Skip to main content

DF-PLSTM-FCN: A Method for Unmanned Driving Based on Dual-Fusions and Parallel LSTM-FCN

  • Conference paper
  • First Online:
Neural Information Processing (ICONIP 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12532))

Included in the following conference series:

  • 2268 Accesses

Abstract

Learning algorithms are increasingly being applied to behavioral decision systems for unmanned vehicles. In multi-source road environments, it is one of the key technologies to solve the decision-making problem of driverless vehicles. This paper proposes a parallel network, called DF-PLSTM-FCN, which is composed of LSTM-FCN-variant and LSTM-FCN. As an end-to-end model, it will jointly learn a mapping from the visual state and previous driving data of the vehicle to the specific behavior. Different from LSTM-FCN, LSTM-FCN-variant provides more discernible features for the current vehicle by introducing dual feature fusions. Furthermore, decision fusion is adopted to fuse the decisions made by LSTM-FCN-variant and LSTM-FCN. The parallel network structure with dual fusion on both features and decisions can take advantage of the two different networks to improve the prediction for the decision, without the significant increase in computation. Compared with other deep-learning-based models, our experiment presents competitive results on the large-scale driving dataset BDDV.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Caltagirone, L., Bellone, M., Svensson, L., Wahde, M.: Lidar-camera fusion for road detection using fully convolutional neural networks. Robot. Auton. Syst. 111, 125–131 (2019)

    Article  Google Scholar 

  2. Chen, C., Jafari, R., Kehtarnavaz, N.: Action recognition from depth sequences using depth motion maps-based local binary patterns. In: 2015 IEEE Winter Conference on Applications of Computer Vision, pp. 1092–1099. IEEE (2015)

    Google Scholar 

  3. Codevilla, F., Miiller, M., López, A., Koltun, V., Dosovitskiy, A.: End-to-end driving via conditional imitation learning. In: 2018 IEEE International Conference on Robotics and Automation (ICRA), pp. 1–9. IEEE (2018)

    Google Scholar 

  4. Cunningham, A.G., Galceran, E., Eustice, R.M., Olson, E.: MPDM: multipolicy decision-making in dynamic, uncertain environments for autonomous driving. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 1670–1677. IEEE (2015)

    Google Scholar 

  5. Galceran, E., Cunningham, A.G., Eustice, R.M., Olson, E.: Multipolicy decision-making for autonomous driving via changepoint-based behavior prediction: theory and experiment. Auton. Robots 41(6), 1367–1382 (2017). https://doi.org/10.1007/s10514-017-9619-z

    Article  Google Scholar 

  6. Gu, T., Dolan, J.M.: On-road motion planning for autonomous vehicles. In: Su, C.-Y., Rakheja, S., Liu, H. (eds.) ICIRA 2012. LNCS (LNAI), vol. 7508, pp. 588–597. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-33503-7_57

  7. He, K., Zhang, X., Ren, S., Sun, J.: Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans. Pattern Anal. Mach. Intell. 37(9), 1904–1916 (2015)

    Article  Google Scholar 

  8. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8), 1735–1780 (1997)

    Article  Google Scholar 

  9. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 1097–1105 (2012)

    Google Scholar 

  10. Kuderer, M., Gulati, S., Burgard, W.: Learning driving styles for autonomous vehicles from demonstration. In: 2015 IEEE International Conference on Robotics and Automation (ICRA), pp. 2641–2646. IEEE (2015)

    Google Scholar 

  11. Li, L., Ota, K., Dong, M.: Humanlike driving: empirical decision-making system for autonomous vehicles. IEEE Trans. Veh. Technol. 67(8), 6814–6823 (2018)

    Article  Google Scholar 

  12. Li, W., Chen, C., Su, H., Du, Q.: Local binary patterns and extreme learning machine for hyperspectral imagery classification. IEEE Trans. Geosci. Remote Sens. 53(7), 3681–3693 (2015)

    Article  Google Scholar 

  13. Long, J., Shelhamer, E., Darrell, T.: Fully convolutional networks for semantic segmentation. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 3431–3440 (2015)

    Google Scholar 

  14. Qassim, H., Verma, A., Feinzimer, D.: Compressed residual-VGG16 CNN model for big data places image recognition. In: 2018 IEEE 8th Annual Computing and Communication Workshop and Conference (CCWC), pp. 169–175. IEEE (2018)

    Google Scholar 

  15. Russakovsky, O., et al.: Imagenet large scale visual recognition challenge. Int. J. Comput. Vis. 115(3), 211–252 (2015). https://doi.org/10.1007/s11263-015-0816-y

    Article  MathSciNet  Google Scholar 

  16. Selvaraju, R.R., Cogswell, M., Das, A., Vedantam, R., Parikh, D., Batra, D.: Grad-cam: visual explanations from deep networks via gradient-based localization. In: Proceedings of the IEEE International Conference on Computer Vision, pp. 618–626 (2017)

    Google Scholar 

  17. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition. arXiv preprint arXiv:1409.1556 (2014)

  18. Xu, H., Gao, Y., Yu, F., Darrell, T.: End-to-end learning of driving models from large-scale video datasets. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 2174–2182 (2017)

    Google Scholar 

  19. Xu, W., Wei, J., Dolan, J.M., Zhao, H., Zha, H.: A real-time motion planner with trajectory optimization for autonomous vehicles. In: 2012 IEEE International Conference on Robotics and Automation, pp. 2061–2067. IEEE (2012)

    Google Scholar 

  20. Zhang, Q., Yang, L.T., Chen, Z., Li, P.: A survey on deep learning for big data. Inf. Fusion 42, 146–157 (2018)

    Article  Google Scholar 

  21. Zhang, Z., Zhang, X., Peng, C., Xue, X., Sun, J.: Exfuse: enhancing feature fusion for semantic segmentation. In: Proceedings of the European Conference on Computer Vision (ECCV), pp. 269–284 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuchen Fu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wei, M., Fu, Y., Zhong, S., Li, Z. (2020). DF-PLSTM-FCN: A Method for Unmanned Driving Based on Dual-Fusions and Parallel LSTM-FCN. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Lecture Notes in Computer Science(), vol 12532. Springer, Cham. https://doi.org/10.1007/978-3-030-63830-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63830-6_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63829-0

  • Online ISBN: 978-3-030-63830-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics