Skip to main content

A Survey of Graph Curvature and Embedding in Non-Euclidean Spaces

  • Conference paper
  • First Online:
Book cover Neural Information Processing (ICONIP 2020)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12533))

Included in the following conference series:

  • 3190 Accesses

Abstract

Interest has been growing lately towards learning representations for non-Euclidean geometric data structures. Such kinds of data are found everywhere ranging from social network graphs, brain images, sensor networks to 3-dimensional objects. To understand the underlying geometry and functions of these high dimensional discrete data with non-Euclidean structure, it requires their representations in non-Euclidean spaces. Recently, graph embedding in Riemannian spaces has been explored to successfully capture the geometric properties of networks and achieve the state-of-the-art quality in graph representation learning tasks. In this survey, we provide an overview on graph embeddings based on Riemannian geometry with different curvature spaces. We further present recent developments in various application areas using graph embedding models in non-Euclidean domains.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asta, D., Shalizi, C.R.: Geometric network comparison. arXiv preprint arXiv:1411.1350 (2014)

  2. Bachmann, G., Bécigneul, G., Ganea, O.E.: Constant curvature graph convolutional networks. arXiv preprint arXiv:1911.05076 (2019)

  3. Bakker, C., Halappanavar, M., Sathanur, A.V.: Dynamic graphs, community detection, and Riemannian geometry. Appl. Netw. Sci. 3(1), 3:1–3:30 (2018)

    Google Scholar 

  4. Balazevic, I., Allen, C., Hospedales, T.: Multi-relational poincaré graph embeddings. In: NIPS, pp. 4465–4475 (2019)

    Google Scholar 

  5. Berger, M., Gostiaux, B.: Differential Geometry: Manifolds, Curves, and Surfaces, vol. 115. Springer Science & Business Media, New York (2012). https://doi.org/10.1007/978-1-4612-1033-7

  6. Boguná, M., Papadopoulos, F., Krioukov, D.: Sustaining the internet with hyperbolic mapping. Nat. Commun. 1(1), 1–8 (2010)

    Article  Google Scholar 

  7. Bonnabel, S.: Stochastic gradient descent on Riemannian manifolds. IEEE Trans. Autom. Control 58(9), 2217–2229 (2013)

    MathSciNet  MATH  Google Scholar 

  8. Bottou, L.: Stochastic gradient descent tricks. In: Montavon, G., Orr, G.B., Müller, K.-R. (eds.) Neural Networks: Tricks of the Trade. LNCS, vol. 7700, pp. 421–436. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-35289-8_25

    Chapter  Google Scholar 

  9. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric deep learning: going beyond Euclidean data. IEEE SPM 34(4), 18–42 (2017)

    Google Scholar 

  10. Chamberlain, B.P., Clough, J.R., Deisenroth, M.P.: Neural embeddings of graphs in hyperbolic space. arXiv preprint arXiv:1705.10359 (2017)

  11. Chamberlain, B.P., Hardwick, S.R., Wardrope, D.R., Dzogang, F., Daolio, F., Vargas, S.: Scalable hyperbolic recommender systems. arXiv preprint arXiv:1902.08648 (2019)

  12. Chami, I., Abu-El-Haija, S., Perozzi, B., Ré, C., Murphy, K.: Machine learning on graphs: A model and comprehensive taxonomy. arXiv preprint arXiv:2005.03675 (2020)

  13. Chami, I., Wolf, A., Sala, F., Ré, C.: Low-dimensional knowledge graph embeddings via hyperbolic rotations. In: NIPS Workshop (2019)

    Google Scholar 

  14. Chami, I., Ying, Z., Ré, C., Leskovec, J.: Hyperbolic graph convolutional neural networks. In: Advances in Neural Information Processing Systems, pp. 4869–4880 (2019)

    Google Scholar 

  15. Davidson, T.R., Falorsi, L., De Cao, N., Kipf, T., Tomczak, J.M.: Hyperspherical variational auto-encoders. arXiv preprint arXiv:1804.00891 (2018)

  16. Forman, R.: Bochner’s method for cell complexes and combinatorial Ricci curvature. Discrete Comput. Geom. 29(3), 323–374 (2003)

    MathSciNet  MATH  Google Scholar 

  17. Ganea, O., Bécigneul, G., Hofmann, T.: Hyperbolic entailment cones for learning hierarchical embeddings. arXiv preprint arXiv:1804.01882 (2018)

  18. Grattarola, D., Zambon, D., Livi, L., Alippi, C.: Change detection in graph streams by learning graph embeddings on constant-curvature manifolds. IEEE Trans. Neural Netw. Learn. Syst. 31(6), 1856–1869 (2019)

    Google Scholar 

  19. Gu, A., Sala, F., Gunel, B., Ré, C.: Learning mixed-curvature representations in product spaces. In: International Conference on Learning Representations (2018)

    Google Scholar 

  20. Gülçehre, Ç., et al.: Hyperbolic attention networks. arXiv preprint arXiv:1812.08434 abs/1805.09786 (2018)

  21. Kolyvakis, P., Kalousis, A., Kiritsis, D.: Hyperkg: hyperbolic knowledge graph embeddings for knowledge base completion. arXiv preprint arXiv:1908.04895 (2019)

  22. Krioukov, D.V., Papadopoulos, F., Kitsak, M., Vahdat, A., Boguñá, M.: Hyperbolic geometry of complex networks. Phys. Rev. E 82(3), 036106 (2010)

    MathSciNet  Google Scholar 

  23. Le, M., Roller, S., Papaxanthos, L., Kiela, D., Nickel, M.: Inferring concept hierarchies from text corpora via hyperbolic embeddings. arXiv preprint arXiv:1902.00913 (2019)

  24. Lee, J.M.: Riemannian Manifolds. GTM, vol. 176. Springer, New York (1997). https://doi.org/10.1007/b98852

    Book  Google Scholar 

  25. Liu, Q., Nickel, M., Kiela, D.: Hyperbolic graph neural networks. In: NIPS, pp. 8230–8241 (2019)

    Google Scholar 

  26. Najman, L., Romon, P. (eds.): Modern Approaches to Discrete Curvature. LNM, vol. 2184. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58002-9

    Book  MATH  Google Scholar 

  27. Ni, C., Lin, Y., Luo, F., Gao, J.: Community detection on networks with Ricci flow. Sci. Rep. 9(1), 1–12 (2019)

    Google Scholar 

  28. Nickel, M., Kiela, D.: Poincaré embeddings for learning hierarchical representations. In: Advances in Neural Information Processing Systems, pp. 6338–6347 (2017)

    Google Scholar 

  29. Nickel, M., Kiela, D.: Learning continuous hierarchies in the Lorentz model of hyperbolic geometry. arXiv preprint arXiv:1806.03417 (2018)

  30. Ollivier, Y.: Ricci curvature of Markov chains on metric spaces. J. Funct. Anal. 256(3), 810–864 (2009)

    MathSciNet  MATH  Google Scholar 

  31. Papadis, N., Stai, E., Karyotis, V.: A path-based recommendations approach for online systems via hyperbolic network embedding. In: IEEE. ISCC, pp. 973–980 (2017)

    Google Scholar 

  32. Pei, H., Wei, B., Chang, K.C., Lei, Y., Yang, B.: Geom-GCN: geometric graph convolutional networks. In: ICLR. OpenReview.net (2020)

    Google Scholar 

  33. Sala, F., Sa, C.D., Gu, A., Ré, C.: Representation tradeoffs for hyperbolic embeddings. In: ICML, pp. 4457–4466 (2018)

    Google Scholar 

  34. Samal, A., Sreejith, R., Gu, J., Liu, S., Saucan, E., Jost, J.: Comparative analysis of two discretizations of Ricci curvature for complex networks. Sci. Rep. 8(1), 1–16 (2018)

    Google Scholar 

  35. Shavitt, Y., Tankel, T.: Hyperbolic embedding of internet graph for distance estimation and overlay construction. IEEE/ACM Trans. Netw. 16(1), 25–36 (2008)

    Google Scholar 

  36. Shimizu, R., Mukuta, Y., Harada, T.: Hyperbolic neural networks++. arXiv preprint arXiv:2006.08210 (2020)

  37. Sun, Z., Deng, Z., Nie, J., Tang, J.: Rotate: knowledge graph embedding by relational rotation in complex space. CoRR abs/1902.10197 (2019)

    Google Scholar 

  38. Suzuki, R., Takahama, R., Onoda, S.: Hyperbolic disk embeddings for directed acyclic graphs. In: ICML, pp. 6066–6075 (2019)

    Google Scholar 

  39. Tifrea, A., Bécigneul, G., Ganea, O.: Poincaré glove: hyperbolic word embeddings. CoRR abs/1810.06546 (2018)

    Google Scholar 

  40. Tran, L.V., Tay, Y., Zhang, S., Cong, G., Li, X.: HyperML: a boosting metric learning approach in hyperbolic space for recommender systems. In: WSDM (2020)

    Google Scholar 

  41. Verbeek, K., Suri, S.: Metric embedding, hyperbolic space, and social networks. In: Proceedings of the Thirtieth Annual Symposium on Computational Geometry, pp. 501–510 (2014)

    Google Scholar 

  42. Wang, X., Zhang, Y., Shi, C.: Hyperbolic heterogeneous information network embedding. AAAI 33, 5337–5344 (2019)

    Google Scholar 

  43. Xu, D., Ruan, C., Korpeoglu, E., Kumar, S., Achan, K.: Product knowledge graph embedding for e-commerce. In: Web Search and Data Mining, pp. 672–680 (2020)

    Google Scholar 

  44. Ye, Z., Liu, K.S., Ma, T., Gao, J., Chen, C.: Curvature graph network. In: 8th International Conference on Learning Representations, ICLR. OpenReview.net (2020)

    Google Scholar 

  45. Zhang, Y., Wang, X., Jiang, X., Shi, C., Ye, Y.: Hyperbolic graph attention network. arXiv preprint arXiv:1912.03046 (2019)

Download references

Acknowledgements

The work described in this paper was supported by the Research Grants Council of the Hong Kong Special Administrative Region, China (CUHK 2410021, Research Impact Fund, No. R5034-18).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandni Saxena .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Saxena, C., Liu, T., King, I. (2020). A Survey of Graph Curvature and Embedding in Non-Euclidean Spaces. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Lecture Notes in Computer Science(), vol 12533. Springer, Cham. https://doi.org/10.1007/978-3-030-63833-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63833-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63832-0

  • Online ISBN: 978-3-030-63833-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics