Skip to main content

3D Human Pose Estimation with 2D Human Pose and Depthmap

  • Conference paper
  • First Online:
  • 2300 Accesses

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1332))

Abstract

Three-dimensional human pose estimation models are conventionally based on RGB images or by assuming that accurately-estimated (near to ground truth) 2D human pose landmarks are available. Naturally, such data only contains information about two dimensions, while the 3D poses require the three dimensions of height, width, and depth. In this paper, we propose a new 3D human pose estimation model that takes an estimated 2D pose and the depthmap of the 2D pose as input to estimate 3D human pose. In our system, the estimated 2D pose is obtained from processing an RGB image using a 2D landmark detection network that produces noisy heatmap data. We compare our results with a Simple Linear Model (SLM) of other authors that takes accurately-estimated 2D pose landmarks as input and that has reached the state-of-the-art results for 3D human pose estimate using the Human3.6m dataset. Our results show that our model can achieve better performance than the SLM, and that our model can align the 2D landmark data with the depthmap automatically. We have also tested our network using estimated 2D poses and depthmaps separately. In our model, all three conditions (depthmap+2D pose, depthmap-only and 2D pose-only) are more accurate than the SLM with, surprisingly, the depthmap-only condition being comparable in accuracy with the depthmap+2D pose condition.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Times original value with 1000.

References

  1. Andriluka, M., Pishchulin, L., Gehler, P., Schiele, B.: 2D human pose estimation: new benchmark and state of the art analysis. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), June 2014

    Google Scholar 

  2. Bo, L., Sminchisescu, C., Kanaujia, A., Metaxas, D.: Fast algorithms for large scale conditional 3D prediction. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, pp. 1–8. IEEE (2008)

    Google Scholar 

  3. Carreira, J., Agrawal, P., Fragkiadaki, K., Malik, J.: Human pose estimation with iterative error feedback. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4733–4742 (2016)

    Google Scholar 

  4. Ionescu, C., Li, F., Sminchisescu, C.: Latent structured models for human pose estimation. In: International Conference on Computer Vision (2011)

    Google Scholar 

  5. Chen, C., Jafari, R., Kehtarnavaz, N.: UTD-MHAD: a multimodal dataset for human action recognition utilizing a depth camera and a wearable inertial sensor. In: 2015 IEEE International Conference on Image Processing (ICIP), pp. 168–172. IEEE (2015)

    Google Scholar 

  6. Ionescu, C., Papava, D., Olaru, V., Sminchisescu, C.: Human3.6M: large scale datasets and predictive methods for 3D human sensing in natural environments. IEEE Trans. Pattern Anal. Mach. Intell. 36(7), 1325–1339 (2014)

    Article  Google Scholar 

  7. Li, S., Chan, A.B.: 3D human pose estimation from monocular images with deep convolutional neural network. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9004, pp. 332–347. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-16808-1_23

    Chapter  Google Scholar 

  8. Lie, W.N., Lin, G.H., Shih, L.S., Hsu, Y., Nguyen, T.H., Nhu, Q.N.Q.: Fully convolutional network for 3D human skeleton estimation from a single view for action analysis. In: 2019 IEEE International Conference on Multimedia & Expo Workshops (ICMEW), pp. 1–6. IEEE (2019)

    Google Scholar 

  9. Lilliefors, H.W.: On the Kolmogorov-Smirnov test for normality with mean and variance unknown. J. Am. Stat. Assoc. 62(318), 399–402 (1967)

    Article  Google Scholar 

  10. Lin, T.-Y., et al.: Microsoft COCO: common objects in context. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8693, pp. 740–755. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10602-1_48

    Chapter  Google Scholar 

  11. Martinez, J., Hossain, R., Romero, J., Little, J.J.: A simple yet effective baseline for 3D human pose estimation. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 2640–2649 (2017)

    Google Scholar 

  12. Newell, A., Yang, K., Deng, J.: Stacked hourglass networks for human pose estimation. In: Leibe, B., Matas, J., Sebe, N., Welling, M. (eds.) ECCV 2016. LNCS, vol. 9912, pp. 483–499. Springer, Cham (2016). https://doi.org/10.1007/978-3-319-46484-8_29

    Chapter  Google Scholar 

  13. Pavlakos, G., Zhou, X., Derpanis, K.G., Daniilidis, K.: Coarse-to-fine volumetric prediction for single-image 3D human pose. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 7025–7034 (2017)

    Google Scholar 

  14. Scheffe, H.: The Analysis of Variance, vol. 72. Wiley, Hoboken (1999)

    MATH  Google Scholar 

  15. Sun, K., Xiao, B., Liu, D., Wang, J.: Deep high-resolution representation learning for human pose estimation. arXiv preprint arXiv:1902.09212 (2019)

  16. Toshev, A., Szegedy, C.: DeepPose: human pose estimation via deep neural networks. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Columbus, OH, USA, pp. 24–27 (2014)

    Google Scholar 

  17. Wei, S.E., Ramakrishna, V., Kanade, T., Sheikh, Y.: Convolutional pose machines. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 4724–4732 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiheng Zhou .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zhou, Z., Cao, Y., Zhu, X., Gardner, H., Li, H. (2020). 3D Human Pose Estimation with 2D Human Pose and Depthmap. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Communications in Computer and Information Science, vol 1332. Springer, Cham. https://doi.org/10.1007/978-3-030-63820-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63820-7_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63819-1

  • Online ISBN: 978-3-030-63820-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics