Skip to main content

Synthesis of Solar Photovoltaic Systems: Optimal Sizing Comparison

  • Conference paper
  • First Online:
  • 279 Accesses

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12549))

Abstract

In the current scenario, energy demand rises by 1.3% each year to 2040, and photovoltaic (PV) systems have emerged as an alternative to the fossil or nuclear fuel energy generation. The use of formal methods for PV systems is a new subject with significant research spanning only five years. Here we develop and evaluate an automated synthesis technique to obtain optimal sizing of PV systems based on Life Cycle Cost (LCC) analysis. The optimal solution is the lowest cost from a list of equipment that meets the electrical demands from a house, plus the replacement, operation, and maintenance costs over 20 years. We propose a variant of the counterexample guided inductive synthesis (CEGIS) approach with two phases linking the technical and cost analysis to obtain the PV sizing optimization. We advocate that our technique has various advantages if compared to off-the-shelf optimization tools available in the market for PV systems. Experimental results from seven case studies demonstrate that we can produce an optimal solution within an acceptable run-time; different software verifiers are evaluated to check performance and soundness. We also compare our approach with a commercial tool specialized in PV systems optimization. Both results are validated with commercial design software; furthermore, some real PV systems comparison are used to show our approach effectiveness.

Supported by Newton Fund (ref. 261881580) and FAPEAM (Amazonas State Foundation for Research Support, calls 009/2017 and PROTI Pesquisa 2018).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    https://tinyurl.com/yck7dfxt.

  2. 2.

    https://tinyurl.com/ycgbsgkp.

  3. 3.

    https://tinyurl.com/yajfmavl.

  4. 4.

    Command-line: $ cbmc --unwind 100 file.c --trace.

  5. 5.

    Command-line: $ esbmc filename.c --incremental-bmc --boolector.

  6. 6.

    Command-line: $ scripts/cpa.sh -heap 64000m -config config/bmc-incremental.properties -spec config/specification/sv-comp-reachability.spc file.c.

  7. 7.

    https://meteonorm.com/en/.

References

  1. Abate, A., et al.: Automated formal synthesis of digital controllers for state-space physical plants. In: Majumdar, R., Kunčak, V. (eds.) CAV 2017. LNCS, vol. 10426, pp. 462–482. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-63387-9_23

    Chapter  Google Scholar 

  2. Abate, A.: Verification of networks of smart energy systems over the cloud. In: Bogomolov, S., Martel, M., Prabhakar, P. (eds.) NSV 2016. LNCS, vol. 10152, pp. 1–14. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-54292-8_1

    Chapter  Google Scholar 

  3. Abate, A., David, C., Kesseli, P., Kroening, D., Polgreen, E.: Counterexample guided inductive synthesis modulo theories. In: Chockler, H., Weissenbacher, G. (eds.) CAV 2018. LNCS, vol. 10981, pp. 270–288. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-96145-3_15

    Chapter  Google Scholar 

  4. Alsadi, S., Khatib, T.: Photovoltaic power systems optimization research status: a review of criteria, constrains, models, techniques, and software tools. Appl. Sci. 8(1761), 1–30 (2018)

    Google Scholar 

  5. Barua, S., Prasath, R.A., Boruah, D.: Rooftop solar photovoltaic system design and assessment for the academic campus using PVsyst software. Int. J. Electron. Electr. Eng. 5(1), 76–83 (2017)

    Article  Google Scholar 

  6. Beyer, D., Keremoglu, M.E.: CPAchecker: a tool for configurable software verification. In: Gopalakrishnan, G., Qadeer, S. (eds.) CAV 2011. LNCS, vol. 6806, pp. 184–190. Springer, Heidelberg (2011). https://doi.org/10.1007/978-3-642-22110-1_16

    Chapter  Google Scholar 

  7. Bjørner, N., Phan, A.-D., Fleckenstein, L.: \({\nu }Z\) - an optimizing SMT solver. In: Baier, C., Tinelli, C. (eds.) TACAS 2015. LNCS, vol. 9035, pp. 194–199. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-46681-0_14

    Chapter  Google Scholar 

  8. Brummayer, R., Biere, A.: Boolector: an efficient SMT solver for bit-vectors and arrays. In: Kowalewski, S., Philippou, A. (eds.) TACAS 2009. LNCS, vol. 5505, pp. 174–177. Springer, Heidelberg (2009). https://doi.org/10.1007/978-3-642-00768-2_16

    Chapter  MATH  Google Scholar 

  9. Cimatti, A., Griggio, A., Schaafsma, B.J., Sebastiani, R.: The MathSAT5 SMT solver. In: Piterman, N., Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 93–107. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-36742-7_7

    Chapter  MATH  Google Scholar 

  10. Clarke, E.M., Henzinger, T.A., Veith, H.: Introduction to model checking. In: Handbook of Model Checking, pp. 1–26. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-10575-8_1

    Chapter  MATH  Google Scholar 

  11. Coelho, S., et al.: Biomass residues as electricity generation source in low HD source in regions of Brazil. In: UNESP (ed.) The XI Latin Congress of Electricity Generation and Transmission - CLAGTEE, pp. 1–8 (2015)

    Google Scholar 

  12. Driouich, Y., Parente, M., Tronci, E.: A methodology for a complete simulation of cyber-physical energy systems. In: IEEE Workshop on Environmental, Energy, and Structural Monitoring Systems (EESMS), pp. 1–5 (2018)

    Google Scholar 

  13. Empresa de Pesquisa Energética EPE: Sistemas Isolados - Planejamento Ciclo 2018–2023 (2018). http://www.epe.gov.br/sites-pt/publicacoes-dados-abertos/publicacoes. Accessed 04 Apr 2019

  14. Gadelha, M., Monteiro, F., Morse, J., Cordeiro, L., Fischer, B., Nicole, D.: ESBMC 5.0: an industrial-strength C model checker. In: 33rd IEEE/ACM International Conference on Automated Software Engineering (ASE 2018), pp. 888–891. ACM, New York (2018)

    Google Scholar 

  15. Gadelha, M.Y.R., Cordeiro, L.C., Nicole, D.A.: An efficient floating-point bit-blasting API for verifying C programs. CoRR abs/2004.12699 (2020). https://arxiv.org/abs/2004.12699

  16. Gow, J., Manning, C.: Development of a photovoltaic array model for use in power-electronics simulation studies. In: Proceedings of the 14th IEE Electric Power Applications Conference, vol. 146(2), pp. 193–200 (1999)

    Google Scholar 

  17. Hansen, A., Sørensen, P., Hansen, L., Bindner, H.: Models for a stand-alone PV system. No. 1219 in Denmark. Forskningscenter Risoe. Risoe-r, Forskningscenter Risoe (2001)

    Google Scholar 

  18. HOMER: The HOMER microgrid software (2017). http://www.homerenergy.com/software.html. Accessed 1 June 2019

  19. Hussein, M., Leal Filho, W.: Analysis of energy as a precondition for improvement of living conditions and poverty reduction in sub-Saharan Africa. In: Scientific Research and Essays, vol. 7(30), pp. 2656–2666 (2012)

    Google Scholar 

  20. IEA: World Energy Outlook 2018. IEA, Paris (2018)

    Google Scholar 

  21. Karekesi, S., Lata, K., Coelho, S.: Renewable Energy - A Global Review of Technologies, Policies and Markets, chap. Traditional Biomass Energy: Improving Its Use and Moving to Modern Energy Use, pp. 231–261. Earthscan, London (2006)

    Google Scholar 

  22. Khatib, T., Elmenreich, W.: Optimum availability of standalone photovoltaic power systems for remote housing electrification. Int. J. Photoenergy 2014(Article ID 475080), 5 pages (2014)

    Google Scholar 

  23. Kroening, D., Tautschnig, M.: CBMC – c bounded model checker. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS, vol. 8413, pp. 389–391. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-642-54862-8_26

    Chapter  Google Scholar 

  24. Pinho, J., Galdino, M.: Manual de Engenharia para Sistemas Fotovoltaicos. CEPEL - CRESESB, Rio de Janeiro (2014)

    Google Scholar 

  25. Pradhan, S., Singh, S., Choudhury, M., Dwivedy, D.: Study of cost analysis and emission analysis for grid connected PV systems using RETSCREEN 4 simulation software. Int. J. Eng. Res. Tech. 4(4), 203–207 (2015)

    Google Scholar 

  26. PVsyst: Logiciel Photovoltaïque (2020). https://www.pvsyst.com/. Accessed 24 Apr 2020

  27. Sengupta, A., Mukhopadhyay, S., Sinha, A.: Automated verification of power system protection schemes–Part I: modeling and specifications. IEEE Tran. Power Del. 30(5), 2077–2086 (2015)

    Article  Google Scholar 

  28. Swarnkar, N., Gidwani, L., Sharma, R.: An application of HOMER Pro in optimization of hybrid energy system for electrification of technical institute. In: International Conference on Energy Efficient Technologies for Sustainability (ICEETS), pp. 56–61 (2016)

    Google Scholar 

  29. Trindade, A.: Ferramenta de análise comparativa de projetos de eletrificação rural com fontes renováveis de energia na amazônia. In: IX Congresso sobre Geração Distribuída e Energia no Meio Rural - AGRENER GD. p. n.pag. (2013)

    Google Scholar 

  30. Trindade, A., Cordeiro, L.C.: Optimal sizing of stand-alone solar PV systems via automated formal synthesis. CoRR abs/1909.13139 (2019). http://arxiv.org/abs/1909.13139

  31. Trindade, A.B., Cordeiro, L.C.: Automated formal verification of stand-alone solar photovoltaic systems. Solar Energy 193(1), 684–691 (2019)

    Article  Google Scholar 

  32. Trindade, A.B., Degelo, R.D.F., Junior, E.G.D.S., Ismail, H.I., Silva, H.C.D., Cordeiro, L.C.: Multi-core model checking and maximum satisfiability applied to hardware-software partitioning. IJES 9(6), 570–582 (2017)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Trindade .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Trindade, A., Cordeiro, L.C. (2020). Synthesis of Solar Photovoltaic Systems: Optimal Sizing Comparison. In: Christakis, M., Polikarpova, N., Duggirala, P.S., Schrammel, P. (eds) Software Verification. NSV VSTTE 2020 2020. Lecture Notes in Computer Science(), vol 12549. Springer, Cham. https://doi.org/10.1007/978-3-030-63618-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63618-0_6

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63617-3

  • Online ISBN: 978-3-030-63618-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics