Skip to main content

Classification of Multi-class Imbalanced Data Streams Using a Dynamic Data-Balancing Technique

  • Conference paper
  • First Online:

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1333))

Abstract

The performance of classification algorithms with imbalanced streaming data depends upon efficient re-balancing strategy for learning tasks. The difficulty becomes more elevated with multi-class highly imbalanced streaming data. In this paper, we investigate the multi-class imbalance problem in data streams and develop an adaptive framework to cope with imbalanced data scenarios. The proposed One-Vs-All Adaptive Window re-Balancing with Retain Knowledge (OVA-AWBReK) classification framework will combine OVA binarization with Automated Re-balancing Strategy (ARS) using Racing Algorithm (RA). We conducted experiments on highly imbalanced datasets to demonstrate the use of the proposed OVA-AWBReK framework. The results show that OVA-AWBReK framework can enhance the classification performance of the multi-class highly imbalanced data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. FernáNdez, A., et al.: Analysing the classification of imbalanced data-sets with multiple classes: Binarization techniques and ad-hoc approaches. Knowl.-Based Syst. 42, 97–110 (2013)

    Article  Google Scholar 

  2. Ancy, S., Paulraj, D.: Handling imbalanced data with concept drift by applying dynamic sampling and ensemble classification model. Comput. Commun. 153, 553–560 (2020)

    Article  Google Scholar 

  3. Ren, S., et al.: Selection-based resampling ensemble algorithm for nonstationary imbalanced stream data learning. Know-Based Syst. 163, 705–722 (2019)

    Article  Google Scholar 

  4. Zhang, H., et al.: Online active learning paired ensemble for concept drift and class imbalance. IEEE Access 6, 73815–73828 (2018)

    Article  Google Scholar 

  5. Wang, S., Minku, L.L., Yao. X.: A learning framework for online class imbalance learning. In: 2013 IEEE Symposium on Computational Intelligence and Ensemble Learning (CIEL). IEEE (2013)

    Google Scholar 

  6. Bifet, A., Gavalda, R.: Learning from time-changing data with adaptive windowing. In: Proceedings of the 2007 SIAM International Conference on Data Mining. SIAM (2007)

    Google Scholar 

  7. Sen, A., et al.: Binarization with boosting and oversampling for multiclass classification. IEEE Trans. Cybernet. 46(5), 1078–1091 (2015)

    Article  Google Scholar 

  8. Losing, V., Hammer, B., Wersing, H.: Incremental on-line learning: A review and comparison of state of the art algorithms. Neurocomput. 275, 1261–1274 (2018)

    Article  Google Scholar 

  9. Haixiang, G., et al.: Learning from class-imbalanced data: Review of methods and applications. Expert Syst. Appl. 73, 220–239 (2017)

    Article  Google Scholar 

  10. Siahroudi, S.K., Moodi, P.Z., Beigy, H.: Detection of evolving concepts in non-stationary data streams: A multiple kernel learning approach. Expert Syst. Appl. 91, 187–197 (2018)

    Article  Google Scholar 

  11. Dal Pozzolo, A., et al.: Learned lessons in credit card fraud detection from a practitioner perspective. Expert Syst. Appl. 41(10), 4915–4928 (2014)

    Article  Google Scholar 

  12. Hashemi, S., et al.: Adapted one-versus-all decision trees for data stream classification. IEEE Trans. Knowl. Data Eng. 21(5), 624–637 (2014)

    Article  Google Scholar 

  13. Kuncheva, L.I., Žliobaitė, I.: On the window size for classification in changing environments. Intell. Data Anal. 13(6), 861–872 (2009)

    Article  Google Scholar 

  14. Nguyen, V.-L., Destercke, S., Masson, M.-H.: Partial data querying through racing algorithms. Int. J. Approx. Reas. 96, 36–55 (2018)

    Article  MathSciNet  Google Scholar 

  15. Adnan, M.N., Islam, M.Z.: One-vs-all binarization technique in the context of random forest. In: Proceedings of the European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (2015)

    Google Scholar 

  16. Zainudin, M.S., et al.: Activity recognition using one-versus-all strategy with relief-f and self-adaptive algorithm. In: 2018 IEEE Conference on Open Systems (ICOS). IEEE (2018)

    Google Scholar 

  17. Mohammed, R.A., Wong, K.-W., Shiratuddin, M.F., Wang, X.: Scalable machine learning techniques for highly imbalanced credit card fraud detection: a comparative study. In: Geng, X., Kang, B.-H. (eds.) PRICAI 2018. LNCS (LNAI), vol. 11013, pp. 237–246. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-97310-4_27

    Chapter  Google Scholar 

  18. He, H., et al.: Incremental learning from stream data. IEEE Trans. Neural Netw. 22(12), 1901–1914 (2011)

    Article  Google Scholar 

  19. Lazarescu, M.M., Venkatesh, S., Bui, H.H.: Using multiple windows to track concept drift. Intell. Data Anal. 8(1), 29–59 (2004)

    Article  Google Scholar 

  20. Dal Pozzolo, A., Caelen, O., Waterschoot, S., Bontempi, G.: Racing for unbalanced methods selection. In: Yin, H., et al. (eds.) IDEAL 2013. LNCS, vol. 8206, pp. 24–31. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-41278-3_4

    Chapter  Google Scholar 

  21. Fisher, W.D.: Machine learning for the automatic detection of anomalous events. ProQuest Dissertations Publishing (2017)

    Google Scholar 

  22. Blake, C.L., Merz, C.J.: UCI Machine Learning Repository. Irvine, CA: University of California, School of Information and Computer Science (1998)

    Google Scholar 

  23. Abdi, L., Hashemi, S.: To combat multi-class imbalanced problems by means of over-sampling techniques. IEEE Trans. Knowl. Data Eng. 28(1), 238–251 (2015)

    Article  Google Scholar 

  24. Drummond, C., Holte, R.C.: C4. 5, class imbalance, and cost sensitivity: why under-sampling beats over-sampling. In: Workshop on learning from imbalanced datasets II. Citeseer (2003)

    Google Scholar 

  25. Chawla, N.V., et al.: SMOTE: synthetic minority over-sampling technique. J. Artif. Intell. Res. 16, 321–357 (2002)

    Article  Google Scholar 

  26. Dal Pozzolo, A., et al.: Credit card fraud detection: a realistic modeling and a novel learning strategy. IEEE Trans. Neural Netw. Learn. Syst. 29(8), 3784–3797 (2018)

    Article  Google Scholar 

  27. Shahparast, H., Mansoori, E.G.: An online fuzzy model for classification of data streams with drift. In: 2017 Artificial Intelligence and Signal Processing Conference (AISP). IEEE (2017)

    Google Scholar 

  28. Lichtenwalter, R.N., Chawla, N.V.: Learning to classify data streams with imbalanced class distributions. New Frontiers in Applied Data Mining. LNCS. Springer, Heidelberg (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rafiq Ahmed Mohammed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Mohammed, R.A., Wong, K., Shiratuddin, M.F., Wang, X. (2020). Classification of Multi-class Imbalanced Data Streams Using a Dynamic Data-Balancing Technique. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Communications in Computer and Information Science, vol 1333. Springer, Cham. https://doi.org/10.1007/978-3-030-63823-8_33

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63823-8_33

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63822-1

  • Online ISBN: 978-3-030-63823-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics