Skip to main content

Concatenated Tensor Networks for Deep Multi-Task Learning

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1333))

Included in the following conference series:

Abstract

Deep Multi-Task Learning has achieved great success in a number of domains. However, the enormous number of parameters results in extremely large storage costs for current deep Multi-Task models. Several methods based on tensor networks were proposed to address this problem. However, the tensor train format based methods only share the information of one mode. The huge central core tensor of the tucker format is hard to be stored and optimized. To tackle these problems, we introduce a novel Concatenated Tensor Network structure, in particular, Projected Entangled Pair States (PEPS) like, into multi-task models. We name the resulted multi-task models as Concatenated Tensor Multi-Task Learning (CT-MTL).

This work was partially supported by the National Key Research and Development Program of China (No. 2018AAA0100204).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chen, C., Batselier, K., Ko, C.Y., Wong, N.: Matrix product operator restricted Boltzmann machines. In: 2019 International Joint Conference on Neural Networks(IJCNN), Budapest, pp. 1–8. IEEE (2019)

    Google Scholar 

  2. Chen, X., Hou, M., Zhou, G., Zhao, Q.: Tensor ring nets adapted deep multi-tasklearning (2018). https://openreview.net/forum?id=BJxmXhRcK7

  3. Cichocki, A., Lee, N., Oseledets, I.V., Phan, A.H., Zhao, Q., Mandic, D.P.: Tensornetworks for dimensionality reduction and large-scale optimization: part 1 low-rank tensor decompositions. Found. Trends Mach. Learn. 9(4–5), 249–429 (2016)

    Article  Google Scholar 

  4. Duong, L., Cohn, T., Bird, S., Cook, P.: Low resource dependency parsing: cross-lingual parameter sharing in a neural network parser. In: ACL 2015, Short Papers, pp. 845–850, Beijing (2015)

    Google Scholar 

  5. Huang, H., Liu, Y., Zhu, C.: Low-rank tensor grid for image completion. https://arxiv.org/pdf/1903.04735v3.pdf arXivpreprint arXiv:1903.04735 (2019)

  6. Hübener, R., Nebendahl, V., Dür, W.: Concatenated tensor network states. New J. Phys. 12(2), 025004 (2010)

    Article  Google Scholar 

  7. Long, M., Cao, Z., Wang, J., Philip, S.Y.: Learning multiple tasks with multilinear relationship networks. In: Advances in Neural Information Processing Systems, pp. 1594–1603, Long Beach (2017)

    Google Scholar 

  8. Novikov, A., Podoprikhin, D., Osokin, A., Vetrov, D.P.: Tensorizing neural networks. In: Cortes, C., Lawrence, N.D., Lee, D.D., Sugiyama, M., Garnett, R. (eds.) Advances in Neural Information Processing Systems, pp. 442–450, Montreal (2015)

    Google Scholar 

  9. Oseledets, I.V.: Tensor-train decomposition. SIAM J. Sci. Comput. 33(5), 2295–2317 (2011)

    Article  MathSciNet  Google Scholar 

  10. Pan, Y., et al.: Compressing recurrent neural networks with tensor ring for action recognition. In: AAAI, pp. 4683–4690. AAAI Press (2019)

    Google Scholar 

  11. Verstraete, F., Wolf, M.M., Perez-Garcia, D., Cirac, J.I.: Criticality, the area law, and the computational power of projected entangled pair states. Phys. Rev. Lett. 96(22), 220601 (2006)

    Article  MathSciNet  Google Scholar 

  12. Wang, M., Zhang, C., Pan, Y., Xu, J., Xu, Z.: Tensor ring restricted Boltzmann machines. In: IJCNN 2019, pp. 1–8. IEEE (2019)

    Google Scholar 

  13. Yang, Y., Hospedales, T.M.: Deep multi-task representation learning: a tensor factorisation approach. In: ICLR 2017

    Google Scholar 

  14. Yang, Y., Hospedales, T.M.: Trace norm regularised deep multi-task learning. In: Proceedings of ICLR 2017, Workshop Track (2017)

    Google Scholar 

  15. Ye, J., et al.: Learning compact recurrent neural networks with block-term tensor decomposition. In: CVPR 2018, Salt Lake City, pp. 9378–9387 (2018)

    Google Scholar 

  16. Zhang, Z., Luo, P., Loy, C.C., Tang, X.: Facial landmark detection by deep multi-task learning. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8694, pp. 94–108. Springer, Cham (2014). https://doi.org/10.1007/978-3-319-10599-4_7

    Chapter  Google Scholar 

  17. Ye, J., Li, G., Chen, D., Yang, H., Zhe, S., Xu, Z.: Block-term tensor neural networks. Neural Netw. 11–21(130), 0893–6080 (2020)

    Google Scholar 

  18. Long, M., Cao, Z., Wang, J., Philip, S.Y.: Learning multiple tasks with multi linear relationship networks. In: NIPS, pp. 1594–1603 (2017)

    Google Scholar 

  19. Liu, B., et al.: Learning from semantically dependent multi-tasks. In: IJCNN, pp. 3498–3505. IEEE (2017)

    Google Scholar 

  20. Ren, Y., Yan, X., Hu, Z., Xu, Z.: Self-paced multi-task multi-view capped-norm clustering. In: Cheng, L., Leung, A.C.S., Ozawa, S. (eds.) ICONIP 2018. LNCS, vol. 11304, pp. 205–217. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-04212-7_18

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zenglin Xu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, M., Su, Z., Luo, X., Pan, Y., Zheng, S., Xu, Z. (2020). Concatenated Tensor Networks for Deep Multi-Task Learning. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Communications in Computer and Information Science, vol 1333. Springer, Cham. https://doi.org/10.1007/978-3-030-63823-8_59

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63823-8_59

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63822-1

  • Online ISBN: 978-3-030-63823-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics