for web security. Journal of Logical

and Algebraic Methods in Programming 87, 110-126 (2017)

. Chen, S., Meseguer, J., Sasse, R., Wang, H.J., Wang, Y.M.: A systematic approach to uncover

security flaws in gui logic. In: IEEE Symposium on Security and Privacy. pp. 71-85. IEEE
(2007)

. Chen, S., Ross, D., Wang, Y.M.: An analysis of browser domain-isolation bugs and a light-

weight transparent defense mechanism. In: ACM Conference on Computer and Communi-
cations Security. pp. 2—-11. ACM (2007)

Stefan Ciobacd, Lucanu, D.: A coinductive approach to proving reachability properties in
logically constrained term rewriting systems. In: Proc. IICAR 2018. Lecture Notes in Com-
puter Science, vol. 10900, pp. 295-311. Springer (2018)

Clavel, M., Durén, F., Eker, S., Meseguer, J., Lincoln, P., Mart{-Oliet, N., Talcott, C.: All
About Maude — A High-Performance Logical Framework. Springer LNCS Vol. 4350 (2007)
Dershowitz, N., Jouannaud, J.P.: Rewrite systems. In: van Leeuwen, J. (ed.) Handbook of
Theoretical Computer Science, Vol. B, pp. 243-320. North-Holland (1990)

Durén, F., Meseguer, J.: On the Church-Rosser and coherence properties of conditional order-
sorted rewrite theories. The Journal of Logic and Algebraic Programming 81(7-8), 816-850
(2012)

Escobar, S., Sasse, R., Meseguer, J.: Folding variant narrowing and optimal variant termina-
tion. The Journal of Logic and Algebraic Programming 81, 898-928 (2012)

Goguen, J., Meseguer, J.: Order-sorted algebra I: Equational deduction for multiple inher-
itance, overloading, exceptions and partial operations. Theoretical Computer Science 105,
217-273 (1992)

Gollmann, D.: Problems with same origin policy: Know thyself. In: Security Protocols XVI.
pp- 84-85. Springer, Berlin, Heidelberg (2011)

Hendrix, J., Meseguer, J., Ohsaki, H.: A sufficient completeness checker for linear order-
sorted specifications modulo axioms. In: Automated Reasoning, Third International Joint
Conference, IICAR 2006. pp. 151-155 (2006)

Hendrix, J.D.: Decision Procedures for Equationally Based Reasoning. Ph.D. thesis, Univer-
sity of Illinois at Urbana-Champaign (2008), http://hdl.handle.net/2142/10967
Huang, L.S., Weinberg, Z., Evans, C., Jackson, C.: Protecting browsers from Cross-origin
CSS attacks. pp. 619-629. CCS *10, ACM, New York, NY, USA (2010)

Jackson, C., Barth, A.: Beware of finer-grained origins. Web (2008)

Jackson, C., Bortz, A., Boneh, D., Mitchell, J.C.: Protecting browser state from web privacy
attacks. In: Proceedings of the 15th international conference on World Wide Web. pp. 737-
744. ACM (2006)

http://developer.netscape.com/docs/manuals/communicator/jsguide4/index.htm
http://developer.netscape.com/docs/manuals/communicator/jsguide4/index.htm
https://www.cs.rit.edu/~atk/JavaScript/manuals/jsguide/

22.

23.

24.

25.

26.

217.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Jang, D., Tatlock, Z., Lerner, S.: Establishing browser security guarantees through for-
mal shim verification. In: Presented as part of the 21st {USENIX} Security Symposium
({USENIX} Security 12). pp. 113128 (2012)

Karlof, C., Shankar, U., Tygar, J.D., Wagner, D.: Dynamic pharming attacks and locked
same-origin policies for web browsers. In: Proceedings of the 14th ACM conference on
Computer and communications security. pp. 58-71. ACM (2007)

Klein, G., Tuch, H.: Towards verified virtual memory in L4. TPHOLs Emerging Trends 4,
16 (2004)

Kolanski, R., Klein, G.: Formalising the L4 microkernel API. In: Proceedings of the 12th
Computing: The Australasian Theroy Symposium-Volume 51. pp. 53—68. Australian Com-
puter Society, Inc. (2006)

Lucanu, D., Rusu, V., Arusoaie, A.: A generic framework for symbolic execution: A coin-
ductive approach. Journal of Symbolic Computing 80, 125-163 (2017)

Lucanu, D., Rusu, V., Arusoaie, A., Nowak, D.: Verifying reachability-logic properties on
rewriting-logic specifications. In: Logic, Rewriting, and Concurrency - Essays dedicated to
José Meseguer on the Occasion of His 65th Birthday. vol. 9200, pp. 451-474. Springer LNCS
(2015)

Lucas, S., Meseguer, J.: Normal forms and normal theories in conditional rewriting. Journal
of Logical and Algebraic Methods in Programming 85(1), 67-97 (2016)

Meseguer, J.: A logical theory of concurrent objects and its realization in the Maude lan-
guage. In: Agha, G., Wegner, P., Yonezawa, A. (eds.) Research Directions in Concurrent
Object-Oriented Programming, pp. 314-390. MIT Press (1993)

Meseguer, J.: Membership algebra as a logical framework for equational specification. In:
Proc. WADT’97. pp. 18-61. Springer LNCS 1376 (1998)

Meseguer, J.: Twenty years of rewriting logic. J. Algebraic and Logic Programming 81, 721—
781 (2012)

Meseguer, J.: Order-sorted rewriting and congruence closure. In: Proc. FOSSACS 2016. Lec-
ture Notes in Computer Science, vol. 9634, pp. 493-509. Springer (2016)

Meseguer, J.: Generalized rewrite theories, coherence completion and symbolic methods.
Tech. Rep. http://hdl.handle.net/2142/102183, University of Illinois Computer Sci-
ence Department (December 2018)

Meseguer, J.: Variant-based satisfiability in initial algebras. Sci. Comput. Program. 154, 341
(2018)

Moore, B.: Coinductive Program Verification. Ph.D. thesis, University of Illinois at Urbana-
Champaign (2016), http://hdl.handle.net/2142/95372

Rocha, C.: Symbolic Reachability Analysis for Rewrite Theories. Ph.D. thesis, University of
Illinois at Urbana-Champaign (2012)

Rosu, G., Stefanescu, A.: Checking reachability using matching logic. In: Proc. OOPSLA
2012. pp. 555-574. ACM (2012)

Rosu, G., Stefanescu, A.: From Hoare logic to matching logic reachability. In: Gian-
nakopoulou, D., Méry, D. (eds.) FM. Lecture Notes in Computer Science, vol. 7436, pp.
387-402. Springer (2012)

Sasse, R.: Security models in rewriting logic for cryptographic protocols and
browsers. Ph.D. thesis, University of Illinois at Urbana-Champaign (2012),
http://hdl.handle.net/2142/34373

Sasse, R., King, S.T., Meseguer, J., Tang, S.: IBOS: A correct-by-construction modular
browser. In: FACS 2012. Lecture Notes in Computer Science, vol. 7684, pp. 224-241.
Springer (2013)

Schwenk, J., Niemietz, M., Mainka, C.: Same-origin policy: Evaluation in modern browsers.
In: 26th USENIX Security Symposium (USENIX Security 17). pp. 713-727. USENIX As-
sociation, Vancouver, BC (2017)

42. Skeirik, S.: Rewriting-Based Symbolic Methods for Distirbuted System Analysis. Ph.D. the-
sis, University of Illinois at Urbana-Champaign (2019)

43. Skeirik, S., Meseguer, J.: Metalevel algorithms for variant satisfiability. Journal of Logical
and Algebraic Methods in Programming 96, 81-110 (2018)

44. Skeirik, S., Stefanescu, A., Meseguer, J.: A constructor-based reachability logic for rewrite
theories. In: Proc. Logic-Based Program Synthesis and Transformation - 27th International
Symposium, LOPSTR 2017. Lecture Notes in Computer Science, vol. 10855, pp. 201-217.
Springer (2017)

45. Skeirik, S., Stefanescu, A., Meseguer, J.: A constructor-based reachability logic for rewrite
theories. Fundam. Inform. 173(4), 315-382 (2020)

46. Some, D.F,, Bielova, N., Rezk, T.: On the content security policy violations due to the same-
origin policy. pp. 877-886. WWW ’17, Republic and Canton of Geneva, Switzerland (2017)

47. Stefanescu, A., Stefan Ciobaca, Mereuta, R., Moore, B.M., Serbanuta, T., Rosu, G.: All-
path reachability logic. In: Proc. RTA-TLCA 2014. vol. 8560, pp. 425-440. Springer LNCS
(2014)

48. Stefanescu, A., Park, D., Yuwen, S., Li, Y., Rosu, G.: Semantics-based program verifiers for
all languages. In: Proc. OOPSLA 2016. pp. 74-91. ACM (2016)

49. Tang, S.: Towards Secure Web Browsing. Ph.D. thesis, University of Illinois at Urbana-
Champaign (2011), 2011-05-25, http://hdl.handle.net/2142/24307

50. Tang, S., Mai, H., King, S.T.: Trust and protection in the illinois browser operating system.
In: 9th USENIX Symposium on Operating Systems Design and Implementation, OSDI 2010,
October 4-6, 2010, Vancouver, BC, Canada, Proceedings. pp. 17-32. USENIX Association
(2010)

51. Wang, R., Xing, L., Wang, X., Chen, S.: Unauthorized origin crossing on mobile platforms:
Threats and mitigation. In: Proceedings of the 2013 ACM SIGSAC Conference on Computer
Communications Security. pp. 635-646. CCS "13, ACM, New York, NY, USA (2013)

A Reachability Logic Derived Proof Rules

For completeness, we document the three derived rules in our proof system in Table
2, provide some intuitive explanations of how they are used, and finally make a few
general comments about how they are automated.

In some sense, the Case and Spuit rules are performing the exact same operation.
In the former, we are considering how to decompose a variable into multiple patterns
which entirely cover the sort of the given variable; in the later, we are considering how
we can decompose the true formula T into a set of quantifier-free formulas whose dis-
junction is equivalent to T. In either case, what we want is to make use of the extra
information available after case analysis or formula splitting to help us discharge pat-
tern subsumption proofs in the side-condition of Axiom. These rules are both essential
for our proofs of both SOP and ABC, since they allow us to infer additional informa-
tion in a sound way that is implied by application of the system rewrite rules but not
directly stated. The SussTiTUTION rule has a slightly different flavor from Case or SpLiT;
essentially, it encodes a commonly applicable sequent simplification technique when a
fragment of the sequent constraint is a unifiable conjunction of equalities. Its usefulness
primarily comes from the fact that such unifications often fail, which can lead to a huge
reduction in the number of goals to be proved.

As for automation, these rules present no special difficulties. SUBSTITUTION is imple-
mentable directly by Maude’s built-in unification modulo axioms and variant unification

Table 2: Overivew of Derived Proof Rules
Assumption: R = (X, EU B, R) is suff. comp. w.r.t. (2, Bo)

Name Rule Condition
Nueul A, Cl 1 Alx/a] —° B[x/d]
[A,.Cl -7 A —>® B

/\a&edi[ﬂv Clbr(uleng¢)—>®B
[A C] b7 (u]g) >° B

/\(teUm'fE(V/) [ﬂ’ C] Fr (l/l |,O)a —® Ba
(A, CT Fr (e[9) = B

Cast’ x:5 €V A cover(M, s)

Spuir!

(VD =T) A away(d,A, B)

Susst.}

g=ynp

*cover(M,s) =M < To(Y), A Y nvars(A,B) = & A [M] = T, ~ |M| finite
T away(®, A, B) = vars(®) n (vars(B) /vars(A)) = &.
¥ Usable only when Unify (i) is decidable.

algorithms. The Case and Spuit rules are also easy to apply. Regarding the checking of
their side conditions, checking in Cask that M is a cover set for sort s is easy to auto-
mate by tree automata modulo axioms B techniques supported by Maude’s Sufficient
Completeness Checker [17, 18]. In the case of Spuit, although proving that an arbitrary
disjunction \/ @ of formulas is inductively equivalent to T in the initial algebra Ts /x5
is in general undecidable, in practice \/ @ is not arbitrary at all, since \/ @ typically
has the form p = true v p = false, where p is a Boolean expression, or the form
F v —F, for F a QF-formula; so such checks are trivial in practice.

