Skip to main content

Implicit Posterior Sampling Reinforcement Learning for Continuous Control

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 12533))

Abstract

Value function approximation has achieved notable success in reinforcement learning. Many popular algorithms (e.g. Deep Q Network) maintain a point estimation of the parameters in the value network or policy network. However, the frequentist perspective is prone to overfitting and lacks uncertainty representation. In this paper, we perform Bayesian analysis on the value function. Following the principle “optimism in the face of uncertainty”, we conduct a posterior sampling of the value or policy network which implicitly captures the posterior distribution via a Bayesian hypernetwork. Experimental results show that the implicit posterior distribution for modeling the structural dependencies between parameters can better balance exploration and exploitation, and it is competitive to state-of-the-art methods on MuJoCo continuous benchmark.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Bellemare, M.G., Dabney, W., Munos, R.: A distributional perspective on reinforcement learning. arXiv preprint arXiv:1707.06887 (2017)

  2. Bishop, C.M.: Pattern Recognition and Machine Learning (2006)

    Google Scholar 

  3. Blundell, C., Cornebise, J., Kavukcuoglu, K., Wierstra, D.: Weight uncertainty in neural networks. arXiv, Machine Learning (2015)

    Google Scholar 

  4. Brockman, G., et al.: Openai gym. arXiv preprint arXiv:1606.01540 (2016)

  5. Cao, Z., Lin, C.T.: Reinforcement learning from hierarchical critics. arXiv preprint arXiv:1902.03079 (2019)

  6. Cao, Z., Wong, K., Lin, C.T.: Human preference scaling with demonstrations for deep reinforcement learning. arXiv preprint arXiv:2007.12904 (2020)

  7. Fujimoto, S., Hoof, H., Meger, D.: Addressing function approximation error in actor-critic methods. In: International Conference on Machine Learning, pp. 1582–1591 (2018)

    Google Scholar 

  8. Goodfellow, I., et al.: Generative adversarial nets. In: Advances in Neural Information Processing Systems 27, pp. 2672–2680 (2014)

    Google Scholar 

  9. Ha, D., Dai, A.M., Le, Q.V.: Hypernetworks. In: International Conference on Learning Representations 2017, ICLR 2017 (2017)

    Google Scholar 

  10. Haarnoja, T., Zhou, A., Abbeel, P., Levine, S.: arXiv preprint arXiv:1801.01290 (2018)

  11. Jiang, B.: Approximate Bayesian computation with Kullback-Leibler divergence as data discrepancy. In: International Conference on Artificial Intelligence and Statistics, pp. 1711–1721 (2018)

    Google Scholar 

  12. Krueger, D., Huang, C.W., Islam, R., Turner, R., Lacoste, A., Courville, A.: Bayesian hypernetworks. arXiv, Machine Learning (2018)

    Google Scholar 

  13. Lillicrap, T.P., et al.: Continuous control with deep reinforcement learning. arXiv preprint arXiv:1509.02971 (2015)

  14. Lipton, Z., Li, X., Gao, J., Li, L., Ahmed, F., Deng, L.: BBQ-networks: efficient exploration in deep reinforcement learning for task-oriented dialogue systems. In: AAAI Conference on Artificial Intelligence, AAAI 2018, pp. 5237–5244 (2018)

    Google Scholar 

  15. Mnih, V., et al.: Human-level control through deep reinforcement learning. Nature 518(7540), 529–533 (2015)

    Article  Google Scholar 

  16. Moerland, T., Broekens, D., Jonker, C.: Efficient exploration with double uncertain value networks. arXiv preprint arXiv:1711.10789 (2017)

  17. Nachum, O., Norouzi, M., Xu, K., Schuurmans, D.: Trust-PCL: an off-policy trust region method for continuous control. In: International Conference on Learning Representations 2018, ICLR 2018 (2018)

    Google Scholar 

  18. Osband, I., Blundell, C., Pritzel, A., Roy, B.V.: Deep exploration via bootstrapped DQN. In: Proceedings of the 30th International Conference on Neural Information Processing Systems, NIPS 2016, pp. 4033–4041 (2016)

    Google Scholar 

  19. Pawlowski, N., Rajchl, M., Glocker, B.: Implicit weight uncertainty in neural networks. arXiv preprint arXiv:1711.01297 (2017)

  20. Plappert, M., et al.: Parameter space noise for exploration. In: International Conference on Learning Representations 2018, ICLR 2018 (2018)

    Google Scholar 

  21. Silver, D., et al.: Mastering the game of go without human knowledge. Nature 550(7676), 354–359 (2017)

    Article  Google Scholar 

  22. Todorov, E., Erez, T., Tassa, Y.: Mujoco: a physics engine for model-based control. In: 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5026–5033 (2012)

    Google Scholar 

Download references

Acknowledgements

The work is partially supported by the National Natural Science Foundation of China under grand No. U19B2044 and No. 61836011.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Wang, S., Li, B. (2020). Implicit Posterior Sampling Reinforcement Learning for Continuous Control. In: Yang, H., Pasupa, K., Leung, A.CS., Kwok, J.T., Chan, J.H., King, I. (eds) Neural Information Processing. ICONIP 2020. Lecture Notes in Computer Science(), vol 12533. Springer, Cham. https://doi.org/10.1007/978-3-030-63833-7_38

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-63833-7_38

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-63832-0

  • Online ISBN: 978-3-030-63833-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics