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Abstract

Pedestrian trajectory prediction is a challeng-
ing task as there are three properties of human
movement behaviors which need to be addressed,
namely, the social influence from other pedestrians,
the scene constraints, and the multimodal (multi-
route) nature of predictions. Although existing
methods have explored these key properties, the
prediction process of these methods is autoregres-
sive. This means they can only predict future loca-
tions sequentially. In this paper, we present NAP,
a non-autoregressive method for trajectory predic-
tion. Our method comprises specifically designed
feature encoders and a latent variable generator to
handle the three properties above. It also has a
time-agnostic context generator and a time-specific
context generator for non-autoregressive predic-
tion. Through extensive experiments that compare
NAP against several recent methods, we show that
NAP has state-of-the-art trajectory prediction per-
formance.

1 Introduction

Pedestrian trajectory prediction is an important component in
a range of applications such as social robots and self-driving
vehicles, and plays a key role in understanding human move-
ment behaviors. This task is not easy due to three key prop-
erties in pedestrian trajectory prediction: (i) social interac-
tion: People are not always walking alone in a public space.
Pedestrians often socially interact with others to avoid col-
lisions, walk with friends or keep a certain distance from
strangers; (ii) environmental scene constraints: Besides so-
cial interaction, pedestrians’ routes also need to obey scene
constraints such as obstacles and building layouts; and (iii)
multimodal nature of future prediction: People can fol-
low different routes as long as these routes are both socially
and environmentally acceptable. For example, a person can
choose to turn right or turn left to bypass an obstacle.
Recently, researchers have made progress in incorporating
these properties into the trajectory prediction process. For ex-
ample, the Social LSTM model [Alahi et al., 2016] is one of
the methods that can capture social influence information in
a local neighborhood around each pedestrian. Based on the

generative model GAN [Goodfellow er al., 2014], the SGAN
model proposed by Gupta er al. [Gupta et al., 2018] can han-
dle multimodality in the prediction process while also captur-
ing the social influence from other pedestrians in the scene.
To deal with the scene constraints, Convolutional Neural Net-
works (CNNs) are often used to extract scene information in
the trajectory prediction network, such as SS-LSTM [Xue
et al., 2018], SoPhie [Sadeghian et al., 2019], and Social-
BiGAT [Kosaraju er al., 2019] .

While other methods like [Su et al., 2017; Vemula et al.,
2018; Hasan et al., 2018; Zou et al., 2018; Xue et al., 2019;
Li, 2019; Zhang er al., 2019] miss one or two aforementioned
key properties, SoPhie [Sadeghian et al, 2019], Liang et
al. [Liang et al., 2019], and Social-BiGAT [Kosaraju et al.,
2019] are three typical papers that have taken all three prop-
erties into consideration. However, these methods predict the
future locations recurrently. There are two main limitations in
using autoregression to generate trajectory prediction: (i) the
autoregressive prediction process works in a recursive man-
ner and so the prediction errors accumulated from previous
time steps are passed to the prediction for the next time step;
(ii) the process cannot be parallelized, i.e., predictions must
be generated sequentially, even though one might be inter-
ested in generating only the final destination of the pedestrian
rather than the entire trajectory.

To overcome the above limitations and inspired by the ap-
plication of non-autoregressive decoder in other areas such
as machine translation [Gu et al., 2018; Guo et al., 2019] and
time series forecasting [Wen et al., 20171, we propose a novel
trajectory prediction method that can predict future trajecto-
ries non-autoregressively. We name our method NAP (short
for Non-Autoregressive Prediction). Our research contribu-
tions are threefold: (i) To the best of our knowledge, we are
the first to explore non-autoregressive trajectory prediction.
The network architecture of NAP includes trainable context
generators to ensure that context vectors are available for the
non-autoregressive decoder to forecast good quality predic-
tions. The state-of-the-art performance of NAP is demon-
strated through the extensive experiments and ablation study
conducted. (ii) Both the social and scene influences are han-
dled by NAP through specially designed feature encoders.
The social influence is captured by social graph features prop-
agated through an LSTM; the scene influence is modeled by a
CNN. The effectiveness of these encoders is confirmed from



the performance of NAP. (iii) Unlike previous work in the
literature, NAP tackles multimodal predictions by training a
latent variable generator to learn the latent variables of the
sampling distribution for each pedestrian’s trajectory. The
generator is shown to give NAP top performance in multi-
modal predictions.

2 Background
2.1 Problem Definition

Pedestrian trajectory prediction is defined as forecasting the
future trajectory of the person ¢ given his/her observed tra-
jectory. We assume that trajectories have already been ob-
tained in the format of time sequences of coordinates (i.e.,
u; = (zi,yi) € R? Vi). The length of the observed trajec-
tory and predicted trajectory are represented by 75, and Tj,.
Thus, considering the observed trajectory X = {u! |t =
1,---,To}, our target is to generate the prediction Yi =
{ut\t—T+1 Ty + Ty}

2.2 Autoregressive and Non-Autoregressive
Predictions

Mathematically, to generate the predicted trajectory Y from
a given observed trajectory X°, the conditional probability

Pxr(Y?| X% 0) with parameter 6 for an autoregressive pre-
dictor is defined as:
To+T,
Pw(Y'|Ix50)= [[ P(ajlaf. ., X50), @
t=T,+1

where generating the prediction of time step ¢ requires the
prediction of all previous time steps in the prediction phase.
This recursive prediction process can not be parallelized.

Different from the autoregressive prediction process, by
treating 0} and !, for all t # ¢ > T, as independent,
the above conditional probability in non-autoregressive pre-
dictors becomes:

To+T,
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Compared to the autoregression based prediction where the
prediction at time step ¢ depends on the information at time
step ¢ — 1, non-autoregression based predictors do not need
to generate predictions sequentially. However, the removal
of this sequential dependency in non-autoregression based
methods means that the time awareness ability is compro-
mised in the prediction model, leading to poorer prediction
performance. To compensate for the loss of time awareness
ability, we design context generators (detailed in Section 3.2)
that are trained on the training trajectories. This allows con-
text vectors to be generated from the observed trajectories in
the testing stage for the prediction process. As these con-
text vectors can be computed before the start of the predic-
tion phase, predictions at different time steps can be forecast
in parallel.

3 Proposed Method

Our proposed NAP comprises four major parts (Fig. 1):
(i) feature encoders which are used to encode the input infor-
mation such as observed trajectories and scene images (Sec-
tion 3.1); (ii) context generators to yield context vectors for
prediction (Section 3.2); (iii) a latent variable generator for
multimodality (Section 3.3); and (iv) a non-autoregressive de-
coder for predicting future trajectories (Section 3.4). Details
of these parts are described in the following subsections.

3.1 Feature Encoders

In NAP, there are three feature encoders: a trajectory encoder,
to learn the representation of the observed history movement
of each pedestrian; a social encoder, to learn the represen-
tation of the influence from other pedestrians; and a scene
encoder, to learn the representation of the scene features.

Trajectory Encoder. The coordinates of the i pedestrian
in the observation phase (¢t = 1,--- ,T;) are firstly embed-
ded into a higher dimensional space through an embedding
layer ¢(-). Then, across different time steps, the embedded
features are used as inputs of an LSTM layer (denoted by
LSTMgnc(+)) to get the encoded hidden state hi which cap-
tures the observed path information. This trajectory encoding
is given by:

el = ¢(x}, vl Wems), 3)
h{ = LSTMgnc(h]_,, €}; Wenc), 4)

where Wgyp and Wiye are trainable weights of the corre-
sponding layers.

Social Encoder. At each time step ¢, NAP captures the so-
cial influence on the i™ pedestrian through a graph G/ =
(Vi, EY). The i™ pedestrian and all other pedestrians /\/;(Z_)
at the same time step are considered as nodes in the set V'
Edges linking the i pedestrian and pedestrians in /\ft(l) form
the edge set E}.

We then use a graph convolutional network (GCN) to pro-
cess these graphs. In the I!™ graph convolutional layer, the
node feature of pedestrian ¢ is aggregated as follows:
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where W' and b' are the weight matrix and bias term. At the
first layer, we initialize the node feature a 9 as the location
coordinates of the i pedestrian, i.e., alt = (zf, ).

The social graph feature g; (Eq. (6)) is designed to model
the surrounding (or social) information of pedestrian ¢ at each
time step ¢t. To compute this feature, the node features, de-
noted by {ai|t = 1,---,T,}, from the final GCN layer
across all the time steps in the observation phase are passed
through an LSTM layer with trainable weights Wy, i.e.,

g, = LSTMsq(g}_,.aj; Wsg). ©6)
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Figure 1: The network architecture of NAP. There are three encoders to extract features, two context generators to generate context vectors
for the non-autoregressive decoder (NAD), and a latent variable generator to handle multimodal predictions. The embedding layer and the
superscript i (representing the pedestrian index) are not shown to simplify visualization.

Scene Encoder. Different from other methods (such
as [Xue ef al., 2018; Sadeghian et al., 2019]) that process
each image frame in the observation phase, the scene encoder
of NAP takes only image I} as input, since the scene en-
coder focuses on the static information like scene layouts and
obstacles. Not only does this save the computation time, but
it also supplies the most up-to-date and sufficient scene con-
text before prediction kicks in at t = T, + 1. We use a CNN
to model the scene feature s,iT0 as follows:

sh. = CNN(I,; Wenn). (7)

We take the merit of DeepLabv3+ [Chen er al., 2018], a state-
of-the-art semantic segmentation architecture, and set the ini-
tial value of Wenn to the weight matrix from DeepLabv3+
that is pre-trained on the Cityscapes dataset [Cordts et al.,
2016].

3.2 Context Generators

The role of the context generators is to aggregate the outputs
of the feature encoders for the downstream decoder for trajec-
tory forecasting. We use two context generators in NAP: (i) a
personal context generator that is time-agnostic, as its input
is the hidden state h! computed from the i pedestrian’s own
trajectory only; (ii) an interaction context generator that is
time-specific as its input includes both social graph and scene
interaction features also.

Personal Context Generator (PCG). We use a Multi-
Layer Perceptron (MLP) to model this context generator. The
output context vector ¢, is computed as

= MLP, (h%, ; W), ®)

where W is the corresponding weight matrix. The con-
text ¢’ captures the “personal” cues such as the pedestrian’s
preferable walking speed and direction in the observation
phase, oblivious of his/her surrounding. This context is time-
agnostic because, without considering the social and scene

influences, such personal cues can remain the same for the
entire trajectory, e.g., the pedestrian can continue to walk in a
straight line or at a fast pace with no penalty when bumping
into obstacles or other pedestrians since both the social graph
and scene features are not present in the equation.

Interaction Context Generator (ICG). This context gen-
erator incorporates both the social graph and scene features.
These two types of influences allow the context generator to
be time-specific, e.g., while a pedestrian can walk at a fast
pace in the initial part of his/her trajectory, he/she would need
to slow down or detour at a later part of the trajectory in order
to avoid other pedestrians or scene obstacles. Similar to PCG,
we use an MLP to model ICG but its input, being the concate-
nation of hZT , 87, and s7. , contains richer information. The
output of ICG comprises different context vectors for differ-
ent time steps in the prediction phase, as given below:

= MLPg (b T, e9gT e9ST ; Wg),
)

(€41 Cgas aCTo+Tp)

where W7y is the corresponding weight matrix.

3.3 Latent Variable Generator

For multimodal prediction, NAP is designed to generate mul-
tiple trajectories through the latent variables p and o (see
Fig. 1). Although several existing trajectory prediction meth-
ods such as [Lee er al., 2017, Gupta et al., 2018; Li, 2019;
Huang e al., 2019] also use latent variables to handle multi-
modality, the latent variables in these methods are either di-
rectly sampled from the normal distribution or a multivariate
normal distribution conditioned on the observed trajectories.
To make our latent variables more aware of the social and
scene cues, we design NAP to learn the parameters (u; and
o;) of the sampling distribution from the observed trajecto-
ries, the social influence, and the scene influence features. To
this end, the concatenated feature h?, &g/, ®s?. is passed to
two different MLPs (Eqgs. (10)-(1 1)) o y1e1d the mean vector
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Figure 2: Details of the non-autoregressive decoder (NAD) of NAP.

p; and variance o; and finally z; for the downstream non-
autoregressive decoder:

i = MLP, (b, @ gh, @873 W), (10)
o; = MLP,(h}, &gl @sh;W,), an
Z; NN(uladlag(a’?))a (12)

where W, and W, are trainable weights of MLP,,(-)
and MLP,(-). The reparameterization trick [Kingma and
Welling, 2013] is applied to sample the latent variable z;.

3.4 Non-Autoregressive Decoder (NAD)

In the work of [Gu et al., 2018], the authors introduce in their
model a component that enhances the inputs passed to the de-
coder for their machine translation problem. The idea is to
help the model learn the internal dependencies (which are ab-
sent in their non-autoregressive translator) within a sentence.
In the work of [Guo et al., 2019], the authors use a positional
module to improve the decoder’s ability to perform local re-
ordering. The context generators in NAP play a similar role
as these two approaches. In the testing stage, the trained PCG
and ICG are able to generate context vectors for new (unseen)
observed trajectories to help the decoder improve its time
awareness for trajectory prediction. While the ICG, which
generates time-specific contexts {c; | To+1 < t < T,+7}},
is obviously more important than the PCG, the time-agnostic
PCG is also needed so as to help the NAD tie with the specific
trajectory being considered.

To make multimodal predictions at time step ¢, the NAD
therefore takes the concatenation of the two contexts cf, and

ci and the latent variable z; as inputs, modeled by the MLP
below (see Fig. 2):

(#,91) = MLPou(c} @ ¢} @ zi; Wou), (13)

where MLP,,, () is the MLP used for predicting the location
coordinates. Its parameter W, is shared across all the time
steps in the prediction phase. Note that the input passed to
the NAD in Fig. 2 is different for each time step ¢ in the pre-
diction phase as ci depends on t. We can consider that the
contexts {c: } function like the hidden states in the decoder of
an LSTM except that they are not recursively defined.

3.5 Implementation Details

The embedding layer ¢ in Eq. (3) is modeled as a single-layer
perceptron that outputs 32-dimensional embedded vectors for
the input location coordinates. The dimensions of the hidden
states of the LSTM layers for both the Trajectory and Social
Encoders are 32. The GCN in the Social Encoder is a single
graph convolutional layer (i.e., [ = 1 in Eq. (5)). For the ICG,

MLPg is a three-layer MLP with ReLU activations. All the
other MLPs used in Egs. (8), (10), (11), and (13) are single-
layer MLPs. Except for in Section 4.4 where we explore the
prediction performance for different prediction lengths, the
observed length of input trajectories is 8 time steps (1T, = 8)
and the prediction length is 12 time steps (1, = 12) for all
other experiments.

We implemented NAP and its variants (Section 4.3) using
the PyTorch framework in Python. The Adam optimizer was
used to train our models with the learning rate set to 0.001
and the mini-batch size to 128.

4 Experiments

4.1 Datasets and Metrics

We use the popular ETH [Pellegrini er al., 2009] and
UCY [Lerner et al., 2007] datasets, which, altogether, include
5 scenes: ETH, HOTEL, UNIV, ZARA1, and ZARA2. Simi-
lar to [Sadeghian er al., 2019; Zhang et al., 2019], we normal-
ize each pedestrian’s coordinates and augment the training
data by rotating trajectories. As raw scene images are used as
inputs for extracting scene features, we also rotate the input
images when input trajectories are rotated. Same as previous
work in the literature [Alahi et al., 2016; Gupta et al., 2018;
Sadeghian et al., 2019; Huang er al., 2019], the leave-one-
out strategy is adopted for training and testing. All meth-
ods are evaluated based on two standard metrics: the Average
Displacement Error (ADE) and the Final Displacement Error
(FDE). Smaller errors indicate better prediction performance.

4.2 Comparison with Other Methods

We compare NAP against the following state-of-the-art tra-
jectory prediction methods: Social-LSTM [Alahi et al.,
20161, SGAN [Gupta et al., 2018], MX-LSTM [Hasan et al.,
2018], Nikhil & Morris [Nikhil and Morris, 2018], Liang et
al. [Liang et al., 2019], MATF [Zhao et al., 2019], SR-
LSTM [Zhang et al., 2019], SoPhie [Sadeghian et al., 2019],
IDL [Li, 2019], STGAT [Huang et al., 2019], and Social-
BiGAT [Kosaraju et al., 2019].

In Table 1, all the compared methods are put into two
groups depending on whether they generate only one predic-
tion (top half of the table) or multiple predictions (bottom half
and indicated by a tick under the # column) for each input ob-
served trajectory. The multimodal predictions being consid-
ered is 20. The reported ADEs and FDEs are computed from
the best predictions out of the 20. Five methods report both
single and multimodal prediction results and so they appear
in both halves of the table: SGAN, MATF, STGAT, Liang et
al., and NAP.

Our proposed method is able to achieve results on par
with the state-of-the-art methods for the single prediction set-
ting. Specifically, NAP has the same smallest average ADE
(0.45m) as SR-LSTM while outperforming all methods on the
average FDE (0.89m). In addition to NAP, SR-LSTM, MX-
LSTM, and STGAT 1V-1 also have the best performance on
one or more scenes. In the lower half of Table 1, results of
multimodal predictions are given and compared. On average,
our NAP achieves the smallest ADE of 0.39m and the small-
est FDE of 0.80m. For each scene, the best performers that



Method # ETH & UCY scenes
ETH HOTEL UNIV ZARAI ZARA2 Average

Social-LSTM [Alahi ez al., 2016]* 1.09/2.35 | 0.79/1.76 | 0.67/1.40 | 0.47/1.00 | 0.56/1.17 || 0.72/1.54
SGAN 1V-1 [Gupta et al., 2018]* 1.13/221 | 1.01/2.18 | 0.60/1.28 | 0.42/091 | 0.52/1.11 || 0.74/1.54
MX-LSTM [Hasan et al., 20181* - - 0.49/1.12 | 0.59/1.31 | 0.35/0.79 -
Nikhil & Morris [Nikhil and Morris, 2018]* 1.04/2.07 | 0.59/1.17 | 0.57/1.21 | 0.43/0.90 | 0.34/0.75 || 0.59/1.22
Liang et al. [Liang et al., 2019]* 0.88/198 | 0.36/0.74 | 0.62/1.32 | 0.42/0.90 | 0.34/0.75 || 0.52/1.14
MATF [Zhao et al., 2019]* 1.33/2.49 | 0.51/0.95 | 0.56/1.19 | 0.44/0.93 | 0.34/0.73 || 0.64/1.26
SR-LSTM [Zhang et al., 2019]* 0.63/1.25(0.37/0.74 | 0.51/1.10 | 0.41/0.90 | 0.32/0.70 || 0.45/0.94
STGAT 1V-1 [Huang et al., 2019]* 0.88/1.66 | 0.56/1.15 | 0.52/1.13 | 0.41/0.91 | 0.31/0.68 || 0.54/1.11
NAP (ours) 0.59/1.13 | 0.30/0.51 | 0.59/1.23 | 0.41/0.86 | 0.36/0.72 || 0.45/0.89
SGAN 20V-20 [Gupta et al., 2018]* v || 081/152]072/1.61 | 0.60/1.26 | 0.34/0.69 | 0.42/0.84 || 0.58/1.18
SoPhie [Sadeghian et al., 2019]* v || 070/143 | 0.76/1.67 | 0.54/1.24 | 0.30/0.63 | 0.38/0.78 || 0.54/1.15
Liang et al. [Liang et al., 2019]* v || 073/1.65| 030/0.59 | 0.60/1.27 | 0.38/0.81 | 0.31/0.68 || 0.46/1.00
MATF GAN [Zhao et al., 2019]* v || 1.01/1.75 | 043/0.80 | 0.44/091 | 0.26/0.45 | 0.26/0.57 || 0.48/0.90
IDL [Li, 2019]* v || 059/130 | 046/0.83 | 0.51/1.27 | 0.22/0.49 | 0.23/0.55 || 0.40/0.89
STGAT 20V-20 [Huang et al., 2019]* v || 0.65/1.12 | 0.35/0.66 | 0.52/1.10 | 0.34/0.69 | 0.29/0.60 || 0.43/0.83
Social-BiGAT [Kosaraju et al., 2019]* vV || 069/129 | 049/1.01 | 0.55/1.32 | 0.30/0.62 | 0.36/0.75 || 0.48/1.00
NAP (ours) v | 0.53/1.08 | 0.26/0.46 | 0.58/1.22 | 0.30/0.65 | 0.28/0.60 || 0.39/0.80

Table 1: The ADEs / FDEs (in meters) of various methods. The settings are: T, = 8 and 7}, = 12. The results with a % are taken from the

authors’ papers. The result with { is taken from [Gupta et al., 2018].

achieve the smallest ADE/FDE in the lower half of the table
include NAP, IDL, MATF, and GAN. Taken together, these
results demonstrate the efficacy of our proposed method in
both single and multimodal prediction settings.

4.3 Ablation Study

To explore the effectiveness of different contexts working to-
gether in our proposed method, we consider four variants of
NAP listed below:

e NAP-P: This variant only uses the Personal Context
Generator (time-agnostic context, the light blue PCG
box in Fig. 1), i.e., the interaction context ci in Eq. (13)
is removed.

e NAP-ISS: In contrast to NAP-P, NAP-ISS disables the
personal context and forecasts predictions based on the
time-specific interaction context (the pink box in Fig. 1).
The personal context ¢ in Eq. (13) is removed. The rest

of NAP-ISS is the same as NAP.

e NAP-ISg: In order to further investigate the impact of
removing the scene influence, we drop the scene feature
s}o from the Interaction Context Generator in Eq. (9) to
form this variant. That is, the interaction context ci in
NAP-ISS is computed using both the social graph and
scene features, whereas the ¢! in NAP-ISg is computed
using the social graph feature only.

e NAP-ISc: Similar to NAP-ISg, this variant is designed to
investigate the impact of removing the social influence.
We drop the social graph feature giT0 but keep the scene
feature si;po in Eq. (9) so the context ci is computed from
the scene feature only.

In our ablation study, we compare only the single predic-
tion performance (see Table 2) of these four variants, i.e., the
latent variable z; for multimodality is removed from Eq. (13)
in the experiments. In general, NAP-P, which uses only the
personal context (time-agnostic), has a poorer performance

NAP-P NAP-ISS NAP-ISg NAP-ISc
ETH 0.87/1.63 | 0.66/1.22 | 0.69/1.31 | 0.74/1.52
HOTEL || 0.43/0.77 | 0.34/0.61 | 0.37/0.70 | 0.38/0.73
UNIV 0.71/1.42 | 0.68/1.37 | 0.68/1.35 | 0.70/1.39
ZARA1 || 0.46/095 | 045/094 | 0.47/0.96 | 0.45/0.95
ZARA2 || 0.44/0.88 | 0.42/0.83 | 0.44/0.84 | 0.44/0.86
Average || 0.58/1.13 | 0.51/0.99 | 0.53/1.03 | 0.54/1.09

Table 2: The ADEs / FDEs (in meters) of the four variants for single
predictions in the ablation study.

than the other three variants. This is not unexpected as, with-
out the time-specific context, the NAD is not able to fore-
cast good predictions for different time steps in the predic-
tion phase. Comparing the three interaction context based
variants against each other, it is not surprising to see that
NAP-ISS outperforms the other two variants due to the pres-
ence of both the social graph and scene features. As for
NAP-ISg against NAP-ISc, we observe that NAP-ISg slightly
outperforms NAP-ISc. This demonstrates that the social in-
fluence is more important than the scene influence. How-
ever, it should be noted that the five scenes in the ETH/UCY
datasets do not have many obstacles scattered in the pedes-
trian pathways. The slightly better performance of NAP-ISg
confirms that there are more social (pedestrian) interactions
than scene interactions in these datasets.

Comparing the results from the four variants in Table 2 and
from NAP in Table 1, we observe that NAP outperforms all
the four variants. Our ablation study justifies the need for all
the contexts to be present in NAP.

4.4 Different Prediction Lengths

In addition to the prediction length setting (7, = 12 frames,
corresponding to 4.8 seconds) used in Tables 1 & 2 and sim-
ilar to previous work such as SGAN [Gupta et al., 2018] and
STGAT [Huang et al., 2019], we conduct experiments for the
prediction length 7, = 8 frames (or 3.2 seconds) to further
evaluate the performance of NAP. Table 3 shows the average



T, =8 T, =12 Increment
Social-LSTM 0.45/0.91 | 0.72/1.54 | 60.00% / 69.23%
SGAN 1V-1 0.49/1.00 | 0.74/1.54 | 51.02% / 54.00%
STGAT 1V-1 0.39/0.81 | 0.54/1.11 | 38.46% /37.03%
NAP (ours) 0.35/0.67 | 0.45/0.89 | 28.57% / 32.84%
SGAN 20V-20*" |/ 0.39/0.78 | 0.58/1.18 | 48.72% /51.28%
STGAT 20V-20" || 0.31/0.62 | 0.43/0.83 | 38.71% /33.87%
NAP (ours)* 0.31/0.61 | 0.39/0.80 | 25.81% / 31.15%

Table 3: The ADEs / FDEs (in meters) of various methods for differ-
ent prediction lengths. A method with * indicates that it generates
20 predictions for each input observed trajectory.

(a) ETH (b) ZARA2

A

(c) ZARALI (d) ZARA1
Figure 3: Examples of predicted trajectories (shown in pink) gener-
ated by NAP. The observed trajectories and ground truth trajectories
are shown in yellow and green (figure best viewed in color).

ADE/FDE results for this prediction length setting. The fig-
ures under the “I;, = 12’ column are copied from the Average
column of Table 1. Each error increment (last column) due to
the increase of T}, is calculated as: (ep12 — eps)/eps x 100%,
where e,12 and eyg are errors (ADEs or FDEs) for T, = 12
and T}, =8 of the same method.

As expected, all methods shown in Table 3 have better per-
formance for the shorter prediction length. In the top half of
the table, when generating a predicted trajectory for each in-
put, the error increments of Social-LSTM and SGAN 1V-1
are over 50%. Compared to these two methods, STGAT 1V-
1 has smaller error increments for both ADE and FDE. For
the multimodal predictions (bottom half of the table), STGAT
20V-20 again outperforms SGAN 20V-20.

We observe from Table 3 that NAP consistently outper-
forms all other methods for both prediction length settings
and for both single and multimodal predictions. Furthermore,
NAP also has the smallest error increments for both ADE and
FDE when T}, increases. This demonstrates that NAP is more
robust in generating long trajectories. The reason is due to
the non-autoregressive nature of the decoder, which not only
allows the location coordinates at different time steps to be
independently forecast but also helps minimize the accumula-
tion of prediction errors when the prediction length increases.

(a) HOTEL

(b) HOTEL
Figure 4: Examples of multiple predicted trajectories shown as

heatmaps. The observed trajectories and ground truth trajectories
are shown in yellow and green (figure best viewed in color).

4.5 Qualitative Results

Figure 3 illustrates some prediction examples generated by
NAP. The observed and ground truth trajectories are shown in
yellow and green; the best trajectory of the 20 predictions of
each pedestrian is shown in pink. For better visualization, the
video frames have been darkened and blurred. These exam-
ples cover different movement behaviors of pedestrians. For
example, Fig. 3(a) shows two simple straight path scenarios,
Fig. 3(b) and (c) show a gentle turning scenario, and Fig. 3(d)
shows a more difficult scenario in which an abrupt turning
occurs near the end of the observation phase. Although the
predicted trajectory (in pink) in Fig. 3(d) does not perfectly
overlap with the ground truth trajectory, NAP is still able to
correctly predict the trajectory from the late turning cue.

Figure 4 shows two more difficult scenarios where all the
20 predicted trajectories are displayed as a heatmap around
each pedestrian. For the pedestrian in Fig. 4(a) and the right
pedestrian in Fig. 4(b), each made an abrupt turn at almost
the last frame of the observation phase. However, NAP is
still able to give good predicted trajectories, as all the plausi-
ble paths (including the ground truth trajectories (green)) are
well covered by the heatmaps. The left pedestrian in Fig. 4(b)
is a stopping scenario. After stopping, the pedestrian can re-
main still or resume walking in any direction. The generated
heatmap shows a good coverage of possible paths; however,
it has a small dent in the bottom left hand region due to the
presence of a bench there, showing that the pedestrian must
bypass the obstacle. This example shows the importance of
including scene influence in the method.

5 Conclusion

We have presented a novel method called NAP which can
handle both social influence and scene influence in the pedes-
trian trajectory prediction process. NAP captures these in-
fluences using the trainable feature encoders in the network.
In addition, NAP handles multimodal predictions via a la-
tent variable generator which models the sampling distribu-
tion that describes the multiple plausible paths of each pedes-
trian. Unlike existing trajectory prediction methods, the de-
coder of NAP is non-autoregressive. NAP is therefore able to
forecast predictions for different time steps simultaneously or
to forecast only for those time steps that are of interest. From
our extensive experiments and ablation study, the context en-
coders used in NAP have been demonstrated to be effective.
Not only does NAP achieve state-of-the-art performance, it



also has smaller error increments when the prediction length
increases.
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