B IBOS System Specification in Maude

To ground our discussion we recap here some details of the IBOS specification. The
Maude rewrite theory specifying the IBOS system design in total consists of approxi-
mately 850 lines of code and defines 23 rewrite rules. The main pattern predicate defin-
ing the SOP is about 180 lines of code while the main pattern predicate defining ABC
is about 20 lines of code. Their supporting predicate definitions used to define the in-
ductive invariant is about 900 lines of code. The reachability formulas specifying the
inductive invariants for the IBOS SOP and ABC security properties in our Maude reach-
ability logic tool notation are roughly 20 lines each. The proof scripts which verify that
the respective inductive invariants hold for each proof rule excluding comments and
boilerplate text are about 200 lines each. In total, there are approximately 2500 lines of
code.

As a further aid to the reader and a complement to the graphical overview of IBOS
in Figure 1, we rewrite this graphical figure using our formal specification. Said another
way, we provide in Figure 3 a representative state (e.g., a ground term) of the transition
system (CZ/Eu B.siare» —®) Where R is the Maude rewrite theory specifying IBOS. To
improve readability, we write each object attribute on a separate line.

Let us make a few high-level remarks about the figure. In our specification, urls
are encoded as numbers wrapped by constructor url(...). In IBOS, to enforce SOP as
well as other security policies, both browser frames and network connections must be
tracked. Each browser frame is represented by an object of class WebApp, while each
network connection is represented by an object of class NetProc. The kernel manages
process state by internal metadata tables webApplInfo where each web app is tagged by
its origin and netProcInfo where each network connection is tagged by its origin web
app and destination server. When a new web app is created, the kernel automatically
creates a corresponding network process between the webapp and its origin server.
Since the kernel is responsible for creating network connections, it records the next
fresh network process identifier in nextNetProc.

The kernel’s secPolicy attribute stores its security policy. Each policy consists of
a sender, a receiver, and a message type. Any message not explicitly allowed by the
policy is dropped. In the policy, the special Oids network and webapp represent a pol-
icy allowing any network process or webapp to send a particular kind of message to
its corresponding webapp or network process, respectively. In the figure, the kernel is
preparing to forward a message from webapp(0) to its corresponding network process
network(0) asking to fetch an item from the web app’s origin uri(15).

Aside from the kernel, the system has a few other distinguished objects. The display
object tracks the content currently shown on the screen in displayContent; to do that,
it should know which web app is the activeTab. The ui (user interface) contains the
list of commands given by the user during some usage session in its foKernel attribute.
The webappmgr (web app manager) is responsible for spawning new web apps; in our
model, it just records the next fresh web app identifier in attribute nextWebApp. Finally,
the nic (network interface card) has two attributes for ingoing and outgoing data. In our
model, we identify urls and their loaded content. To model network latency, outgoing
messages in nic-out are queued up in nic-in in a random order.

Of course, we also have objects representing web apps and network connections.
In the figure, webapp(0)’s rendered content is blank. However, it is currently load-
ing its content from its origin url(15); its request to fetch data from its corresponding
network process is currently being handled by the kernel. Currently, its toKernel and
fromKernel IPC message queues are blank because it is not performing any other com-
munication at this time. There is also a corresponding network process network(0); it
has two direct-memory access (DMA) buffers mem-in and mem-out that are used as I/O
channels between itself and the network card driver. Like web apps, network processes
also have two IPC message queues. Finally, a network process also stores which web
app its received data should be sent back to.

< kernel | addrBar(url(15)),
handling(msg(webapp(0), network(0), FETCH-URL, url(15)))
nextNetProc(1),
webApplInfo(pi(webapp(0), url(15))),
netProcInfo(pi(network(0), url(15),url(15))),
secPolicy(policy(webapp, network, FETCH-URL),
policy(network, webapp, RETURN-URL),
policy(ui, webapp, NEW-URL),
policy(ui, webapp, SWITCH-TAB)) >
< display | displayContent(about-blank),
activeTab(webapp(0)) >
< ui | toKernel(msg(ui, webapp, NEW-URL, url(25))) >
< webappmgr | nextWebApp(1) >
< nic | nic-in(emipy),
nic-out(empty) >
< webapp(0) | URL(url(15)),
rendered(about-blank),
loading(true),
toKernel(empty),
fromKernel(empty) >
< network(0) | mem-in(empty),
mem-out(empty),
returnTo(webapp(0)),
toKernel(empty),
fromKernel(empty) >

Fig. 3: Representative IBOS System State

	Verification of the IBOS Browser Security Properties in Reachability Logic

